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Abstract: AlxGa1−xN/GaN heterostructures with two kinds of Al composition were grown by
metal organic chemical vapor deposition (MOCVD) on sapphire substrates. The Al compositions
in the AlGaN barrier layer were confirmed to be 13% and 28% using high resolution X-ray
diffraction (HRXRD). AlxGa1−xN/GaN high-electron mobility transistors (HEMTs) with different Al
compositions were fabricated, characterized, and compared using the Hall effect, direct current (DC),
and low-frequency noise (LFN). The device with high Al composition (28%) showed improved sheet
resistance (Rsh) due to enhanced carrier confinement and reduced gate leakage currents caused by
increased Schottky barrier height (SBH). On the other hand, the reduced noise level and the low
trap density (Nt) for the device of 13% of Al composition were obtained, which is attributed to the
mitigated carrier density and decreased dislocation density in the AlxGa1−xN barrier layer according
to the declined Al composition. In spite of the Al composition, the fabricated devices exhibited 1/ƒ
noise behavior with the carrier number fluctuation (CNF) model, which is proved by the curves
of both (SId/Id

2) versus (gm/Id)2 and (SId/Id
2) versus (Vgs–Vth). Although low Al composition is

favorable to the reduced noise, it causes some problems like low Rsh and high gate leakage current.
Therefore, the optimized Al composition in AlGaN/GaN HEMT is required to improve both noise
and DC properties.
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1. Introduction

AlxGa1−xN/GaN high-electron mobility transistors (HEMTs) are very attractive devices for both
high-power and high-temperature operations [1]. This is because the wide energy band gap (Eg) of
above 3.4 eV allows for higher supply voltages and reliable device performances at high temperature [2].
In addition, spontaneous and piezoelectric polarization in the AlGaN/GaN heterostructures gives high
electron densities and high transconductance (gm), which lead to having advantages for applying
high-frequency and high-current devices [3,4].

Generally, when Al composition in the AlxGa1−xN barrier layer increases, the conduction band
discontinuity and the polarization-induced electrons are increased, which results in high sheet
carrier concentration in the two-dimensional electron gas (2DEG) located at the AlxGa1−xN/GaN
heterostructure [3]. However, high Al composition makes easy to generate the dislocations in the
AlxGa1−xN barrier layer due to the large lattice mismatch between the AlxGa1−xN and GaN layers
caused by the discrepancy of their Eg. These dislocations play the roles of trap states and charge
scattering centers, which leads to the deterioration of device performance, such as severe current
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collapse, increased gate leakage current, and degraded gm [4]. Therefore, in order to achieve improved
device performance, it is needed to optimize the Al composition in the AlxGa1−xN barrier layer.

Low-frequency noise (LFN) measurement for AlGaN/GaN HEMTs is an efficient tool to exam
device performance, analyze material defects, and study device reliability [5–8]. Many research groups
have reported by investigating the effects of in situ/ex situ passivation layers [9,10], the gate-to-drain
distance [7], and the types of GaN buffer layer [11] on the LFN of AlGaN/GaN HEMTs. M. D.
Hasan, et al. [6] demonstrated that the AlGaN/GaN metal-oxide-semiconductor (MOS)-HEMT with Al
composition of 20% exhibited a lower noise level than that of the device with Al composition of 35%.
However, the noise fluctuations mechanism between the 2DEG channel and gate oxide in AlGaN/GaN
MOS-HEMTs are complicated due to their double gate oxide layers: (1) the AlGaN barrier layer; (2) the
deposited oxide layer. No detailed noise characterization has been performed in AlGaN/GaN HEMT
according to the Al composition without oxide layer. Here, we investigate the structural and electrical
characteristics of AlxGa1−xN/GaN HEMTs with two different Al compositions (x = 0.13 and 0.28) using
high resolution X-ray diffraction (HRXRD), the Hall effect, direct current (DC), and LFN measurement.

2. Materials and Methods

The AlxGa1−xN/GaN heterostructures were grown on sapphire substrates by metal organic
chemical vapor deposition (MOCVD). The layer structure consisted of a 30 nm-thick GaN initial
nucleation layer grown at low temperature, a 3 µm-thick highly resistive GaN buffer layer, and a
AlGaN barrier layer (Figure 1a). To find the Al composition and the thickness of AlGaN, theω-2θ scan
of the diffraction plane for two samples was measured using the HRXRD in Figure 1b. The detailed
Al composition and AlGaN thickness are shown in Table 1. The intensity of the GaN buffer layer
was found to be sharp and high, but the AlGaN peak located near the GaN peak presented to be
broad and low (Figure 1b), which means that the GaN buffer layer exhibits much better crystal quality
compared with the AlGaN barrier layer. It was also noted that the AlGaN peak shifts to positive as the
AlGaN composition increases. The reason for the peak shift is due to the decreased lattice constant
of the AlGaN barrier layer [12], which leads to the large lattice mismatch between the thin AlGaN
barrier layer and the underlying thick GaN layer. This results in generating the dislocations in the
AlGaN barrier layer as the Al composition increases [13]. Hall effect measurements showed that the
sheet resistance (Rsh) for the AlxGa1−xN/GaN heterostructure with x = 0.13 and 0.28 were 1923 and
421 Ω/sq, respectively (the detailed electron mobilities and 2DEG densities for all samples are depicted
in Table 1). The enhancement of Rsh as a function of the Al composition is due to the improved carrier
confinement and polarization in the 2DEG quantum well [3].
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X-ray diffraction (HRXRD) of symmetric (0002) ω-2θ scan of AlGaN/GaN heterostructures for 

different Al compositions. 

Figure 1. (a) Schematic cross-sectional view of the fabricated AlGaN/GaN HEMTs; (b) High resolution
X-ray diffraction (HRXRD) of symmetric (0002)ω-2θ scan of AlGaN/GaN heterostructures for different
Al compositions.
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Table 1. Structural parameters, sheet resistance, 2-dimensional electron gas (2DEG) densities,
and electron mobility in AlxGax−1N/GaN HEMTs measured by HRXRD and the Hall effect.

HRXRD Hall Effect

Al Composition
[%]

AlGaN Thickness
[nm]

Rsh
[Ω/sq]

µ

[cm2/V·s]
ns

[cm−2]

13 20 1923 1200 0.27 × 1013

28 19 421 1380 1.07 × 1013

Device fabrication was commenced with mesa isolation by inductively coupled plasma-reactive
ion etching (ICP-RIE). Ohmic contacts composed of Si/Ti/Al/Ni/Au (1/25/160/40/100 nm) were deposited
and then were conducted by rapid thermal annealing at 850 ◦C for 30 s. Finally, the Ni/Au gate
metal was deposited by e-beam evaporation. The fabricated AlGaN/GaN HEMTs with two different
compositions have a gate length (LG) of 5 µm, a gate-source spacing (LGS) of 5 µm, and a gate-drain
spacing (LGD) of 4 µm. The detailed device structure is illustrated in Figure 1a.

3. Results and Discussion

Figure 2 shows the logarithmic scale of drain current and gate leakage current of the fabricated
AlxGa1−xN/GaN HEMTs. The threshold voltage (Vth) for two different Al compositions (x = 0.13
and 0.28) obtained using y-function (= Id/

√
gm) [14] are −0.17 and −2.7 V, respectively (Figure 2a).

It is clearly observed that the gate leakage current decreases according to the raised Al composition,
as shown in Figure 2b. The reason for the excellent leakage currents in the device with high Al
composition is due to the enhanced Schottky barrier height (SBH) [3,15] caused by the enlargement of
Eg of the AlGaN barrier layer. From the Ig–Vgs curves in Figure 2b, the SBHs can be extracted using
Equation (1) [16]:

I = I0

[
exp

(
qV
nkT

)
− 1

]
with I0 = AA∗T2 exp

(
−qΦB

kT

)
(1)

where I0 is reverse saturation current, q is the electric charge, n is the ideality factor, kT is the thermal
energy, ΦB is the Schottky barrier height, A is the contact area, and A* is the effective Richardson constant.
The SBHs, extracted from the intercept of the y-axis of the logarithmic plot of I/[1−exp(−qV/kT)] versus
V, are 0.51 and 0.59 eV for the devices with Al composition of 13% and 28%, respectively.
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Figure 2. (a) Drain current (logarithmic scale); (b) gate leakage current of AlGaN/GaN HEMTs with
different Al compositions.

LFN measurements were performed at room temperature by changing the gate bias from the
subthreshold region to a strong accumulation region in the linear region (Vds = 0.1 V). A fully
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automatic LFN measurement system from Synergie Concept is used in the frequency ranges from
4 to 103 Hz [17]. Figure 3a shows the drain current power spectral density (SId) for all devices at the
same bias of (Vgs–Vth) = 0.5 V and Vds = 0.1 V. The observed curves for all devices clearly exhibit 1/ƒ
noise characteristics. When the Al concentration is high, the noise level becomes high, which is totally
different with the gate leakage performances and Rsh properties. This behavior is attributed to the
increased dislocations in the AlGaN barrier layer as a function of the Al composition due to the large
lattice mismatch between the AlGaN and GaN layer.Crystals 2020, 10, x FOR PEER REVIEW 5 of 7 
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Figure 3. (a) SId versus frequency at the gate overdrive voltage (Vgs–Vth) = 0.5 V; (b) SId/Id
2 (left scale)

and (constant × (gm/Id)2) (right scale) according to drain currents.; (c) dependence of SId/Id
2 on

(Vgs–Vth) in the device with the Al composition of 13% (red triangle) and 28% (blue circle), respectively.
The corresponding solid lines in (b) show their (gm/Id)2 for all devices and the red dashed line indicates
(gm/Id)2 + SRsd(Id/Vd)2 in Al0.13Ga0.87N HEMT (Vds = 0.1 V and ƒ = 10 Hz).

When the normalized SId (SId/Id
2) matches with (gm/Id)2, more informative results can be obtained

using the following equations [18,19]:

SId

I2
d

=

(
gm

Id

)2

SVfb + SRsd

(
Id

Vd

)2

(2)

with

SVfb =
q2kTλNt

WLC2
oxf

(3)

where SRsd is the spectral density of source-drain series resistance, SVfb is flat-band voltage fluctuations,
λ is the oxide tunneling attenuation distance (≈0.11 nm) [20], Nt is the volumetric oxide trap density,
WL is the channel area, Cox is the gate dielectric capacitance per unit area, and ƒ is frequency. As shown
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in Figure 3b, the SId/Id
2 of all devices investigated in this study is proportional to (gm/Id)2. This indicates

that the noise of AlGaN/GaN HEMTs is explained by the carrier number fluctuations (CNF) noise
model, which shows that the origin of the noise is mainly due to the multiple trapping/de-trapping
at the interface between the AlGaN barrier layer and the GaN channel. It is very interesting that
the measured noise data in Al0.13Ga0.87N/GaN HEMT show the dependence of ~Id

2 at a relatively
high drain current of 10−4~10−5 A. These increased noise values are believed to be due to mainly
source/drain series resistance caused by the high Rsh of Al0.13Ga0.87N/GaN heterostructure, which is
confined by Hall effect measurements. When considering the value of SRsd = 5 × 10−3 Ω2

·Hz−1 using
Equation (2), the SId/Id

2 fit very well with CNF + source-drain resistance fluctuations (red dashed line
in Figure 3b). Furthermore, a possible explanation is the increased gate leakage current at high drain
current, as shown in Figure 2b, which is also responsible for increasing the noise value at high drain
current [21].

In the CNF noise model, noise source in the fabricated devices originates from trapping/de-trapping
into the shallow trap levels of the AlxGa1−xN barrier layer and/or the GaN buffer layer [8].
From Equation (2), the values of SVfb are calculated to be 4.0 × 10−12 and 8.5 × 10−11 V2/Hz for
the devices with Al composition of 13% and 28%, respectively. The corresponding Nt calculated
using Equation (3) is 2.1 × 1018 and 4.9 × 1018 cm−3

·eV−1, respectively. The Al0.28Ga0.87N/GaN HEMT
exhibits the high Nt value, which is reflected by the trapping/de-trapping of many carriers due to the
high carrier concentration in the AlGaN/GaN heterostructure and probably, the increased dislocation
density of the AlGaN barrier layer as the Al composition increases [13].

Figure 3c shows the SId/Id
2 according to the (Vgs–Vth) for all devices. All curves clearly show

the slope of −2 for the SId/Id
2 versus (Vgs–Vth). If the slope is −1, the noise source is mainly from the

Hooge mobility fluctuations (HMF) noise model [22]. These results also confirm that the fabricated
devices follow the CNF noise model as a fluctuation mechanism [9,23].

4. Conclusions

AlGaN/GaN HEMTs with different Al compositions are fabricated and characterized through
HRXRD, Hall effects, DC, and LFN measurements. The device with high composition shows improved
Rsh and reduced gate leakage current. On the other hand, the noise levels and the calculated Nt

are obtained to low values in Al0.13Ga0.87N/GaN HEMT. This is because the carrier density and
dislocation density in the AlGaN barrier layer decrease as Al composition decreases. Regardless of the
Al composition, the fabricated AlGaN/GaN HEMTs exhibit the 1/ƒγ noise characteristics, with γ = 1
explained by the CNF noise model due to the carrier trapping/de-trapping at the AlGaN/GaN
heterostructure. This noise mechanism is confirmed by the plotting of the curves of both (SId/Id

2)
versus (gm/Id)2 and (SId/Id

2) versus (Vgs–Vth). Both DC and noise performances can be improved by
optimizing the Al composition and applying the additional deposition of the gate oxide layer.
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