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Abstract: Deep level defects created by implantation of light-helium and medium heavy carbon ions
in the single ion regime and neutron irradiation in n-type 4H-SiC are characterized by the DLTS
technique. Two deep levels with energies 0.4 eV (EH1) and 0.7 eV (EH3) below the conduction band
minimum are created in either ion implanted and neutron irradiated material beside carbon vacancies
(Z1/2). In our study, we analyze components of EH1 and EH3 deep levels based on their concentration
depth profiles, in addition to (−3/=) and (=/−) transition levels of silicon vacancy. A higher EH3
deep level concentration compared to the EH1 deep level concentration and a slight shift of the
EH3 concentration depth profile to larger depths indicate that an additional deep level contributes
to the DLTS signal of the EH3 deep level, most probably the defect complex involving interstitials.
We report on the introduction of metastable M-center by light/medium heavy ion implantation and
neutron irradiation, previously reported in cases of proton and electron irradiation. Contribution of
M-center to the EH1 concentration profile is presented.
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1. Introduction

Silicon carbide (SiC) is a wide band gap semiconductor suitable for high temperature,
high-frequency and high-power applications [1,2]. The 4H polytype of SiC is preferred as a material
for electronic components due to the high and isotropic mobility of carriers. 4H-SiC was demonstrated
as a promising material for atomic-scale spintronics and quantum applications [3–5]. Qubits and
single-photon emitters are realized by defect engineering. A long spin-coherence time at room
temperature was observed for isolated single-point defects in ion-implanted SiC such as silicon vacancy
(VSi), di-vacancy, and a carbon anti-site defect [6–8]. Defect engineering is also used for local carrier
lifetime control necessary for the optimization of the switching loss of 4H-SiC power bipolar junction
transistors [9] and elimination of the bipolar degradation [10]. In recent years, 4H-SiC radiation
detectors have attracted attention due to their high radiation hardness and high signal to noise
ratio [11–13]. Electrically active defects induced by irradiation negatively affect the performance of
4H-SiC devices during their working lifetime. The characterization of irradiation introduced defects is
crucial for future improvement of radiation hardness and extending the lifetime of 4H-SiC detectors.
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The carbon vacancy VC is a dominant recombination center in 4H-SiC affecting the minority
carrier lifetime. Therefore, the control of the minority carrier lifetime can be realized by controlling
the carbon vacancy concentration [14–16]. The carbon vacancy concentration can be increased by
using low-energy electron irradiation, which displaces only C atoms in the 4H-SiC material [17], or ion
implantation [15]. On the other hand, thermal oxidation [18] or C ion implantation with subsequent
annealing [19–21] can be used to introduce carbon interstitials into 4H-SiC, which recombine with
carbon vacancies and reduce the carbon vacancy concentration. Acceptor levels of the carbon vacancy
exhibit negative-U ordering [22]. Two components of the Z1/2 center were recently resolved by Laplace
deep level transient spectroscopy (Laplace DLTS) and assigned to the (=/0) acceptor level of carbon
vacancies residing on lattice sites with local cubic and hexagonal symmetry [23,24].

Two deep levels with energies around EC—0.4 eV and EC—0.7 eV (usually labeled as S1 and S2 or
EH1 and EH3, respectively [25–31]) can be observed in n-type 4H-SiC after irradiation with neutrons or
electrons and ion implantation. Their simultaneous appearance and correlation of their concentrations
indicate that they correspond to different charge state transitions of the same defect [27]. EH1 and EH3
deep levels introduced by ion implantation have been recently assigned to VSi (−3/=) and VSi (=/−)
charge transitions of the silicon vacancy [32,33], respectively. Furthermore, a metastable defect labeled
as the M-center was previously observed in 4H-SiC after proton [34–36] and electron [37,38] irradiation.
Two deep levels M1 and M3 with activation energies of 0.42 and 0.75 eV, respectively, are observed
when M-center is in configuration A, while only one deep level M2 with an activation energy of 0.7 eV
is detected when M-center is in configuration B [34]. Transformation of the M-center to configuration
A occurs at room temperature under applied bias, while transformation to B configuration occurs at
450 K without bias. Low-energy electron irradiation (<220 keV), which displaces only carbon atoms
in the 4H-SiC crystal, introduces two deep levels with activation energies 0.45 eV and 0.72 eV [39].
According to a recent study [39], they are two different transitions of the same defect related to carbon
interstitials, labeled as the EH-center. The activation energy for annealing of EH-center (1.1 eV [39]) is
different from the activation energy of S-center (1.8 eV [27]) and M-center (2.0 eV [37]), which indicates
different defect species.

In this paper, we investigate deep level defects in n-type 4H-SiC introduced by ion implantation
and neutron radiation by the DLTS and Laplace DLTS techniques. The depth profiles of the introduced
deep levels are comprehensively studied, in respect to their attributions and their effect on free carrier
concentration. Inspection of the depth profiles revealed an interstitially related deep level defect,
which contributes to the DLTS signal at the temperature of the EH3 deep level. Furthermore, transitions
between two different configurations of the M-center and its presence in ion implanted and irradiated
4H-SiC samples are observed.

2. Materials and Methods

n-type Schottky barrier diodes (SBDs) were produced on nitrogen-doped (up to 4.5 × 1014 cm−3)
4H-SiC epitaxial layers, approximately 25 µm thick [40]. The epitaxial layer was grown on the silicon
face (8◦ off) of 350 µm thick silicon carbide substrate without the buffer layer. The Schottky barrier was
formed by thermal evaporation of nickel through a metal mask with patterned square apertures of
1 mm × 1 mm, while Ohmic contacts were formed on the backside of the silicon carbide substrate by
nickel sintering at 950 ◦C in the Ar atmosphere.

The SBDs were pattern-implanted with 7.5 MeV C and 2 MeV He ions with fluences of 108–109 cm−2

and 109–1010 cm−2, respectively. All implantations were performed through the front nickel Schottky
contact, at room temperature and zero applied bias. The selected ion energies provide similar ion depth
ranges, which are accessible by the DLTS technique. The pattern-implantation of ions was performed at
the ANSTO (Australian Nuclear Science and Technology Organisation) nuclear microprobe facility [41]
as described in the previous study [30]. An area of a Schottky contact (1 mm × 1 mm) was divided
into 512 pixels × 512 pixels. An ion microbeam raster-scanned multiple times over the contact area,
implanting one or two ions at each pixel location before moving to the next location. The specified
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fluences were calculated as the number of implanted ions per area of Schottky contact. The fluences
were specified for each SBD used in this study. The primary displacements created in collision cascades
were spatially well separated, and their interaction with defects created in subsequent cascades was
negligible. The trajectory of incident ions was normal to the surface of the Schottky contact, not aligned
with the crystal axis. Ion depth ranges and total vacancy concentration profiles were calculated using
the SRIM (The Stopping and Range of Ions in Matter) code [42].

The SBDs were irradiated with epithermal and fast neutrons at the Jozef Stefan Institute (JSI)
TRIGA reactor in Ljubljana, Slovenia. Thermal neutrons with energy less than 0.55 eV were filtered
by irradiating the Schottky barrier diodes inside a cadmium box with a wall thickness of 1 mm.
The neutron energy spectrum and irradiation settings are the same as in the previously reported
study [43]. Figure 1 displays the neutron spectra in the pneumatic tube (PT) irradiation channel,
located in the F-24 core position, obtained by Monte Carlo simulation using the MCNP code [44]
and subsequently characterized on the basis of experimental neutron activation measurements [45].
Elastic collisions of incident neutrons with atoms of SiC crystal result in the introduction of intrinsic
defects. The selected neutron fluences were 1012 cm−2 and 1013 cm−2.
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Figure 1. Neutron spectra in the Jozef Stefan Institute (JSI) TRIGA pneumatic tube (PT) irradiation channel,
corresponding to bare and Cd-covered irradiations, obtained by means of Monte Carlo simulations and
subsequently characterized on the basis of experimental neutron activation measurements.

The averaged primary displacement (vacancy) generation rate (VGR) distributions, created in
collision cascades of the 2.0 MeV He and 7.5 MeV C ions being implanted in the 4H-SiC epitaxial
layer at normal incident not aligned with the crystal axis, was simulated for a total of 10,000 ions
using the SRIM code [42]. As shown in Figure 2, the VGR distribution gradually increased from the
surface of the epitaxial layer underneath the Ni contact layer and reached a sharp maximum in the
4–5 µm depth range, close to the end of an ion range. The average VGR value per 2.0 MeV He ion was
2.5 × 10−3 Å−1. The maximum VGR value for C vacancy was 1.6 × 10−2 Å−1 and for Si vacancy was
1.2 × 10−2 Å−1 at a depth equal to 4.7 µm. The difference in silicon and carbon vacancy density is a
result of the differences in the displacement threshold values for Si (35 eV) and C atoms (22 eV) in
4H-SiC material [46]. The average VGR value for a single 7.5 MeV C ion was 1.4 × 10−2 Å−1, while the
maximum VGR value for C vacancy was 8.7 × 10−2 Å−1 and for Si vacancy was 6.4 × 10−2 Å−1 at a
depth equal to 4.6 µm. Therefore, each 7.5 MeV carbon ion produced approximately five and half times
more silicon or carbon vacancies than each 2.0 MeV helium ion (alpha particle) used in this study.

The displacement damage introduced by neutron irradiation in the 4H-SiC epitaxial layer was
simulated by Fluka software [47]. The neutron spectrum shown in Figure 1 (blue line) was used
to select the neutron energies used in the simulation (627 values in the range 2 × 10−4–2 × 107 eV)
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and to calculate the average displacement generation rate. A total of 106 incident neutrons were
simulated for each energy. The calculated displacement profile was used as the estimate of the vacancy
concentration profile.

The temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics
of SBDs were measured using a Keithley 4200 SCS (Keithley Instruments, Cleveland, OH, USA).
Radiation induced electrically active defects were characterized by the DLTS technique.
DLTS measurements were carried out in the temperature range from 100 to 380 K. The SBDs
were cooled down from room temperature without an applied bias before DLTS measurements.
Subsequently, low temperature annealing at a temperature of 450 K for 30 min and a series of DLTS
measurements in the temperature range up to 450 K were carried out. Before DLTS measurements,
the SBDs were cooled down from 340 K with applied bias (−30 V) or 450 K without applied bias
to observe A and B configurations of the M-center, respectively. The temperature ramp rate was
2 K/min. Concentration profiles of deep level defects were determined from their DLTS amplitude,
where different depth ranges were probed by increasing reverse bias VR in a step of 0.5 V and keeping
constant the difference between pulse bias and reverse bias VP − VR = 1 V. The lambda effect [48,49]
was taken into account. Capacitance transients were measured using a Boonton 7200 capacitance
meter and the following acquisition settings: number of samples 3 × 104, sampling rate 10–80 kHz,
and number of averaged scans 100–800. The FLOG numerical routine [50] was used for the calculation
of Laplace DLTS spectra.

Crystals 2020, 10, x FOR PEER REVIEW 4 of 17 

 

for each energy. The calculated displacement profile was used as the estimate of the vacancy 
concentration profile. 

The temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) 
characteristics of SBDs were measured using a Keithley 4200 SCS (Keithley Instruments, Cleveland, 
OH, USA). Radiation induced electrically active defects were characterized by the DLTS technique. 
DLTS measurements were carried out in the temperature range from 100 to 380 K. The SBDs were 
cooled down from room temperature without an applied bias before DLTS measurements. 
Subsequently, low temperature annealing at a temperature of 450 K for 30 min and a series of DLTS 
measurements in the temperature range up to 450 K were carried out. Before DLTS measurements, 
the SBDs were cooled down from 340 K with applied bias (−30 V) or 450 K without applied bias to 
observe A and B configurations of the M-center, respectively. The temperature ramp rate was 2 
K/min. Concentration profiles of deep level defects were determined from their DLTS amplitude, 
where different depth ranges were probed by increasing reverse bias VR in a step of 0.5 V and 
keeping constant the difference between pulse bias and reverse bias VP − VR = 1 V. The lambda effect 
[48,49] was taken into account. Capacitance transients were measured using a Boonton 7200 
capacitance meter and the following acquisition settings: number of samples 3 × 104, sampling rate 
10–80 kHz, and number of averaged scans 100–800. The FLOG numerical routine [50] was used for 
the calculation of Laplace DLTS spectra. 

3. Results and Discussion 

3.1. Depth Profiling of EH1 and EH3 Deep Level Defects 

The quality of the prepared SBDs was checked by temperature dependent current–voltage 
(I–V–T) and capacitance–voltage (C–V–T) measurements and they showed excellent rectifying 
characteristics (see Figure S1). 

Figure 2 shows the effect of ion implantation and neutron irradiation on the free carrier 
concentration profile of 4H-SiC SBDs. Introduced defects caused a reduction of free carrier 
concentration as the free carriers were captured by the introduced acceptor deep levels. In as-grown 
and neutron irradiated SBDs, a homogenous free carrier concentration was observed. The free 
carrier concentration in 7.5 MeV C ion implanted SBDs had a minimum at a depth of 4.8–5.0 µm 
close to the calculated ion depth range at 4.55 µm. Likewise, in 2 MeV He ion implanted SBDs the 
minimum of the free carrier concentration and ion depth range were at 4.5–4.9 µm and 4.67 µm, 
respectively. 

 

Figure 2. Free-carrier concentration profiles of as-grown, ion implanted, and neutron irradiated 
n-type 4H-SiC Schottky barrier diodes (SBDs; solid lines, left y axis) and the calculated vacancy 
concentration profiles (dashed lines, right y axis). The concentration profiles are obtained from the 
C–V characteristics measured at 200 K [51]. 

Figure 2. Free-carrier concentration profiles of as-grown, ion implanted, and neutron irradiated n-type
4H-SiC Schottky barrier diodes (SBDs; solid lines, left y axis) and the calculated vacancy concentration
profiles (dashed lines, right y axis). The concentration profiles are obtained from the C–V characteristics
measured at 200 K [51].

3. Results and Discussion

3.1. Depth Profiling of EH1 and EH3 Deep Level Defects

The quality of the prepared SBDs was checked by temperature dependent current–voltage (I–V–T)
and capacitance–voltage (C–V–T) measurements and they showed excellent rectifying characteristics
(see Figure S1).

Figure 2 shows the effect of ion implantation and neutron irradiation on the free carrier
concentration profile of 4H-SiC SBDs. Introduced defects caused a reduction of free carrier concentration
as the free carriers were captured by the introduced acceptor deep levels. In as-grown and neutron
irradiated SBDs, a homogenous free carrier concentration was observed. The free carrier concentration
in 7.5 MeV C ion implanted SBDs had a minimum at a depth of 4.8–5.0 µm close to the calculated ion
depth range at 4.55 µm. Likewise, in 2 MeV He ion implanted SBDs the minimum of the free carrier
concentration and ion depth range were at 4.5–4.9 µm and 4.67 µm, respectively.
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DLTS spectra of as-grown, ion implanted, and neutron irradiated 4H-SiC SBDs are shown in
Figure 3. Only one asymmetric peak, labeled as Z1/2, was present in the DLTS spectrum for as-grown
4H-SiC. The Z1/2 is a well-known deep level and previously assigned to a transition between double
negative and neutral charge state of carbon vacancy VC (=/0) [52]. As recently reported [23,24],
two emission lines Z1 (=/0) and Z2 (=/0) are resolved by the Laplace DLTS technique and assigned to
carbon vacancies residing on two different lattice sites with local cubic and hexagonal symmetry.
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Figure 3. DLTS spectra of as-grown, C and He ion implanted, and neutron irradiated SBDs. The voltage
settings for the ion implanted SBDs (b,c) reverse bias VR = −3 V and pulse bias VP = −0.1 V are chosen
to probe the depth region below the ion depth range. In the case of as-grown and neutron irradiated
SBDs (a,d), the reverse bias and pulse bias are VR = −10 V and VP = −0.1 V. The pulse width is 10 ms.
The emission rate is 50 1/s.

The concentration of Z1/2 and introduced two additional deep levels, labeled as EH1 and EH3,
was increased by ion implantation and neutron irradiation. Activation energies and apparent electron
captured cross-sections of observed deep levels are listed in Table 1. A fact that the same types of
deep levels were produced by implantation of two different types of ions (light and medium heavy)
and neutrons clearly indicate that they were intrinsic defects [53]. The energy of impinging ions and
neutrons was high enough to displace silicon atoms in the 4H-SiC crystal lattice. The observed EH1
and EH3 deep levels were recently assigned to VSi (−3/=) and VSi (=/−) transitions of silicon vacancy
VSi [32], respectively. Two emission lines for the EH1 deep level defect were recently resolved by the
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Laplace DLTS technique [31,32], and assigned to VSi residing on two different sites in the crystal with
local cubic and hexagonal symmetry (Figure 4).

Table 1. Activation energies Ea and apparent electron capture cross sections σ determined from
DLTS measurements of ion implanted and neutron irradiated SBDs. Standard deviations of activation
energies are included. Capture cross sections are within an order of magnitude of the calculated values.

Deep Level 7.5 MeV C (108 cm−2) 2 MeV He (109 cm−2) Epithermal and Fast Neutrons (1013 cm−2)
Ea (eV) σ (cm2) Ea (eV) σ (cm2) Ea (eV) σ (cm2)

EH1 0.41 ± 0.02 3 × 10−15 0.42 ± 0.01 4 × 10−15 0.43 ± 0.01 1 × 10−14

Z1/2 0.65 ± 0.01 4 × 10−15 0.68 ± 0.01 1 × 10−14 0.65 ± 0.02 3 × 10−15

EH3 0.70 ± 0.04 1 × 10−15 0.71 ± 0.04 2 × 10−15 0.71 ± 0.03 1 × 10−15
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Figure 4. Schematic illustration of (a) silicon vacancy and (b) energy positions of the attributed
deep levels.

Figure 5a shows the DLTS spectra of 7.5 MeV C implanted (108 cm−2) SBD with different bias
settings for probing deep levels in the adjacent depth ranges. The EH1 and EH3 defects located in
the depth regions illustrated by hatched and solid rectangles in Figure 5b contribute to their DLTS
signals at 210 K and 350 K shown in Figure 5a. Defects in different probed depth regions were mutually
compared in regard with the measured free carrier concentration (black line), which exhibited a
minimum due to carrier capture in the introduced acceptor levels. We assumed that the concentration
of the introduced acceptor levels is the largest approximately at the position of the minimum in free
carrier concentration. The amplitudes of peaks assigned to EH1 and EH3 defects are roughly the same
in the DLTS spectrum obtained probing the depth region closest to the surface (red and blue curves),
which is in agreement with reports of other authors [27,32]. The peak assigned to the EH3 defect shows
a rapid increase, while the peak assigned to the EH1 defect disappeared in the region coinciding with
the minimum in free carrier concentration (green curve in Figure 5a). The peak assigned to the EH3
defect had the largest amplitude in the DLTS spectrum, which was showing deep levels in the depth
range beyond the minimum of free carrier concentration, while the peak assigned to the EH1 defect
was not observed in that region (brown curve in Figure 5a). DLTS spectrum probing the depth region
farthest from the ion implanted region (gray curve) contained only one small peak, the Z1/2 defect,
which was present in as-grown 4H-SiC. DLTS measurements on 2 MeV He implanted (109 cm−2) SBD
show that concentrations of EH1, Z1/2, and EH3 deep levels varied with depth in the same way as in
the case of 7.5 MeV C implanted (108 cm−2) SBD (see Figure S2).

The measured concentration profiles for EH1 and EH3 deep levels are shown in Figure 6.
Lambda-corrected depth concentration profiles were estimated from DLTS signal amplitude ∆C using
the following equation [49]:

NT(x) =
2NSCR(WR)(

1− λR
WR

)2
−

(WP−λP
WR

)2 ∆C
CR

(1)
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where CR, WR (WP), and λR (λP) are steady state capacitance, space charge region width, and lambda
length at reverse bias VR (pulse bias VP), respectively. Voltage settings were selected to probe deep
levels in narrow depth range, whose midpoint is at x = [(WR − λR) + (WP − λP)]/2. The charge
concentration NSCR(WR) at the edge of the space charge depletion region [48], WR, and WP were
determined from the C–V characteristics at the measurement temperature. The lambda lengths were
calculated using the free carrier concentration profile measured at the temperature of 200 K (as seen
in Figure 2), which corresponds to the net donor concentration [51], and known activation energy
(Table 1).
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Figure 5. (a) DLTS spectra of 7.5 MeV C (108 cm−2) ion implanted n-type 4H-SiC SBD. Different voltage
settings, reverse bias VR and pulse bias VP, are used to probe different depth ranges (as seen in (b)).
The rate window and pulse width tP are 50 s−1 and 10 ms. The spectra are shifted vertically for
clarity. (b) Schematic illustration of the depth regions contributing to the DLTS signal of EH1 at 210 K
(hatched rectangles) and EH3 at 350 K (solid rectangles) for the used voltage in the DLTS measurements
(as seen in (a)). The lambda effect was taken into account. The depth ranges are compared with free
carrier concentration (black line) determined from the C–V characteristic at 200 K (as in Figure 2),
which exhibits a minimum due to introduced acceptor deep levels.

The estimated ratio of EH1 and EH3 deep level concentrations in ion implanted SBDs was close to
1:2 at the depths below the ion depth range (2–3 µm), while around the ion depth range the [EH1]:[EH3]
ratio varied. The maximum of EH3 concentration profile was about four times larger than the maximum
of EH1 concentration in C (108 cm−2) implanted SBD, while it was two times larger in He (109 cm−2)
ion implanted SBD. At the depths below the ion depth range, the shape of EH1 and EH3 concentration
profiles followed the shape of the calculated concentration profile of the total introduced vacancies.

As previously mentioned, EH1 and EH3 deep levels with activation energies around 0.4 eV and
0.7 eV were assigned to VSi (−3/=) and VSi (=/−) transitions of the silicon vacancy. In those transitions,
the emission of a single electron from the same defect occurred. Therefore, we should observe
the same concentration of deep levels assigned to VSi. In previous studies [32,54], the one-to-one
correlation between their concentrations enabled their assignment to the transitions of the same defect.
An increased concentration of the EH3 deep level compared to EH1 in a region beyond the maximum of
SRIM calculated that the distribution of atomic displacements could be explained by the contribution
of deep levels other than VSi (=/−) with similar activation energy to the total measured DLTS signal.
A slight shift of the maximum of EH3 deep level profile towards larger depths compared to the EH1
deep level profile could indicate that the EH3 deep level defect, which is not necessary VSi, contains
interstitials. In their study, Pellegrino et al. [55] demonstrated that a forward momentum transfer
from the impinging ions to the lattice atoms in silicon can result in displacement between maximal
values of vacancy and self-interstitial depth distributions. The EH1 deep level concentration had a
maximum at a depth of 4.3 ± 0.2 µm in C (108 cm−2) ion implanted SBD, while the EH3 deep level
concentration had a maximum at 4.5 ± 0.1 µm. Likewise, concentrations of EH1 and EH3 deep levels
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in He (109 cm−2) ion implanted SBD had maximums at depths of 3.9 ± 0.2 µm and 4.3 ± 0.1 µm,
respectively. The concentration of the Z1/2 deep level was the largest at a depth of 4.4 ± 0.1 µm in the C
(108 cm−2) ion implanted SBD and at a depth of 3.8 ± 0.1 µm in the He (109 cm−2) ion implanted SBD,
which was close to the maximum of EH1 defect concentration profile. The Z1/2 defect distribution
depth profile agrees with previous studies [15].Crystals 2020, 10, x FOR PEER REVIEW 8 of 17 
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Figure 6. Depth concentration profiles for EH1 and EH3 deep levels and total introduced vacancies
calculated by SRIM and Fluka software [42,47]. The lambda effect was taken into account [49].
Depth profiling measurements were carried out at the temperatures of 210 K and 350 K.

In the case of neutron irradiation, a higher concentration of the EH1 deep level was observed at
depths below 5 µm. The region with higher EH1 concentration was inside the space charge region
at reverse voltage −10 V used during DLTS measurements in the temperature range up to 380 K.
As previously reported [27,56], EH1 and EH3 deep levels can be observed after a sufficiently long
time annealing in the temperature range 350–400 K without bias, while the applied bias enhances
process related to their appearance. Therefore, EH1 concentration outside the space charge region
was lower as the process related to its appearance was incomplete during low temperature annealing
in the temperature range 350–380 K. The concentration of the peak at 350 K resulting from multiple
overlapping deep levels was much higher than EH1 deep level concentration. Thus, a decrease in
concentration at greater depths was not pronounced.
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Laplace DLTS spectra for EH1 and EH3 deep levels are shown in Figure 7. The observed EH3 peak
was broad and in the vicinity of other peaks, like Z2 (=/0), which affected the resolution. Contrary to
EH1 peak, which was recently resolved into two emission lines [31], the EH3 peak could not be resolved
by the Laplace DLTS technique. Moreover, a presence of an unresolved deep level, which is indicated
by the measured concentration profiles (Figure 6), could lead to the broadening of the EH3 peak in the
Laplace spectra. The used FLOG numerical routine calculated the Laplace DLTS spectra with the least
possible number of peaks, which described well the measured capacitance transient, consistent with
the measured data points and signal to noise ratio [50]. It is challenging to resolve a higher number of
deep levels with closely spaced emissions. However, the matching of the Laplace DLTS spectra (for
EH1 and EH3 deep levels) confirmed the observation of the same type of defects.
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Figure 7. Laplace DLTS spectra of ion implanted and neutron irradiated SBDs at selected temperatures
(a) 210 K and (b) 350 K. Pulse bias VP and pulse width tP are −0.1 V and 10 ms, respectively.
Reverse voltage VR for neutron irradiated SBD is −10 V, while for ion implanted SBDs is −5 V.
The spectra are shifted vertically for clarity.

3.2. Metastable Defects

In order to obtain additional information on unresolved deep levels, we applied the
low-temperature annealing and DLTS measurements in the temperature range up to 450 K. The influence
of low temperature annealing on EH1 and EH3 deep levels has already been reported in several
studies [27,30,34–38,56]. Pastuovic et al. [30] have reported on changes of EH1 and EH3 deep level
concentrations (labeled ET1 and ET2) after low temperature annealing in the temperature range up
to 700 K. EH1 and EH3 deep levels completely anneal out in the temperature range from 600 to
700 K [28,30,37], accompanied by free carrier concentration recovery. DLTS measurements that occur



Crystals 2020, 10, 845 10 of 16

after the initial annealing at 450 K for 30 min and measurement in the temperature range up to 450 K
are stable, the unintentional annealing during the measurement does not affect DLTS spectra.

As seen in Figure 8a, the additional deep level labeled as EH4 was observed with an activation
energy of 0.83–1.05 eV. The EH4 deep level was previously assigned to a defect complex or cluster
of first-order defects [17,28,30]. Recently, a model of the broad EH4 peak was proposed consisting
of three deep levels attributed to (+/0) transition of the carbon antisite-carbon vacancy complex in
three energetically inequivalent configurations [57]. However, a possibility is left that other deep level
defects, such as di-vacancy, also contribute to a broad EH4 peak.Crystals 2020, 10, x FOR PEER REVIEW 11 of 17 
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cooling down SBDs from 450 K without applied bias, while configuration A was realized by cooling 
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of the M-center were observed in configuration A, while the M2 deep level was observed in 
configuration B. They were resolved by subtracting two DLTS spectra with the M-center in 
configuration A and configuration B, as shown in Figure 8b. In a first approximation, the difference 
in DLTS spectra was only due to M-center deep levels [35]. The approximation was the best in the 
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Figure 8. (a) DLTS spectra of C (108 cm−2) and He (109 cm−2) ion implanted, and neutron irradiated SBD
in the temperature range up to 450 K with A and B configuration of the M-center. DLTS spectrum with
configuration B is measured after cooling down the SBD from 450 K without bias, while configuration
A is realized by cooling down the SBD from above room temperature (340 K) with applied bias −30 V.
The reverse bias VR = −3 V is used in case of ion implanted SBD, while VR = −10 V is used in case
of neutron irradiated SBD. The pulse bias and pulse width VP = −0.1 V and tP = 10 ms, respectively.
The emission rate is 2.5 1/s. (b) Difference between two DLTS spectra with the M-center in configuration
A and configuration B (shown in (a)). The x-axis is shared between the vertically stacked graphs.

As previously mentioned, the depth profiling measurements (Figure 6) indicate that an interstitially
related deep level defect contributes to the DLTS signal at the temperature of the EH3 deep level.
In Figure 8a and henceforward, this contribution is separately labeled as X.

Additionally, the metastable M-center was detected in the neutron irradiated and ion implanted
4H-SiC (Figure 8a). In previous studies [34–38], the introduction of the M-center was reported only
in the cases of proton and electron irradiation. The M-center was transformed to configuration B by
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cooling down SBDs from 450 K without applied bias, while configuration A was realized by cooling
down SBDs with applied bias (−30 V) from above room temperature (340 K). M1 and M3 deep levels of
the M-center were observed in configuration A, while the M2 deep level was observed in configuration
B. They were resolved by subtracting two DLTS spectra with the M-center in configuration A and
configuration B, as shown in Figure 8b. In a first approximation, the difference in DLTS spectra was
only due to M-center deep levels [35]. The approximation was the best in the case of neutron irradiated
(1013 cm−2) SBD due to the higher reverse voltage used in the measurements (−10 V) and uniform
deep level concentrations. The coordinate configuration diagram describing the observed transitions
of the M-center is shown in Figure 9. The shown transitions are consistent with previously reported
findings [36]. Activation energies of M1 and M2 deep levels were determined using the subtracted
DLTS spectra, while activation energy of the M3 deep level was estimated based on the activation
energy of the EH3 + M3 + X peak. The subtracted DLTS spectra provided too few points for the
Arrhenius graph of the M3 deep level due to the transition of the M-center to A configuration during
DLTS measurements at temperatures above 300 K. As best seen in the case of neutron irradiation due
to uniform concentration of deep levels, the concentrations of M1 and M2 deep levels were the same.
A smaller peak height (concentration) of the M3 deep level seen in Figure 8b was due to the previously
mentioned partial transformation of the M-center to A configuration during DLTS measurement.
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Figure 9. Coordinate configuration diagram for the M-center constructed based on M1, M2, and M3
activation energies determined from DLTS measurements on neutron irradiated (1013 cm−2) SBD
and activation energies for transitions between A and B configurations of M-center taken from [34].
All energy values are in the eV unit.

The concentration profiles measured on the C (108 cm−2) ion implanted SBD after 450 K annealing
are shown in Figure 10. The concentration profile of EH1 was measured with the M center in
configuration B, while EH1 + M1 and EH3 + M3 + X concentration profiles were measured with
the M-center in configuration A. The overlap of profiles measured at a temperature of 210 K before
(dotted lines) and after 450 K annealing indicates that the M-center was present in ion implanted
SBDs before 450 K annealing at depths below the ion depth range. Moreover, an increase in M-center
concentration at an ion depth range and a slight decrease in the EH3 + M3 + X concentration in the
region below the ion depth range was observed after 450 K annealing. A decrease in the EH3 + M3 + X
concentration profile could be due to defect reactions involving carbon interstitials, which are mobile
at temperatures above 450 K [58]. The concentration profile of the M-center did not show significant
deviation from EH1 concentration profile. In neutron irradiated SBD, uniform concentrations of the
M-center, EH1, and EH3 deep levels were observed in the whole depth range (see Figure S5).

M1 and M3 deep levels were not resolved by Laplace DLTS measurements. The EH12 and EH3
peaks seen in Figure 7 partially contained the contributions of M1 and M3 deep levels, respectively.
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Figure 10. EH1, EH1 and M1, and EH3 and M3 depth concentration profiles in 7.5 MeV C (108 cm−2)
ion implanted SBD. The shown EH1 + M1 concentration profile (Configuration A) was measured
after cooling SBD from 340 K down to 210 K under −30 V bias, while EH1 profile was measured after
cooling down SBD from 450 K without bias. Depth profiles measured before 450 K annealing (as seen
in Figure 6) are shown with dotted lines.

In this work, we utilized a depth and energy resolution of DLTS measurements to obtain
concentration profiles of deep levels introduced by ion implantation and irradiation, and compared
them relative to the vacancy profile. The transformation of the M-center between A and B configurations
was used to resolve M1, M2, and M3 deep levels in the DLTS spectra and obtain information on
the M-center depth profile. The identification of the M-center is still uncertain with previously
reported studies.

4. Conclusions

We reported on a comparative DLTS study of EH1 and EH3 deep level defects in 4H-SiC
introduced by C and He ion implantation and neutron irradiation. Their intrinsic origin was confirmed.
We analyzed components of EH1 and EH3 deep levels by depth profiling and annealing procedure.
Our results show that the deep levels of silicon vacancy, the M-center, and the defect involving
interstitials contributed simultaneously to the DLTS signal at the temperature of EH1 and EH3 deep
levels. The shift of the EH3 concentration profile maximum towards greater depths and higher
concentration relative to EH1 concentration profile was observed and explained by the presence of
an additional defect involving interstitials. Introduction of the M-center by different types of ion
implantation and irradiation was demonstrated, leading to a hypothesis that the M-center was also an
intrinsic defect.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/9/845/s1,
Figure S1: Current-voltage characteristics of SBDs implanted with 7.5 MeV C (108 cm−2) and 2 MeV He (109 cm−2)
ions, and neutron irradiated (1013 cm−2) SBD at temperatures of 200 K and 300 K, Figure S2: (a) DLTS spectra of
2 MeV He (109 cm−2) ion implanted n-type 4H-SiC SBD. Different voltage settings, reverse bias VR and pulse bias
VP, are used to probe different depth ranges (as seen in (b)). The rate window and pulse width tP are 50 s−1 and
10 ms. The spectra are shifted vertically for clarity. (b) Schematic illustration of the depth regions contributing to
the DLTS signal of EH1 at 210 K (hatched rectangles) and EH3 at 350 K (solid rectangles) for the used voltage
in the DLTS measurements (as seen in (a)). The lambda effect was taken into account. The depth ranges are
compared with free carrier concentration (black line) determined from C–V characteristic at 200 K (as in Figure 2),
which exhibits a minimum due to introduced acceptor deep levels, Figure S3: Depth concentration profiles for
Z1/2 deep level and total introduced vacancies calculated by SRIM and Fluka software [1,2]. The lambda effect
was taken into account [3]. Depth profiling measurements were carried out at the temperature of 315 K, Figure S4:
Increase in free carrier concentration after annealing at the temperature of 450 K. Solid and dashed lines show
free carrier concentration profiles measured before and after annealing at the temperature of 450 K, respectively.
The profiles are calculated using C–V measurements at a temperature of 200 K, Figure S5: EH1, EH1 and M1,
EH3 and M3 depth concentration profiles in (a) 2 MeV He (109 cm−2) ion implanted and (b) neutron (1013 cm−2)
irradiated SBD. The shown EH1 + M1 concentration profile (Configuration A) was measured after cooling SBD
from 340 K down to 210 K under −30V bias, while EH1 profile was measured after cooling down SBD from
450 K without bias. The black curve in (b) shows depth concentration profile measured after cooling SBD from
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340 K down to 210 K under −10V bias. Depth profiles measured before 450 K annealing (as seen in Figure 6) are
shown with dotted lines. The contribution of an additional deep level defect involving interstitials is labeled as
X, Figure S6: Pulse width dependence of EH1 and EH1 + M1 DLTS signal amplitudes in neutron (1013 cm−2)
irradiated SBD. DLTS signal amplitude of M1 deep level is determined by subtracting EH1 + M1 and EH1 DLTS
signals. Measurements are carried out at a temperature of 210 K using 50 1/s emission rate window. Reverse and
pulse voltages were −10 V and −0.1 V, respectively.
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11. Radulović, V.; AmbroZič, K.; Snoj, L.; Capan, I.; Brodar, T.; Ereš, Z.; Pastuović, Z.; Sarbutt, A.; Ohshima, T.;
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