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Abstract: The microflower-like Si/MoS2 composites were fabricated using Si quantum dots (QDs)
to assist a facile hydrothermal method. The electrochemical performance of Si/MoS2 composite in
symmetric and asymmetric systems was studied. Electrochemical characterization revealed that the
Si/MoS2 composite electrode in a three-electrode system has a high specific capacitance of 574.4 F·g−1

at 5 A·g−1. Furthermore, the Si/MoS2 composite electrode in a two-electrode system had the maximum
energy density of 27.2 Wh·kg−1 when a power density of 749.1 W·kg−1 was achieved. Therefore,
this investigation proves the Si/MoS2 composite microflower-like structure should be a promising
candidate electrode material for supercapacitors.
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1. Introduction

The progress of science and technology has brought about rapid changes to human life, but has also
brought about irreversible problems, such as global warming, the near exhaustion of non-renewable
energy, and environmental pollution. Humans are eager to seek new, green energy to alleviate the
energy crisis and environmental crisis, and even replace the traditional non-renewable energy [1–3].
Clean energy storage devices have been widely researched, due to their wider and wider application
in numerous electronic devices. As a new type of clean energy storage device, supercapacitors have
high power density, good cyclic stability, fast charge, and high rate of discharge [4–8].

Nowadays, two-dimensional (2D) materials have shown many unique advantages. Firstly,
because electrons are confined to the 2D plane, especially for monolayer 2D materials, their electronic
properties are enhanced. Therefore, 2D materials are ideal materials for basic research in condensed
matter physics and electronic/optoelectronic devices. Secondly, because 2D materials can maintain
the thickness of atoms while possessing the maximum plane size, they have a large specific surface
area. This property has greatly attracted research into applications concerning surface area, such as
catalysis and supercapacitors. Thirdly, ultra-thin 2D nanomaterials based on liquid phase processing
can be prepared by simple methods into a single high-quality film, which is very necessary for practical
applications, such as supercapacitors and solar cells.

2D transition metal disulfides (TMDs) have attracted widespread attention, due to their special
layer structure. They have better performance of conductivity and larger surface area than oxide,
the metal element and sulfur element through the weak van der Waals force of interaction between a
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single layer, forming a similar graphene layer structure [9]. This structure facilitates the insertion and
extraction of various ions, and can be developed in the field of energy storage, including for lithium
ion batteries and supercapacitors. Transition metal sulfides (MoS2 [10] CoS [11], NiS [12], CuS [13], etc.)
are considered as potential materials for electrodes, because of their wide range of sources, low prices,
and unique physicochemical properties. As a representative transition metal sulfide, MoS2 has received
extensive attention in capacitor research [14]. Manuraj et al. [15] reported a specific capacitance of
972 F·g−1 at 1 A·g−1 for MoS2-RuO2 nanocomposite. Lien et al. [16] fabricated high voltage symmetric
supercapacitors of graphene/MoS2, which works at a wide operating voltage of 2.3 V and achieves the
maximum energy density of 31.2 Wh kg−1. Vattikuti et al. [17] reported that the hydrothermal reaction
synthesized MoS2/MoO3 heterostructure electrodes have a high specific capacitance of 287.7 F·g−1 at
1 A·g−1 with good cycling stability. The MoS2 preparation method is simple and low cost. MoS2 has
different morphologies, such as nanoball [18], nanoflake [19], nanoflower [20], nanofilament [21],
nanoparticle [22], etc. It is found that MoS2 can not only show good capacitance in the electrochemical
double layer, but can also generate an extra Faraday capacitance, due to the interaction between Li+,
Na+, K+, and other ions inserted into the MoS2 layer. Nevertheless, the energy storage application of
pure MoS2 as an electrode material is still very limited, with low conductivity and easy agglomeration,
leading to a relatively low capacitance of MoS2. Therefore, the current research focus is to improve the
electrochemical performance and increase the capacitance of composite materials

Zero-dimensional semiconductor nanomaterials can be sorted into three categories: IV group
quantum dots, III-V group quantum dots [23], and II-VI group quantum dots. In the IV group, Si is one
of the most important elements. Si, one of the most important elements, is the eighth most abundant
element in the universe. Si nanomaterials are fully compatible with Si-based microelectronic devices,
and nanosilicates have many unusual optical and electrical properties [24]. As a result of high research
value, both in the basic theory and practical applications, Si nanomaterials have attracted considerable
attention. The quantum confinement effect occurs when the particle size of a Si nanocrystal is reduced
to the radius of the exciton Bohr. Si nanocrystals are then called Si QDs. In Si QDs, the motion of
electrons or holes in three-dimensional space is constrained by the fact that the constrained carrier
can only be located at the separated bound level, and the motion is fully quantized, thus weakening
the constraint of momentum conservation. Therefore, the electronic structure of Si semiconductor
nanocrystals is different from that of bulk materials of the same composition. It is mainly manifested
in the enhancement of electron–hole exchange, the increase of exciton binding energy, and the increase
of optical transition oscillation intensity with the decrease of semiconductor gap width. Among the
quantum constraint effects, the most reported is the quantum size effect, that is, the band gap increases
as the quantum dot size decreases. Si QDs have been developed in recent years with many advantages.
The low preparation cost lays a foundation for the rapid application of Si QDs in production. Its low
toxicity provides a security guarantee for the experimental research of Si QDs [25]. Its chemical
properties provide a basis for the study of its electrochemical properties.

In this article, we propose a scheme for the synthesis of MoS2 using Si QDs to assist hydrothermal
synthesis. Using the Si QDs as the center of nucleation promotes the nucleation process of MoS2,
and accelerates the reaction speed. Si/MoS2 composite presents a flower-like structure, with the
petals crisscrossing each other. This structure makes the active substance fully contact the electrolyte,
which results in the redox reaction. Moreover, to a certain extent, the structure reduces the changes in
the microstructure of the material caused by the charging and discharging process. By comparing the
electrochemical performance of the two kinds of electrodes (MoS2 and Si/MoS2 composite), the Si/MoS2

composite electrode demonstrates excellent performance, including high specific capacitance and good
cyclic stability. This work can arouse wide interest in the preparation of high-performance mixed-metal
sulfide electrode materials by a simple method.
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2. Materials and Methods

A total of 0.1 g of sodium ascorbate was dissolved in 10 mL deionized (DI) water while stirring for
30 min, then, a solution could be obtained. Following this, 3.75 mL of sodium ascorbate solution, 1 mL
of N-aminoethyl-γ-aminopropyltrimethoxysilane, and 12 mL DI water were mixed with magnetic
stirring for 20 min to obtain a Si quantum dot solution.

Firstly, 0.7062 g (NH4)6Mo7O24·6H2O and 1.3049 g H2NCSNH2 were diluted with 20 mL DI water.
The prepared solution was mixed with 1 mL Si QD solution, and subjected to continuous magnetic
stirring for 1 h. Subsequently, the reaction mixture was kept in a Teflon lined stainless steel autoclave
at 180 ◦C for 18 h. After that, the final mixture product was filtered, washed with DI water, and dried
at 60 ◦C in a vacuum oven to obtain the Si/MoS2 composite. For better comparison, the MoS2 was
prepared following the same procedures, but without the Si QDs.

An electrochemical station (CHI 660E, Chenhua, Shanghai, China) was taken to test electrochemical
performance in 6 M KOH. The sample was used as the working electrode, with a platinum foil
(2 cm × 2 cm) and a saturated calomel electrode as the counter and the reference electrode, respectively.
The specific capacitance of the single electrode was calculated using the equation:

C = i∆t/(S∆V) (1)

C = i∆t/(m∆V) (2)

where C is the specific capacitance, i is the discharge current, ∆t is the discharge time, S and m are
assigned as the area and mass of the electrode material, and ∆V represents the potential window.

3. Results

Fourier transform infrared (FT-IR) spectroscopy (TENSOR II, Bruker, Karlsruhe, Germany) was
used to investigate the bonding interaction and functional groups of samples [26]. As shown in
Figure 1a, the peak appearing at 590 cm−1 is assigned to the Mo–S vibration [27], the peak at 1010 cm−1

corresponds to the S–O stretching [28], and the peak at 1413 cm−1 is attributed to C–O stretching
vibration [29]. For MoS2, the peaks observed at 1132 and 1651 cm−1 are attributed to the C–H bending
vibration [27] and the existence of C=O stretching vibration [30]. For Si/MoS2, the absorption peak
at 1106 cm-1 is ascribed to the characteristic stretching of the Si–O–Si band [31]. Figure 1b gives the
XRD pattern for Si/MoS2 composite. The main diffraction peaks of MoS2 at 2θ = 33.3◦, 39.2◦ and 48.5◦

correspond to (101), (103), and (105) reflections, respectively (JCPDS card no. 37-1492). The peak of Si
at 2θ = 58.6◦ can be attributed to the (101) plane (JCPDS card no. 47-1186).
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Figure 1. FT-IR spectrum of MoS2 and Si/MoS2 composite electrodes (a), and XRD pattern of Si/MoS2 
composite (b). 

Fourier transform infrared (FT-IR) spectroscopy (TENSOR II, Bruker, Karlsruhe, Germany) was 
used to investigate the bonding interaction and functional groups of samples [26]. As shown in Figure 
1a, the peak appearing at 590 cm−1 is assigned to the Mo–S vibration [27], the peak at 1010 cm−1 
corresponds to the S–O stretching [28], and the peak at 1413 cm−1 is attributed to C–O stretching 
vibration [29]. For MoS2, the peaks observed at 1132 and 1651 cm−1 are attributed to the C–H bending 
vibration [27] and the existence of C=O stretching vibration [30]. For Si/MoS2, the absorption peak at 
1106 cm-1 is ascribed to the characteristic stretching of the Si–O–Si band [31]. Figure 1b gives the XRD 
pattern for Si/MoS2 composite. The main diffraction peaks of MoS2 at 2θ = 33.3°, 39.2° and 48.5° 
correspond to (101), (103), and (105) reflections, respectively (JCPDS card no. 37-1492). The peak of Si 
at 2θ = 58.6° can be attributed to the (101) plane (JCPDS card no. 47-1186). 

Figure 1. FT-IR spectrum of MoS2 and Si/MoS2 composite electrodes (a), and XRD pattern of Si/MoS2

composite (b).



Crystals 2020, 10, 846 4 of 11

X-ray photoelectron spectroscopy (XPS, ESCA-LAB Mk II, VG Scientific Co., London, England)
was used to analyze the elemental valence state and surface chemical composition. Figure 2 shows
the XPS high-resolution spectra of Mo 3d and S 2p. The peaks at 230.3 eV, 233.5 eV, and 236.3 eV,
observed in the pristine spectrum of Mo in Figure 2a, are identified as Mo4+ 3d5/2, Mo4+ 3d3/2, and Mo6+

3d3/2, respectively [32]. The presence of Mo6+ indicates that there may be a small amount of MoO3 in
the sample [33]. Moreover, there is another peak at 227.1 eV, which represents S2- 2s [34]. For S 2p in
Figure 2b, the peaks at 163.7 eV and 164.2 eV, observed in the pristine spectrum of S, correspond to S
2p5/2 and S 2p3/2.
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Figure 2. The XPS spectra of (a) the Mo 3d; and (b) the S 2p.

In order to study the effect of Si QDs on the microstructure of the whole composite, field emission
scanning electron microscope (FESEM, S-4800, Hitachi, Tokyo, Japan) analysis was used for MoS2 and
Si/MoS2 composite. Figure 3 shows the SEM images of MoS2 and Si/MoS2 composite. In Figure 3a–c,
it can be seen that without Si QDs, MoS2 is composed of irregular nanosheets with a diameter of
200–300 nm. Most of the nanosheets are tiled, and there are some curled-off phenomena. On the other
hand, it still conforms to the rule that MoS2 nanosheets tend to grow in flat under the control of MoS2.
Figure 3d,f is the SEM diagram of Si/MoS2 composite material. After adding a small amount of Si QDs,
the Si/MoS2 composite presents a microflower spherical structure composed of staggered nanosheets,
which indicates that the MoS2 nanosheets grow with Si QDs as nucleation centers, and finally grow into
three-dimensional flower spheres. The energy dispersive X-ray (EDX) elemental maps in Figure 3g–i
reveal that there are Si, Mo, and S elements in the Si/MoS2 composite. It is evident that the Si QDs are
uniformly distributed in Si/MoS2 composite.

A possible growth mechanism is depicted in the schematic diagram in Figure 4. Without Si
QDs, MoS2 tends to grow tiled in the direction with the minimum binding potential energy. With the
prolongation of reaction time, the MoS2 nanosheets grew more and more, and were stacked. A small
part of MoS2 nanosheets can overcome the crimping of partial binding potential energy or the
semi-upright growth. It may be caused by the dynamic force generated by the easy agglomeration
of MoS2 itself, which can overcome the crimp growth of certain binding potential energy, and finally
form the structure in Figure 3c; when, with Si QDs, due to the small size of Si QDs, it can be used as
the nucleation center in the reaction process. The generated MoS2 nanosheet tends to pile up around
Si QDs, overcoming the potential energy for rapid three-dimensional growth, and finally forming
a micron flower ball. As a result, the structure in Figure 3f is formed with the continuation of the
reaction time.
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Figure 4. Schematic illustration of the formation for MoS2 and Si/MoS2 composite.

Figure 5a is the transmission electron microscope (TEM, Tecnai F30G2, FEI, Hillsboro, OR, USA)
image of Si/MoS2. It confirms the microflower structure further, in which many nanosheets are
stacked on each other. The result is consistent with the SEM image in Figure 3f. Figure 5b is a
high-resolution-TEM image of Si/MoS2, in which it is clearly observable the ordered lattice fringes with
the corresponding interplanar distance of 0.61 nm, which relates to the (002) plane of the MoS2 [35].
Figure 5c is the high-resolution image after the Fourier transform of the box area in Figure 5b. The
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crystal lattice of the sample can be observed to be 0.22 nm, which corresponds to the (100) plane of the
MoS2.
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In order to compare the electrochemical properties of the MoS2 and Si/MoS2 composite, CV curves
with a scan rate of 100 mV·s−1 were given in Figure 6a,b. In Figure 6a, the integral areas of the CV curve
of the Si/MoS2 composite are bigger than those of MoS2, which suggests that the specific capacitance of
Si/MoS2 composite is bigger than the MoS2. The GCD curves of the MoS2 and Si/MoS2 composite at the
same current density of 50 A·g−1 are shown in Figure 6b. The plateaus in the GCD curves indicate that
the two samples performed pseudocapacitor behaviors [36], which is consistent with the CV results.
In Figure 6b, Si/MoS2 composite possesses a longer discharge time than MoS2, which indicates that it
has a large specific capacitance. The specific capacitance of Si/MoS2 composite is higher than that of
MoS2 for the following three reasons: (1) after the addition of Si QDs, Si QDs as the nucleation center,
play the role of supporting MoS2 nanosheets, which greatly increases the ion transport channel; (2) the
porous and open microflower structure of Si/MoS2 composite, which can shorten the diffusion path of
electrons and ions and enhance electrochemical dynamics [37]; and (3) the open space of the Si/MoS2

composite microflower can act as the robust reservoir for electrolyte ions, supplying sufficient redox
reactions for energy storage [38]. The CV curves for MoS2 and Si/MoS2 composite at different scan
rates of 5–100 mV/s are shown in Figure 6c,d. With the increase of the scanning rate, the peak of current
gradually increased, and the curve shape remained basically unchanged in the CV curves of MoS2 and
Si/MoS2 composite, indicating that the two electrode materials had the potential to provide high power
performance. The GCD curves of the MoS2 and Si/MoS2 composite at different current densities are
shown in Figure 6e,f. The specific capacitances of the MoS2 and Si/MoS2 composite can be calculated
on the basis of the GCD curves, and the results are presented in Figure 6g. The specific capacitance of
Si/MoS2 composite at any of the same current densities is higher than that of MoS2. With the increase of
current density, the discharge time is shortened continuously, so the specific capacity is also decreased
continuously. When the current density of Si/MoS2 composite is at the 5 A·g−1, 10 A·g−1, 20 A·g−1,
30 A·g−1, 40 A·g−1, and 50 A·g−1, the corresponding specific capacitance of Si/MoS2 composite electrode
is 574.4 F·g−1, 500.0 F·g−1, 404.4 F·g−1, 284.4 F·g−1, and 233.3 F·g−1, respectively, which is consistent
with the analysis results of CV curves in Figure 6c,d. Figure 6i shows cyclic stability of capacitive
performance of Si/MoS2 electrode tested for 1000 cycles at 1 A·g−1. The Si/MoS2 composite electrode
exhibits specific capacitance retention of 84.5% for 1000 cycles.

Nyquist plots of the MoS2 and Si/MoS2 composite electrodes are shown in Figure 6h. Generally,
a semicircle in the high frequency region and a straight line with slope in the low frequency region are
shown. In the low frequency region, it consists of a straight line, while in the high frequency region,
it consists of a semicircle. The diameter of the semicircle is related to the charge transfer resistance
(Rct). The radius of the Rct from the high frequency arc is on the real axis. Additionally, the smaller the
radius, the smaller the Rct. A smaller Rct for Si/MoS2 and a vertical line along the virtual axis show
lower resistance and better capacitive behavior [39]. The Nyquist curve of the X-ray intercepts the
equivalent series resistance of said electrode (RS), which is 0.506 Ω.
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In order to evaluate the potential practical application of the Si/MoS2 composite electrode,
an asymmetric capacitor (Si/MoS2//AC) was constructed, with Si/MoS2 composite active material
as positive electrode and AC as negative electrode, to investigate its electrochemical performance.
An electrochemical workstation was used to test the asymmetric supercapacitor electrochemical
properties. As shown in Figure 7a, CV curves of the Si/MoS2 composite and AC separately tested in
the three-electrode test system indicated that the optimal potential window of Si/MoS2//AC is 1.5 V,
and a good matching for asymmetric supercapacitors. Figure 7b shows CV curves of Si/MoS2//AC
at various scan rates, which show that the pseudocapacitance and double-layer capacitance are
common influences on the supercapacitor. The shapes of CV curves were not deformed when the
sweep speeds increased, indicating good rate performance. The C (specific capacitance (86.9 F·g−1))
in the asymmetric capacitor was calculated based on the Figure 7c discharge curves when current
density was at 1 A·g−1. The Ragone plot is displayed in Figure 7d. The maximum energy density
of 27.2 Wh·kg−1 is obtained at a power density of 749.1 Wh·kg−1, which is more than other reported
systems, such as MoS2-150 mg GF//AEG (16 Wh·kg−1/758.2 W·kg−1) [6], BCN/MoS2-31 composite
(8.92 Wh·kg−1/254.8 W·kg−1) [40], PANI-G-MoS2 (2.65 Wh·kg−1/119.2 W·kg−1) [41], and MoS2/RCF
electrode (22.5 Wh·kg−1/703 W·kg−1) [9].
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In order to evaluate the potential practical application of the Si/MoS2 composite electrode, an 
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Wh·kg−1/254.8 W·kg−1) [40], PANI-G-MoS2 (2.65 Wh·kg−1/119.2 W·kg−1) [41], and MoS2/RCF electrode 
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Figure 7. (a) CV curve of AC and Si/MoS2 composite, separately tested in three-electrode system at
100 mV·s−1; (b) CV curve of asymmetric supercapacitor (Si/MoS2//AC); (c) GCD curve of Si/MoS2//AC;
(d) Ragone plots of Si/MoS2//AC.

4. Conclusions

In this work, microflower-like structure Si/MoS2 composite was prepared by hydrothermal method.
The addition of Si QDs can improve the electrochemical performance of MoS2. The capacitance of
the Si/MoS2 composite is 574.4 F·g−1 at 5 A·g−1. When the energy density is 27.2 Wh·kg−1, the power
density of the Si/MoS2//AC reaches 749.1 W·kg−1. The capacitance retention is 84.5%, even after
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1000 cycles. Therefore, the Si/MoS2 composite microflower will be a great potential electrode material
for supercapacitors.
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