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Abstract: Gradient structures containing nanograins in the surface layer have been introduced into
Inconel 718 (IN718) nickel-based alloy using the surface mechanical grinding treatment technique.
The thermal stability of the gradient IN718 alloy was investigated. Annealing studies reveal that
nanograins with a grain size smaller than 40 nm exhibited significantly better thermal stability
than those with larger grain size. Transmission electron microscopy analyses reveal that the enhanced
thermal stability was attributed to the formation of grain boundaries with low energy configurations.
This study provides new insight on strategies to improve the thermal stability of nanocrystalline metals.

Keywords: nanocrystalline; thermal stability; IN718 alloy

1. Introduction

Nanograined (NG) metals containing a high volume fraction of grain boundaries have
demonstrated much higher mechanical strength than their coarse-grained counterparts [1–3].
Severe plastic deformation (SPD) techniques such as equal channel angular pressing [4,5]
and high-pressure torsion [6–8], etc., have been proven effective in grain refinement of
metallic materials. However, the same grain boundaries that contribute to the high strength
also lead to deterioration of the thermal stability of NG metals [9–12]. The grain boundary
energy of nanograins provides a large driving force for grain coarsening. For instance,
grain boundary migration takes place at 300 ◦C for nanocrystalline Nb (obtained by
high pressure torsion) with an average grain size of 75 nm [13]. Grain growth occurs
at temperatures as low as 200 ◦C for nanocrystalline Ni, accompanied by a substantial
hardness drop [14]. In electrodeposited nanocrystalline Ni with an average grain size
of 10–20 nm, grain coarsening occurs at 80 ◦C [15]. Similarly, grain growth takes place
even at ambient temperature in nanocrystalline Cu. The poor thermal stability hinders the
application of NG metallic materials at elevated temperatures [16].

Recently, surface mechanical grinding treatment (SMGT) [17], surface mechanical attri-
tion treatment (SMAT) [18–20] and surface mechanical rolling treatment (SMRT) [18] have
been applied to introduce gradient microstructures into the surface of metallic materials
to improve both strength and ductility. Gradient structures containing an NG top surface
layer have been introduced into several types of metals [18,21–24]. It has been reported that
these surface modification techniques are more effective than conventional SPD approaches
in grain refinement [22]. In contrast to the poor thermal stability of nanograins in most
prior studies, it was reported that nanograins smaller than the critical values (70 nm for
Cu and 43 nm for Ni) were more stable than larger grains in gradient structured pure
Cu and Ni fabricated using SMGT in liquid nitrogen [25]. The surprising observation of
enhanced thermal stability of nanograins was attributed to the unique grain boundaries in
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low energy configurations generated during low-temperature SMGT [25,26]. This evidence
implies that the thermal stability of NG alloys may not necessarily be deteriorated after
grain refinement.

Inconel 718 (IN718) is a common precipitation-strengthened Ni-based superalloy used
for application in high-pressure turbine discs in jet engines [27–35]. However, a majority of
the published works focused on wrought IN718 alloys with coarse grains [36,37]. Studies
on NG IN718 are limited. Besides, the high-temperature performance of IN718 is primarily
determined by the high-density γ” phases formed after annealing [36,38–45]. However,
at temperatures above 650 ◦C, the metastable γ” phase transforms to stable δ phase over
long-term exposure [36,37,44,46]. The application of IN718 alloy is therefore limited to
temperatures below 650 ◦C. In this study, gradient structures containing a severely de-
formed NG surface layer were introduced into IN718 alloy via the SMGT technique at
liquid nitrogen temperature. Studies on the NG IN718 alloy at 700 ◦C for up to 100 h reveal
that nanograins have outstanding thermal stability. The underlying nanograin stabilization
mechanisms are discussed.

2. Experimental
2.1. Materials and Processing

The IN718 Ni-based alloy with a chemical composition as listed in Table 1 was sub-
jected to SMGT. Prior to processing, a cylindric bar was solution-treated at 1100 ◦C for
1 h followed by water quenching (denoted as as-processed hereafter). During processing,
the bar was rotated at a velocity of 400 rpm while a WC/Co tool tip penetrated into the
surface by 30 µm and slid along the axial direction at a speed of 10 mm/min. The process
was repeated 8 times to generate a substantial deformation zone. Liquid nitrogen was used
as the coolant during processing. Subsequently, the processed samples were annealed in a
vacuum furnace at 700 ◦C for 5, 24 and 100 h, followed by furnace cooling. Annealing was
conducted when the vacuum reached 2 × 10−6 torr.

Table 1. The chemical composition of IN718 alloy (in wt.%).

Cr Fe Co Nb Mo Al Ti Ta Ni

18.57 18.00 0.11 5.02 2.86 0.58 0.97 <0.01 Bal.

2.2. Microstructure Characterizations

The samples used for metallographic observations were ground and polished using
the conventional metallographic preparation technique, and the observation was then
carried out using an optical microscope. TEM samples were prepared using the focused
ion beam (FIB) technique with an FEI Quanta 3D FEG Dual Beam FIB scanning electron
microscope following typical protocols. The microstructure and chemical composition
analyses of both the as-processed and annealed samples were performed on an FEI Talos
200X analytical transmission electron microscope operated at 200 kV, equipped with a
Super-X energy-dispersive X-ray spectroscopy (EDS) detector. The grain orientation analy-
ses were performed using the NanoMegas ASTAR (to generate an electron backscattering
diffraction (EBSD)-like automated crystal orientation map with 4-nm spatial resolution)
setup installed in the Talos 200X TEM microscope, and data analyses were conducted using
OIM Analysis software.

3. Results

After SMGT, a severely deformed gradient structure formed on the surface, as shown
in the optical microscopy image in Figure 1a. NG structures (as labeled by a dotted line)
were observed on the topmost region of the gradient layer (based on TEM studies shown
later). The Vickers hardness indents and the corresponding hardness along the depth
direction were labeled, indicating the formation of gradient microstructures after SMGT.
After annealing at 700 ◦C, a sharp interface formed between the topmost NG region and the
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deeper region of the sample, as revealed by the optical microscopy images in Figure 1b,c.
It is worth mentioning that the thickness of the NG region varies with positions due to the
inhomogeneous penetration depth of the gradient structure after SMGT, with a maximum
depth of 30 µm.
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Figure 1. Optical microscopy images of (a) as-processed (AP) and annealed gradient IN718 alloy at 700 ◦C for (b) 5 h
and (c) 24 h. The topmost nanograined (NG) regions are labeled by dotted lines. Vickers indentation and corresponding
hardness values (in GPa) are labeled.

The TEM image of the as-processed sample in Figure 2a reveals that NG structures
formed near the surface of IN718 alloy after SMGT, as confirmed by the inserted selected
area diffraction (SAD) pattern. It is worth mentioning that fine and coarse nanograin layers
were observed in the NG region (referred to as FNG and CNG hereafter, respectively),
as labeled by the dotted lines in Figure 2a. The TEM image in Figure 2b shows the alter-
nately distributed FNG and CNG layers in the topmost NG region (at a depth range of
2–5 µm from surface). The corresponding grain size distribution profile reveals that the
average grain size is 14 and 28 nm in the alternating FNG and CNG layers, respectively.
The average grain size of the CNG layers increases gradually from 25 nm at a depth of
100 nm from the surface to over 32 nm at the depth of 2200 nm from the surface (as shown in
Figure 2b), further confirming the formation of complex gradient microstructures. The cor-
responding scanning transmission electron microscopy (STEM) image and EDS maps of
the NG region in Supplementary Figure S1 (see supplementary materials) reveal that the
chemical composition remains uniform. The ASTAR inverse pole figure map in Figure 2c
shows the nanograins with various orientations in both FNG and CNG layers. The grain
boundary map in Figure 2d shows that a majority of the grain boundaries in both the
FNG and CNG layers are high-angle grain boundaries (HAGBs, indicated by blue lines).
The fractions of low-angle grain boundaries (LAGBs) and coincidence site lattice (CSL)
boundaries (indicated by red and yellow lines, respectively) are low.
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Figure 2. (a) TEM image showing the formation of an NG structure in the topmost region of the IN718 specimen after
surface mechanical grinding treatment (SMGT). Fine nanograin (FNG) layers were sandwiched by coarse nanograin (CNG)
layers. (b) TEM image of NG region and the corresponding grain size vs. position profile showing the grain size evolution
of both FNG and CNG layers at various depth. The corresponding (c) ASTAR crystal orientation analyses and (d) grain
boundary map showing the high-angle grain boundaries (blue lines), low-angle grain boundaries (red lines) and twin
boundaries (yellow lines).

Upon annealing (700 ◦C/24 h), the nanograins of the topmost NG region retained,
whereas recrystallization and grain coarsening occurred in the rest of the gradient layers.
Figure 3a shows the microstructure of the distinct interface (as denoted by a dashed line)
formed between the thermally stable topmost NG area and the grain coarsened areas.
Furthermore, the alternatively distributed FNG/CNG structures were sustained after
annealing (as labeled by dotted lines in Figure 3a). The statistic distributions of grain size in
Figure 3b show that the average grain size of FNG and CNG layers in the thermally stable
area is 18 and 37 nm, respectively, whereas the grain size of the adjacent area coarsened
to 90 nm. The STEM images and corresponding EDS maps of both thermally stable and
grain coarsened area in supplementary Figure S2a,b show that large Ni- and Nb-rich δ

phases and Al-, Ni- and Nb-rich η phases formed after annealing. The difference between
these two areas is that nanoscale α-Cr phases have higher density and smaller size in the
thermally stable area than the grain coarsened area.
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Figure 3. TEM images showing the sharp interface formed between the thermally stable area and the grain coarsened area
of NG IN718 specimens after annealing at 700 ◦C for (a) 24 h and (c) 100 h. (b,d) The corresponding statistic distributions
revealing the average grain sizes of FNG (DF) and CNG (DC) layers in the thermally stable and grain coarsened area.
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Increasing the annealing time further to 100 h coarsened the grains in both thermally
stable and grain coarsened areas of the NG region. However, the sharp interface between
those two areas sustained, as labeled by the dashed line in Figure 3c. The alternatively
distributed FNG/CNG structures were also observed, whereas the grain size difference
between these two layers is much larger than the specimen annealed for 24 h (in Figure 3a).
The statistical analyses reveal that the grain size of the FNG and CNG layers increased
to 62 and 219 nm, respectively (Figure 3d). In comparison, in the grain coarsened area,
the grains coarsened further to 295 nm.

4. Discussion

While grain boundaries in nanocrystalline metals improve mechanical strength, they pro-
vide a strong driving force for grain coarsening [9]. Grain coarsening of NG metals involves
GB migration at a certain velocity (ν), which can be expressed as [47,48]:

ν = Mgb·γgb·k (1)

where Mgb represents the GB mobility, γgb is the GB energy and κ is the local grain boundary
curvature. This equation implies that at least two approaches can be applied to alleviate
grain coarsening: the kinetics-driven stabilization approach, in which grain coarsening is
suppressed by pinning grain boundaries with second-phase Zener drag or by solute drag,
and a thermodynamics approach, where lowering grain boundary energy can effectively
reduce the driving force for grain coarsening [49–51]. Specifically, the driving force for grain
coarsening of NG metals is the excess energy stored at the grain boundaries. Zhou et al. [25]
reported that the grain boundary energy of NG Cu fabricated by SMGT declined from
0.52 to 0.25 J/m2 when the average grain size decreased from 125 to 50 nm and showed a
thermally stable NG layer when the average grain size is smaller than 70 nm. The grain
boundary energy reduction was partially attributed to the formation of low-energy grain
boundaries, consisting of nanotwins and stacking faults (SFs), and partially ascribed to the
grain boundary relaxation [25].

In this study, a gradient NG surface layer was introduced into IN718 alloy by SMGT.
The topmost area of the NG region with smaller grain size exhibited better thermal stability
than the deeper area with larger grain size at high temperatures (Figure 3), similar to the
reported thermally stable NG Cu [25]. Zhang et al. [52] reported that the grain boundaries
of Cu evolved from low-energy twin boundaries (TBs) possess lower grain boundaries
energy than conventional HAGBs. In this study, the grain boundary map in Figure 2d
reveals that the majority of grain boundaries of nanograins are HAGBs. Our previous work
on the microstructure evolution of gradient structured C-22HS Ni-based alloy indicates
that these HAGB-dominated NG structures may derive from deformation-induced twin
structures [23]. Such transformation led to the formation of grain boundaries in low-energy
configuration. Slow grain boundary migration velocity is therefore expected according to
Equation (1), indicating the improvement of thermal stability.

The high resolution TEM (HRTEM) image of the nanograins in the topmost NG region
in Figure 4a reveals plenty of SFs and nanotwins formed inside the nanograins. The magni-
fied HRTEM image of area b in Figure 4a is shown in Figure 4b. Nanotwins with an average
twin thickness of 2 nm were observed. These nanotwins formed inside nanograins are too
thin to be detected by ASTAR due to the limited spatial resolution of the technique (4 nm),
which indicates that the proportion of CSL boundaries in the NG region is higher than
what was revealed in Figure 2d. These CSL boundaries are also beneficial for improving
the thermal stability of GBs [52]. The {111} planes forming a twinning relationship and TBs
are labeled by solid and dashed lines in Figure 4b, respectively. These observations also
imply that partial dislocations rather than full dislocation activities dominated the grain
refinement process at the nanoscale. The partial dislocations-dominated grain refinement
process led to the formation of a thermally stable topmost NG layer because the generation
of SFs or nanotwins from grain boundaries plays a critical role in grain boundary relaxation,
which impacts the migration of the boundary [26]. Based on the Orowan relation [25],
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the resolved shear stress (τRSS) required for the expansion of a dislocation loop derived
from a Frank–Reed source with a diameter of D can be expressed as:

τRSS = µb/D (2)

where µ represents the shear modulus and b is the Burgers vector. Hence, the minimum
grain size (D*) required for the multiplication of full dislocations at a given yield strength
(σy) can be calculated by:

D∗ =
µbM

σy(D∗)
(3)

where M is the Taylor factor (3.0 for polycrystalline metals). The shear modulus and
Burgers vector for Ni are 76 GPa and 0.25 nm, respectively. The yield strength σy(D∗) can
be calculated by the classic Hall–Petch equation as [53,54]:

σy(D∗) = σ0 + K(D∗)−1/2 (4)

where σ0 is the friction stress and K represents the Hall–Petch slope. Zhou et al. [25]
estimated the D* for (full dislocation multiplication mechanism to operate) pure Ni by
using Equation (2) and obtained D* = 43 nm, similar to what was calculated by Legros
et al. (38 nm) [55]. Considering that the value of K for Ni alloys is higher than that for
pure Ni, the calculated D* for IN718 alloys is expected to be smaller than that of pure
Ni. Hence, an average D* value (40 nm) between those reported by Zhao et al. and
Legros et al. is adopted in this story. As the grain size of IN718 is smaller than 40 nm,
full dislocation activities are superseded by partial dislocation activities, leading to grain
boundary relaxation. The experimental observation is consistent with the calculated results.
As shown in Figure 3, the average grain size of the relative coarse-grained structures in
the thermally stable area is 37 nm after annealing (700 ◦C/24 h), whereas prominent grain
coarsening occurs in the grain coarsened area with an initial grain size greater than 40 nm.
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Figure 4. (a) HRTEM image of nanograins containing high-density stacking faults (SFs) and nanotwins (as labeled by orange
and white arrows, respectively) formed after SMGT. (b) An atomic-resolution TEM image of the area b in (a) showing the
formation of nanotwin structures with an average twin thickness of 2 nm. (c) An atomic-resolution TEM image of the area
c in (a) showing the faceted grain boundary. (d) HRTEM image showing the dissociated HAGBs formed between two
adjacent nanograins. (e) An atomic-resolution TEM image of the area e in (d) showing an array of SFs (as labeled by orange
arrows) decorated along the dissociated grain boundary.
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We also observed that grain boundaries associated with nanotwins or SFs became
faceted frequently, as shown in Figure 4c, where the steps of (111) planes along the grain
boundaries are labeled. A previous study reported that the emission of nanoscale twins or
SFs from grain boundaries reduces the excess energy of grain boundaries [56], leading to
reduced atomic diffusion along the grain boundaries. The emission of SFs and nanotwins in
this study led to the formation of faceted grain boundaries. Similar grain boundaries with
zig-zag configurations have been reported in nanostructured Cu with good thermal stabil-
ity [57]. Generally, a given grain boundary has five crystallographic degrees of freedom
(three for the misorientation of the crystallographic axes of one grain and two for the incli-
nation of the boundary between the two adjacent grains) [58]. Grain boundaries naturally
find a low-energy configuration that fixes these degrees of freedom, i.e., minimize the free
energy of the system pertaining to atomic coordinates or composition by specifying the five
degrees of freedom [58,59]. For a system where its boundary free energy is anisotropic with
respect to the inclination of the grain boundary, the corresponding boundary may lower
its free energy by forming faceted planes [58]. Faceting is the process of decomposing the
grain boundary into sections with low-energy inclination. Generally, the system with low
grain boundary free energy possesses geometric characteristics of low reciprocal volume
density of coincidence sites, large interplanar spacing and high planar density of coinci-
dence site, etc. [60]. The twin boundaries in Figure 4b and the most densely packed (111)
plane of the zig-zagged grain boundaries in Figure 4c are examples of such low-energy
grain boundaries. However, the low grain boundary free energy system is not limited to
these criteria as there is no direct connection between coincidence and grain boundary
energy [60]. The non-CSL 9R structure was found to minimize the grain boundary energy
by forming a body-centered-cubic structured grain boundary in the face-centered-cubic
matrix [60,61]. Faceting has been observed at both micrometer and nanometer scales in
several cases [57,62]. These faceted grain boundaries have low-energy states and, therefore,
are more thermally stable than conventional grain boundaries according to Equation (1).

Grain boundary structure may also transform to a lower-energy state (grain boundary
relaxation) through the dissociation of grain boundaries during deformation. The TEM
image in Figure 4d shows a dissociated HAGB in the NG IN718 specimen after SMGT.
As denoted by dotted lines, broad grain boundaries decorated with plenty of SF-like
structures formed. The HRTEM image (of the area e in Figure 4d) in Figure 4e reveals
an array of SFs (as noted by orange arrows) emitted from the grain boundary, leading
to the broad/dissociated grain boundary with 1 nm in width. The formation of these
SF-decorated broad grain boundaries indicates that grain boundary dissociation may have
taken place in the topmost NG region during SMGT, leading to grain boundary relaxation
to low-energy states and grain boundary stabilization. Rittner et al. found that grain
boundary dissociation generally occurs via the emission of SFs from one boundary and
termination at a second boundary [63]. Zhou et al. [25] reported that the formation of both
SFs and nanotwins from grain boundaries involves emission of partial dislocations, leading
to grain boundary relaxation and stable structures. The dissociation of grain boundaries
usually leads to the formation of a wider grain boundary (or three-dimensional boundaries)
of up to 1 nm or more in width, similar to the structures formed in this study.

The grain size evolution of the FNG and CNG structures of the thermally stable area
and the grain coarsened area with annealing time is presented in Figure 5a. The calculated
minimum grain size (40 nm) is labeled by the horizontal dotted line. It is evident that the
coarsening rate of grains smaller than 40 nm is lower than that with grain sizes larger than
40 nm. The grain growth kinetic, correlating the grain size (d) to the annealing time (t),
can be expressed as [64]:

dn − dn
0 = kt (5)

where d0 is the initial grain size, n represents grain growth exponent and k is a rate constant.
The evolution of grain size (ln(d)) and annealing time (ln(t)) in different areas of the
specimen is shown in Figure 5b. The n value can be determined by the slope of linear fit
lines. It reveals that the average n value of the thermally stable area with initial grain size
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smaller than 40 nm is 0.15, whereas the n value for the grain coarsened area is much greater,
0.59, confirming a much more sluggish grain growth behavior in the thermally stable NG
structure when the initial grain size is smaller than the D*.
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5. Conclusions

Gradient structures containing an NG surface region have been fabricated in IN718
Ni alloy using the SMGT technique. The thermal stability studies at 700 ◦C up to 100 h
resulted in the following observations.

(1) Nanograins with a grain size smaller than 40 nm in the deformed surface exhibited
significantly enhanced thermal stability compared to grains with larger grain sizes
away from the surface.

(2) The average grain growth exponent of thermally stable NG structures with smaller
grain sizes (<40 nm) was 0.15, in contrast to 0.59 for the larger grains.

(3) TEM studies suggest that the enhanced thermal stability of nanograins was attributed
to the generation of grain boundaries in low-energy states during SMGT. The emis-
sion of SFs or nanotwins from grain boundaries leads to the dissociation of grain
boundaries. The relaxation of grain boundaries to low-energy states results in their
subsequent thermal stabilization.
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2/11/1/53/s1, Figure S1: (a) STEM image and the corresponding (b–f) EDS maps of the NG layer of
the as-processed IN718 alloy., Figure S2: STEM image and EDS maps of (a) thermally stable area and
(b) grain coarsened areas of NG IN718 specimen after annealing at 700 ◦C for 24 h.
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