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Abstract: In this paper, synthesis, single-crystal X-ray structure, Hirshfeld and DFT studies of
1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carboxylic acid are discussed. Different inter-
molecular contacts affecting the crystal stability are studied using Hirshfeld calculations. The H . . . Cl
and O . . . H contacts are the most significant, showing corresponding interaction distances of 2.731 Å
(Cl2 . . . H10) and 1.681Å (H1 . . . O1), 2.328 Å (O1 . . . H13), 2.510 Å (O1 . . . H12) based on Hirshfeld
calculations. DFT calculations are carried out to study the electronic behavior, as well as the 1H- and
13C-NMR spectra of the synthesized compound. The computed NMR chemical shifts show excellent
correlation with the experimental data (R2 = 0.9884–0.9705).

Keywords: Anthracenes; ethanoanthracenes; single-crystal X-ray; DFT; Hirshfeld

1. Introduction

Anthracene and its derivatives are well-known aromatic hydrocarbons with wide
applications, including in organic optoelectronics [1–5], as well as in the pharmaceutical
sciences [6–14]. In particular, derivativaization at the C9/C10 leads to formation of the
ethano-bridge of the anthracene core structures, compounds that are considered significant
for development in terms of drug discovery, which have exhibited anti-malarial activi-
ties [15,16], anti-multi-drug resistance for cancer [17], anti-depressant properties [18] and
high efficacy against cancer treatments [10,11].

In constructing this ethano-bridge of the anthracene-privileged structure, one of the
most efficient and powerful protocols is the Diels–Alder reaction. Several representative
examples have been reported in the literature regarding their synthesis and applications
in different areas. Barton and his team reported on the selectivity of the host behavior
of the roof-shaped compounds based on the ethanoanthracene dicarboxylic acids and
their derivatives using mixed solvent systems such as ethylbenezene and xylene as guest
solutions. The study revealed that these compounds worked selectively as roof-shaped
compounds [19].

A recent review reported the development of highly efficient materials for fluid
separation in between these studies on anthracene derivatives [20]. Li et al. reported on the
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synthesis and application of europium metal complexes containing an ethanoanthracene
derivative as the binding ligand, which proved to have excellent water-quenching-resistant
capability [21]. Another reperesntitive example reported by Lane and Capuano involved
subsitituted ethanoanthracene, which worked effectively as an allosteric modulator of the
dopamine D1 receptor [22].

The synthesis of new molecules and the elucidation of their molecular and supramolec-
ular structures via single-crystal X-ray diffraction analysis are topics of great interest. We
have previously studied ethanoanthracenes and published several articles in this field, which
have been shown the biological importance of these compounds [23–27]. In this paper,
we syntheize and elucidate the molecular and supramolecular structures of 1,8-dichloro-
9,10-dihydro-9,10-ethanoanthracene-11-carboxylic acid. DFT calculations are performed to
predict the spectral (NMR) and electronic properties of the synthesized compound.

2. Materials and Methods
2.1. Synthesisi of 1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carboxylic acid 5

The precusor 3 was intially prepared following the methodology reported in the
literature [18], then precursor 3 was left on the bench to air-oxidize, providing compound 5
(Scheme 1).
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IR (KBr): ν = 3423, 2939, 1705, 1580, 1452, 1244, 1169, 927, 772 cm−1
;

1H-NMR (DMSO,
500 MHz): δ = 1.82–1.88 (m, H-12, 1H), 1.97-2.02 (m, H-12, 1H), 2.73–2.77 (m, H-11, 1H), 4.81
(d, J = 2.5Hz, H-10, 1H), 5.16 (t, J = 2.5, H-9, 1H), 7.08–7.37 (m, ArH, 6H) ppm; 13C-NMR
(DMSO, 125 MHz): δ = 28.49 (C12), 36.48 (C11), 42.95 (C10), 46.67 (C9), 122.82, 124.08,
126.14, 126.20, 127.22, 127.46, 127.81, 128.24, 139.73, 139.84, 143.04, 145.51, 173.88 ppm.

2.2. Single-Crystal X-ray Measurements of 5

The full analysis, data collection and refinement protocol is provided in the Supple-
mentary Materials and summary of these details are listed in Table 1.

Table 1. Crystal data for 5.

5

empirical formula C17H12O2Cl2
fw 319.17

temp (K) 293(2)
λ(Å) 1.54184

cryst syst Triclinic
space group P-1

a (Å) 7.735(2)
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Table 1. Cont.

5

b (Å) 8.0225(12)
c (Å) 12.0928(16)
α(deg) 88.430(14)
β (deg) 82.549(13)
γ(deg) 70.46(2)
V (Å3) 701.2(3)

Z 2
ρcalc (Mg/m3) 1.512

µ(Mo Kα) (mm-1) 4.171
No. reflns. 17655

Unique reflns. 2534
GOOF (F2) 1.081

Rint 0.0303
R1 (I ≥ 2σ) 0.0316

wR2 (I ≥ 2σ) 0.0838
CCDC No. 2100042

2.3. Hirshfeld Surface Analysis and Computational Methods

“Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 [28]. Cal-
culations were performed using the Gaussian 09 software package [29,30] utilizing the
B3LYP/6-31G(d,p) method. Natural charges were calculated using the NBO 3.1 program as
implemented in the Gaussian 09W package [31]. The self-consistent reaction-filed (SCRF)
method [32,33] was used to calculate the optimized structure of 5 considering the solvent
effects (DMSO). Then, the NMR chemical shifts for the protons and carbons were computed
using the GIAO method [34]”.

3. Results and Discussion
3.1. Chemistry

According to the literature [18], cycloadducts 3 and 4 were obtained as a result of the
BF3-OEt2-catalyzed Diels–Alder reaction of 1,8-dichloroanthracene 1 with acrolein 2 at
room temperature. This step was considered to be the most important in the total synthesis
of pharmaceutical agents such as maprotiline and benzoctamine [35,36]. The purified
carbaldehyde 3 was air-oxidized into its corresponding carboxylic acid 5.

3.2. Crystal Structure Description of 5

The molecular structure of 5 is shown in Figure 1. The structure is in agreement with the
spectral analyses and confirms the aerobic oxidation of the aldehyde to the corresponding
carboxylic acid 5. The geometrical parameters for compound 5 are broadly similar to those
of related 9,10-bridged anthracene derivatives [37–39]. The two chloro-substituted benzene
rings (C4-C9), (C1/C2/C11-C14) are both essentially planar (r.m.s. deviations from the least-
squares planes are 0.011 Å and 0.003 Å, respectively). The studied anthracene system has a
bridge at the positions 9 and 10, while the dihedral angle between these rings is typically
57.21◦. The three six-membered rings of the bicyclic core of 5 C1/C2/C3/C4/C9/C10,
C3/C4/C9/C10/C16/C15, and C1/C2/C3/C15/C16/C10 are all forced into boat form.
The carboxylic acid substitution at C16 shows no unusual features. Table 2 summarizes
some of the selected bond angles and bond lengths of the studied compounds.



Crystals 2021, 11, 1161 4 of 11

Crystals 2021, 11, x FOR PEER REVIEW 4 of 11 
 

 

these rings is typically 57.21°. The three six-membered rings of the bicyclic core of 5 
C1/C2/C3/C4/C9/C10, C3/C4/C9/C10/C16/C15, and C1/C2/C3/C15/C16/C10 are all forced 
into boat form. The carboxylic acid substitution at C16 shows no unusual features. Table 
2 summarizes some of the selected bond angles and bond lengths of the studied com-
pounds. 

 
Figure 1. Molecular structure of 5 with anisotropic displacement ellipsoids drawn at the 50% prob-
ability level. 

Table 2. Selected bond lengths [Å] and angles [°] for 5. 

Atoms Distance Atoms Distance 
Cl1-C14 1.7472(18) C4- C9 1.400(2) 
Cl2- C5 1.7386(18) C5- C6 1.394(2) 
O1- C17 1.223(2) C6- C7 1.384(3) 
O2- C17 1.320(2) C7- C8 1.393(2) 
C1- C11 1.386(2) C8- C9 1.390(2) 
C1- C2 1.403(2) C9- C10 1.513(2) 

C1- C10 1.516(2) C10- C16 1.564(2) 
C2- C14 1.384(2) C11- C12 1.397(3) 
C2- C3 1.515(2) C12- C13 1.386(3) 
C3- C4 1.517(2) C13- C14 1.397(2) 

C3- C15 1.559(2) C15- C16 1.552(2) 
C4- C5 1.385(2) C16- C17 1.522(2) 
Atoms Angle Atoms Angle 

C11- C1- C2 121.39(15) C9- C4- C3 113.38(14) 
C11- C1- C10 125.67(15) C4- C5- C6 121.31(16) 
C2- C1- C10 112.91(14) C4- C5- Cl2 120.54(13) 
C14- C2- C1 118.51(15) C6- C5- Cl2 118.12(13) 
C14- C2- C3 127.99(15) C7- C6- C5 119.51(15) 
C1- C2- C3 113.49(14) C6- C7- C8 120.54(16) 
C2- C3- C4 106.94(13) C9- C8- C7 119.02(16) 
C2- C3- C15 106.42(13) C8- C9- C4 121.38(15) 
C4- C3- C15 106.96(13)   

C5- C4- C9 118.19(15)   

C5- C4- C3 128.42(15)   

Figure 1. Molecular structure of 5 with anisotropic displacement ellipsoids drawn at the 50%
probability level.

Table 2. Selected bond lengths [Å] and angles [◦] for 5.

Atoms Distance Atoms Distance

Cl1-C14 1.7472(18) C4-C9 1.400(2)
Cl2-C5 1.7386(18) C5-C6 1.394(2)
O1-C17 1.223(2) C6-C7 1.384(3)
O2-C17 1.320(2) C7-C8 1.393(2)
C1-C11 1.386(2) C8-C9 1.390(2)
C1-C2 1.403(2) C9-C10 1.513(2)

C1-C10 1.516(2) C10-C16 1.564(2)
C2-C14 1.384(2) C11-C12 1.397(3)
C2-C3 1.515(2) C12-C13 1.386(3)
C3-C4 1.517(2) C13-C14 1.397(2)

C3-C15 1.559(2) C15-C16 1.552(2)
C4-C5 1.385(2) C16-C17 1.522(2)
Atoms Angle Atoms Angle

C11-C1-C2 121.39(15) C9-C4-C3 113.38(14)
C11-C1-C10 125.67(15) C4-C5-C6 121.31(16)
C2-C1-C10 112.91(14) C4-C5-Cl2 120.54(13)
C14-C2-C1 118.51(15) C6-C5-Cl2 118.12(13)
C14-C2-C3 127.99(15) C7-C6-C5 119.51(15)
C1-C2-C3 113.49(14) C6-C7-C8 120.54(16)
C2-C3-C4 106.94(13) C9-C8-C7 119.02(16)

C2-C3-C15 106.42(13) C8-C9-C4 121.38(15)
C4-C3-C15 106.96(13)
C5-C4-C9 118.19(15)
C5-C4-C3 128.42(15)

The structure of 5 is stabilized by the three intramolecular hydrogen bonding interac-
tions, C3-H3...Cl1, C3-H3...Cl2, and C15-H15B...O1, with hydrogen-acceptor distances of
2.76, 2.78, and 2.42 Å, respectively. The corresponding donor–acceptor distances are
3.211(2), 3.226(2), and 2.873(2)◦, respectively (Table 3). In addition, its supramolecu-
lar structure is controlled mainly by the intermolecular O2-H1...O1, C10-H10...Cl2, and
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C15-H15B...O1 hydrogen bonding interactions, with donor–acceptor distances of 2.662(2),
3.611(2), and 3.394(2) Å, respectively (Figure 2). The intermolecular O2-H1 . . . O1 bonds
lead to the formation of centrosymmetric dimers forming the eight-membered ring com-
prising the atoms O1C17O2H1O1C17O2H1, as shown in Figure 2.

Table 3. Hydrogen bonds for 5 [Å and ◦].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O2-H1...O1 a 0.82 2.48 2.662(2) 176
C3-H3...Cl1 0.98 2.76 3.211(2) 109
C3-H3...Cl2 0.98 2.78 3.226(2) 108

C10-H10...Cl2 b 0.98 2.81 3.611(2) 140
C13-H13...O1 c 0.93 2.48 3.394(2) 168
C15-H15B...O1 0.97 2.42 2.873(2) 108

Note: a −x −y + 2, −z; b −1 + x,y,z and c −x + 1, −y + 1, −z.
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Figure 2. Hydrogen bond contacts (left) and packing of molecular units via hydrogen bonding
interactions (right).

3.3. Analysis of Molecular Packing

In the solid-state crystalline structure, the molecular units are held together by in-
termolecular contacts, which have great impact on the crystal stability. In this study, the
crystal stability was affected by different intermolecular contacts, which was analysed
using Hirshfeld surface analysis (Figure 3). In the dnorm map, the short significant contacts
appeared as red spots, while the less important intermolecular interactions appeared as
blue or white areas. The percentage contributions of each contact were determined based
on the decomposition of the fingerprint plot (Figure 4). A summary of the intermolecular
contacts is depicted in Figure 5.
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In the dnorm Hirshfeld surface of 5, several significant contacts appeared as red regions.
These interactions were due to O . . . H and H . . . Cl, as shown in Figure 6. The percentages of
these interactions were 23.3 and 15.0%, respectively. In addition, these interactions revealed
intense staples in the decomposed fingerprint plots, which could be considered another
feature of short, significant contacts. The corresponding interaction distances based on the
Hirshfeld analysis were 1.681 Å (H1 . . . O1), 2.328 Å (O1 . . . H13), 2.510 Å (O1 . . . H12), and
2.731 Å (Cl2 . . . H10).
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3.4. DFT Studies

The structure of 5 is shown in Figure 7A. The structure is overlaid with the results
obtained from the single-crystal X-ray analysis, as shown in Figure 7B. Table S1 (Supple-
mentary Materials) shows that the geometric parameters of the studied compound are in
harmony between the computed and experimental data. The presence of slight differences
may be due to the crystal packing effects. In addition, the relation between the computed
and experimental geometric parameters clearly shows the high correlation coefficients for
the bond distances (R2 = 0.9947; Figure 7C) and angles (R2 = 0.9644; Figure 7D).
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(A) (B) 
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Figure 7 
 
 
 

Figure 7. The optimized structure (A), overlaid with the experimental single-crystal X-ray analysis results, (B) as well as
correlation graphs between the calculated and experimental bond distances (C) and angles (D) for 5.
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The natural population analysis was used to calculate the atomic charges at the differ-
ent atomic sites. The results are presented graphically in Figure 8. The figure shows two
slightly negative chlorine atoms with very close natural charges (−0.0067 and −0.0073 e).
On the other hand, the oxygen atoms of the -CO2H group are strongly electronegative,
with natural charges of −0.5915 and −0.7223 e for the carbonyl and hydroxyl oxygen
atoms, respectively. The carboxylic group has the most electronegative atom and the most
electropositive atomic sites, which are the oxygen of the OH group and carbon atom of
the carbonyl group, respectively. The latter has a natural charge of 0.8463 e, while the rest
of the carbon atoms are electronegative. In contrast, the OH proton is the most positive
hydrogen site, with a natural charge of 0.5059 e. The molecular electrostatic potential
(MEP) map shown in Figure 9 reveals the high negative charge density related to the
carbonyl oxygen and the high positive charge related to the OH proton. Additionally, the
presence of an intense red region close to the carbonyl oxygen atom and a blue region
close to the OH proton shed light on the most probable hydrogen bond acceptor and donor
sites, respectively. These results are in agreement with the observed X-ray structure of
the studied system. The calculated dipole moment is 4.2782 Debye, indicating a highly
polar molecule, while the direction of the dipole moment vector is presented in the left part
of Figure 9.

 

2 

 
Figure 8. Natural atomic charge populations for 5. 

 
 

Figure 8. Natural atomic charge populations for 5.

Crystals 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 

The natural population analysis was used to calculate the atomic charges at the dif-
ferent atomic sites. The results are presented graphically in Figure 8. The figure shows 
two slightly negative chlorine atoms with very close natural charges (−0.0067 and −0.0073 
e). On the other hand, the oxygen atoms of the -CO2H group are strongly electronegative, 
with natural charges of −0.5915 and −0.7223 e for the carbonyl and hydroxyl oxygen atoms, 
respectively. The carboxylic group has the most electronegative atom and the most elec-
tropositive atomic sites, which are the oxygen of the OH group and carbon atom of the 
carbonyl group, respectively. The latter has a natural charge of 0.8463 e, while the rest of 
the carbon atoms are electronegative. In contrast, the OH proton is the most positive hy-
drogen site, with a natural charge of 0.5059 e. The molecular electrostatic potential (MEP) 
map shown in Figure 9 reveals the high negative charge density related to the carbonyl 
oxygen and the high positive charge related to the OH proton. Additionally, the presence 
of an intense red region close to the carbonyl oxygen atom and a blue region close to the 
OH proton shed light on the most probable hydrogen bond acceptor and donor sites, re-
spectively. These results are in agreement with the observed X-ray structure of the studied 
system. The calculated dipole moment is 4.2782 Debye, indicating a highly polar molecule, 
while the direction of the dipole moment vector is presented in the left part of Figure 9. 

 
Figure 8. Natural atomic charge populations for 5. 

 
Figure 9. The MEP, HOMO and LUMO of 5. 

Figure 9 presents the HOMO and LUMO levels of the studied compound 5. The π-
system exists mainly in the studied compound; hence, the HOMO–LUMO intramolecular 
charge transfer could be portrayed as mainly π-π* excitation. The following indices were 
calculated, namely I = −EHOMO (ionization potential), A = −ELUMO (electron affinity), μ = − (I 
+ A)/2 (chemical potential), η = (I-A)/2) (hardness), and ω = μ2/2η (electrophilicity) [40–45], 

Figure 9. The MEP, HOMO and LUMO of 5.

Figure 9 presents the HOMO and LUMO levels of the studied compound 5. The π-
system exists mainly in the studied compound; hence, the HOMO–LUMO intramolecular



Crystals 2021, 11, 1161 9 of 11

charge transfer could be portrayed as mainly π-π* excitation. The following indices were
calculated, namely I = −EHOMO (ionization potential), A = −ELUMO (electron affinity),
µ = − (I + A)/2 (chemical potential), η = (I-A)/2) (hardness), andω = µ2/2η (electrophilic-
ity) [40–45], giving values of 6.635, 0.687, −3.661, 5.948, and 1.127 eV, respectively. It was
believed that these electronic parameters play important roles in the biomolecular reactivity.

3.5. NMR Spectra

DFT calculations were also used to calculate the NMR spectra of 5 (Table S3, Sup-
plementary Data). Indeed, the chemical shifts in the NMR spectra were computed and
compared with the values obtained experimentally. The resulting straight line plots were
found to have high correlation coefficients (R2). The R2 values were 0.9884 and 0.9705 for
the bond angles and distances, respectively, indicating harmony between the computed
and experimental results (Figure 10).
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