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Abstract: A method to improve the performance of ultraviolet light-emitting diodes (UV-LEDs) with
stair-like Si-doping GaN layer is investigated. The high-resolution X-ray diffraction shows that the
UV-LED with stair-like Si-doping GaN layer possesses better quality and a lower dislocation density.
In addition, the experimental results demonstrate that light output power and wall plug efficiency
of UV-LED with stair-like Si-doping GaN are significantly improved. Through the analysis of the
experimental and simulation results, we can infer that there are two reasons for the improvement of
photoelectric characteristics: reduction of dislocation density and alleviating of current crowding of
UV-LEDs by introduced stair-like Si-doping GaN.

Keywords: ultraviolet light-emitting diodes (UV-LEDs); stair-like Si-doping GaN; current spreading;
wall plug efficiency

1. Introduction

GaN-based ultraviolet light-emitting diodes (UV-LEDs) have attracted considerable
attention in the last decade as the application in liquid crystal display backlighting and
full color displays [1–4]. However, there are still some issues that limit the improvement
of optoelectronic properties of LEDs: polarization induced quantum confined stark effect
(QCSE) in quantum wells (QWs) reducing the overlap of electron and hole wave-functions
spatially [5], the electrons overflowing from active layers into p-GaN region causing
the strong leakage current [6] and an amount of dislocations acting as the non-radiative
recombination centers generated by the large lattice mismatch and thermal mismatch [7].
Great efforts have been made to improve the light output power, such as the quantum
well engineering [8,9], electronic barrier layer (EBL) engineering [10–13] and epitaxial
growth technique [14,15]. Particularly, the current crowding effect is also an intense focus
of research at present. For the conventional LED structures, the injection current has a
certain limited lateral spreading distance when the device is on, which causes the uneven
current distribution in the chip and thus aggravates the current crowding around the
electrodes. To save this problem, a large number of literatures focus their attention on
the design of device and epitaxial layer structure. The transparent conductive layer, the
current spreading layer, current blocking layer [16–18] beneath the p-pad electrode and
shapes diversity of electrode [19,20] are used extensively in the fabrication process of
device. The short-period superlattice (SLs) [21] as the p-current spreading layers, n-type
AlGaN/GaN/InGaN current spreading layer under multiple-quantum-wells (MQWs)
active region [22], multi-layer stacked AlGaN/GaN structure [23] and n-GaN/p-GaN/n-
GaN/p-GaN/n-GaN built-in junctions [24] in the n-GaN layer have been introduced in the
InGaN/GaN LEDs to alleviate the current crowding effect. However, all these methods
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have improved the current spreading, but also increase the complexity and uncontrollability
of the experimental process to a certain extent.

In this work, the high-quality GaN-based UV-LEDs structure with an emission wave-
length of 390 nm with stair-like Si-doping n-type GaN layer were fabricated by metal-
organic chemical-vapor deposition (MOCVD). This method is not only simple and easy
to implement, but also improves the current spreading characteristics. Due to the advan-
tage of stair-like Si-doping GaN layer, UV-LED with better optical-electrical characteristic
is obtained.

2. Materials and Methods

First of all, 25-nm-thick AlN nucleation layer is deposited on the sapphire substrates
with magnetron sputtering on 2-inch (0001) patterned sapphire substrates. Following
the nucleation layer, 2.4 µm-thick undoping GaN layer, Si-doping n-type GaN layer,
60 nm-thick Si-doping AlGaN layer as the first barrier, 8 periods of Al0.05Ga0.95N/GaN
(4 nm/4 nm) SLs, 8 periods of InGaN/GaN (3 nm/12 nm) MQWs, 10 periods of 60 nm-
thick Mg-doping GaN/Al0.15Ga0.85N (2.5 nm/3.5 nm) SLs as electron blocking layer and
200-nm-thick p-GaN layer are deposited by MOCVD successively. For our experiments,
UV-LEDs with stair-like Si-doping GaN layers (Sample S1) are numerically investigated
over UV-LEDs with heavily Si-doping GaN layers (Sample S0) counterpart. For Sample
S0 with heavily Si-doping GaN layer, a 3 µm-thick GaN layer with the Si doping concen-
trations of 1 × 10 19 cm−3 is grown on the u-GaN layer. As for Sample S1, the stair-like
Si-doping n-type GaN layers consists of five parts, namely 160 nm-thick GaN layer with
1.5 × 1018 cm−3 Si doping concentration, 400 nm-thick GaN layer with 3 × 1018 cm−3 Si
doping concentration, 2000 nm-thick GaN layer with heavily 1 × 1019 cm−3 Si doping
concentration, 400 nm-thick GaN layer with 1.5 × 1018 cm−3 Si doping concentration and
160 nm-thick GaN with 5 × 1017 cm−3 Si doping concentration. In order to demonstrate
the effectiveness of the structure, the devices are fabricated (defined as Device S0 and
Device S1) with Cr/Ni/Au multiple metal stacks deposited by e-beam evaporation serving
as the p-contact and n-contact. Both of these wafers are then diced into individual chips
with a dimension of 275 × 300 µm2. Two device structures are shown in Figure 1.
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Figure 1. Schematic diagrams of (a) the reference device (Sample S0) and (b) the proposed device
with stair-like Si-doping GaN layer (Sample S1).

The atomic force microscopy (AFM) and high-resolution X-ray diffraction (HRXRD)
are carried out to investigate the surface morphologies, crystalline quality of LEDs. Current-
voltage (I-V), light output power (LOP) and wall plug efficiency (WPE) with injection
current are also used to evaluate the photoelectric properties of the LEDs. In addition,
light emission distribution test of LEDs and Advanced Physical Models of Semiconductor
Devices software (APSYS) are adopted to reveal the mechanism of stair-like Si-doping
structure to improve the current spreading character.
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3. Results and Discussion

The 5 × 5 µm2 AFM images of Sample S0 and S1 are illustrated in Figure 2a,b. A
smooth surface with distinct atomic step flow exists in Sample S0 and S1. Sample S1 exhibits
a smoother surface with a lower root-mean-square (RMS) roughness than that of Sample
S0 (0.365 nm for Sample S0 and 0.293 nm for Sample S1). The AFM images indicate that
optimized method is beneficial to obtain smoother surface.
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Figure 2. 5 × 5 µm2 AFM images for samples. The surface morphologies of (a) Sample S0 and
(b) Sample S1.

The HRXRD is adopted to investigate the crystal quality of epi-layers. Figure 3a,b
show the X-ray rocking curves (XRCs) of both samples measured in symmetric (002)
and asymmetric (102) reflection. The full width at half maximum (FWHM) of the (002)
plane XRC is 64.5 arc sec of Sample S1, which is smaller than the FWHM value 79.4 arc
sec of Sample S0, meanwhile the XRC-FWHM value for the (102) plane is significantly
reduced from 132.8 arc sec (Sample S0) to 115.2 arc sec (Sample S1) by the adopted the
stair-like Si-doping n-GaN epilayer. It is well known that the FWHM of symmetric (002)
and (b) asymmetric (102) reflection is related to the density of screw and edge dislocations
respectively [25]. The density of threading dislocation can be estimated from the full width
at half maximum (FWHM) of GaN (002) and GaN (102) by the following equations [26]:

Nscrew =
βtilt

2

4.35bs2 (1)

Nedge =
βtwist

2

4.35be2 (2)

where bs and be are the Burgers vectors of the screw dislocation (|bs|GaN = 0.5185 nm)
and edge dislocation (|be|GaN = 0.3189 nm). βtilt and βtwist are the tilt and twist spread,
respectively, which could be estimated by Equation (3):

β =

√
(βtilt cos ϕ)2 + (βtwist sin ϕ)2 (3)

where ϕ is the angle between the reciprocal lattice vector (Khkl) and the (001) plane normal.
As such, the corresponding screw and edge dislocation densities are 1.27 × 107 cm−2

and 1.64 × 108 cm−2 for Sample S0, 8.36 × 106 cm−2 and 1.27 × 108 cm−2 for Sample S1,
respectively. According to the results of HRXRD, such a conclusion could be draw that the
employment of stair-like Si-doping structure reduces the dislocation density and effectively
improves the crystalline quality.
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Figure 3. The XRCs of both samples measured in (a) symmetric (002) and (b) asymmetric (102) reflection.

To further investigate optoelectronic characteristic of UV-LEDs, two types of GaN-
based LEDs with heavily and stair-like Si-doping n-type GaN are fabricated. Figure 4a
shows the optical emission distribution of the Device S1 at 20 mA injected current. The I -
V characteristics of both LEDs are shown in Figure 4b. LEDs with heavily and stair-like
Si-doping n-type GaN have the similar turn-on voltages. Meanwhile, the operating current
of Device S1 is slightly higher than that of Device S0 at high-voltage operations. This is
attributed to the larger series resistance of Device S1, caused by the decreased conductivity
of the lower Si doping level of n-GaN layer. Figure 4c reveals the integrated LOP as
a function of the current injection of both LEDs. For both LEDs, the LOP is increased
with increasing injection current up to 200 mA. It is noteworthy that Device S1 exhibits
higher LOP than that of Device S0 across the whole current range. One possible reason
for this is the reduction of dislocations. As one can see from Figure 3, there are much
more dislocations in the Device S0 than that in Device S1 and those dislocations could act
as non-radiative recombination centers. When electrons from n-GaN and holes from the
p-GaN are injected into the active layers, they will recombine partially in the non-radiative
recombination center, making the non-radiative recombination of Device S0 enhanced,
thereby, the LOP of S0 is lower than that of Device S1; Another possible reason is that the
potential barrier formed by the stair-like Si-doping n-type GaN layer enhances the current
spreading horizontally. Figure 4d displays the WPEs as a function of the current injection
of both LEDs. It is obvious that the Device S1 processes a better WPE than that of Device S0.
The maximum WPEs of Device S1 and S0 are 26% and 23%, respectively. Both LEDs suffer
from efficiency droop with injection current increases.

To verify the improvement of current spreading characteristic by introduction of stair-
like Si-doping n-type GaN layer, microscopic light distribution test system (GMATG-M5) is
adopted to collect the spatial distributions of light emission intensity of LEDs. Figure 5a,b
show the normalized light emission intensity distribution images of Device S0 and S1
driven by 20 mA, respectively. Since the region with high current density corresponds
to the area with high light emission intensity, the current density distribution in the chip
can be inferred from the light emission intensity distribution of the LED chip. As seen
in Figure 5a, the light emission intensity of Device S0 is mainly localized around the p-
electrode edge. In contrast to Device S0, the light emission intensity is well distributed
across the surface of Device S1. More uniform light emission intensity distribution indicates
that the current spreading of Device S1 is superior to that of Device S0. The results support
for the speculation of stair-like Si-doping n-type GaN layer in improving current spreading
effectively. However, the mechanism responsible for the effect of stair-like Si-doping n-type
GaN layer on current spreading still need to be discussed.
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Figure 4. (a) the electroluminescence image of the Device S1; (b) I-V characteristic (c) the light output power and (d) WPE
curve versus injection current of devices.
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Figure 5. The normalized light emission intensity distribution images of (a) Device S0 and (b) Device S1 at 20 mA.

To further elucidate the role of stair-like Si-doping n-type GaN layer, the energy bands
of the n-type region are calculated by the APSYS software [27]. The Shockley–Read–Hall
recombination lifetime of 50 ns and Auger recombination coefficient 6.8 × 10−30 cm6/s
are set for non-radiative recombination in MQWs, respectively. In consideration of the
screening by defects, the surface charges densities are set to be 40%. In addition, the
conduction and valence band offset ratio for the InGaN/GaN alloy is set to 50/50 [28].
Figure 6a,b show the calculated energy band diagrams for the Device S0 and Device S1.
Different from the flat band of Device S0, it could be found that there are two barriers
(shown in the inset of Figure 6b) induced by the lower Si-doping concentration which
is beneficial to the electron overflow reduction [29]. In addition, those two barriers will
affect electrons transport, force electrons to spread horizontally and, finally, determine
the carrier concentration in the MQWs [30]. In addition, research has shown that current
spreading length is related to the sheet resistances of n-GaN layer [31]. By fitting the curves
of Figure 4c, the series resistance of Device S0 and S1 was determined to be 5.7 Ω and
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6.5 Ω, respectively. Namely, stair-like Si-doping concentration structure increases the layer
resistivity vertically, making that the current extends in the horizontal direction. Briefly,
the current spreading is improved.
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Figure 6. Energy band diagram for (a) the Device S0 and (b) Device S1, Ec, Ev, Efe and Efh denote as
the conduction band, valance band and the quasi-Fermi level for electrons and holes, respectively.
The inset exhibits the partial enlarged view of black dotted line frame.

4. Conclusions

In summary, the influence of Si-doping n-type GaN layer on the optoelectronic charac-
teristic of LEDs are investigated. The GaN-based UV LED with stair-like Si-doping n-type
GaN show a better crystal quality and optical properties than that with uniform heavily
Si-doping GaN epitaxial layer. Compared with the LED with uniform heavily Si-doping
GaN, LED with stair-like Si-doping n-type GaN presents higher LOP and WPE which is
attributed to the reduction of dislocations and the enhancement of current lateral spreading
characteristics by the introduction of stair-like Si-doping n-type GaN layer.
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