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Abstract: The aim of this study is first to determine the effect of the discharge energy on the surface
microgeometry of aluminum samples created by electrical discharge machining (EDM). Secondly,
an additional purpose is to demonstrate the differences between the geometric multiscale methods:
length-, area-scale, and curvature. Eleven samples were manufactured using discharge energies
ranging from 0.486 mJ to 1389.18 mJ and, subsequently, measured with focus variation microscopy.
Standard ISO and multiscale parameters were calculated and used for surface discrimination and
regression analysis. The results of linear, logarithmic, and exponential regression analyses revealed
a strong correlation (R2 > 0.9) between the geometrical features of the surface topography and the
discharge energy. The approach presented in this paper shows that it is possible to shape surface
microgeometry by changing the energy of electrical discharges, and these dependencies are visible in
various scales of observation. The similarities of the results produced by curvature and length-scale
methods were observed, despite the significant differences in the essence of those methods.

Keywords: surface topography; electrical discharge machining; multiscale analysis

1. Introduction

Electrical discharge machining is becoming an increasingly popular method of machin-
ing materials, thanks to its unconventional and wide machining capabilities. In comparison
to other conventional processes (e.g., grinding, milling), EDM is distinguished by the possi-
bility of texturing complex geometric surfaces of any electrically conductive materials [1,2].
The material is removed by electrothermal phenomena in which electrical discharges occur
between the tool electrode and the workpiece immersed in a dielectric liquid [3]. This
liquid (e.g., distilled water, ethylene glycol) is designed to separate the electrode from the
machined surface to obtain a high electric current density, as well as to cool the electrode
and remove molten particles from the machining area [4]. A series of electrical discharges
are separated by a constant spark gap [5]. The susceptibility of a material to electrical
discharge depends mainly on its electrical conductivity as well as electrical resistance,
melting point, and thermal conductivity [4].

Electrical discharge machining is a method that allows the formation of the surface
topography of metal materials [6]. The surface of the material created by EDM is per-
ceived as plateaus and craters, whose geometrical characteristics are closely related to
the parameters of the machining process. Analysis of the correlation between the formed
features of surface geometry, including their radius, depth, curvature, and volume, and the
related determinants of EDM, allow the design and control of the surface finishing process
and the technological properties of engineering materials [7,8]. The surface roughness
is influenced by EDM parameters, mainly the current, voltage, polarity, and duration of
the electric impulse, the multiplication of which is the energy of electric discharges—a
key factor determining the surface finish. Additionally important are the dielectric liquid,
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electrode material, and the type of machining movement [9–11]. Surface microgeometry
is mainly determined by the energy of the electrical discharge between the electrode and
the workpiece [12]. Klocke et al. added that with increasing the energy of the discharges,
a greater depth of the transformation layer is obtained [13]. Other authors have found
a relationship between electrical discharge and the morphology of surface craters, their
diameter and depth [14], curvature [15], area [16], and volume [17]. The research proves
that these correlations follow linear [18] or logarithmic [19] trends, while all the obtained
results show the features of a close interaction of crater microgeometry with the energy
of electrical discharges under the conditions of not changing other factors influencing the
machining process. A recent summary of surface texture-processing parameter interactions
was given by Jithin [20].

The energy of electric discharges, as the main factor influencing the surface topography,
also indirectly determines the technological and functional properties of the surface, includ-
ing microstructure and microhardness [21], corrosion behavior [22], wear resistance [23],
and wettability [24]. Knowledge of the correlation between these parameters enables the
design of the required surface properties by controlling the EDM parameters [25–27].

The surface topography can be characterized by several methods. The first and most
conventional involves the determination of surface texture parameters in accordance with
the ISO 25178–2 standard. This approach allows the quantification of the basic texture
parameters of the analyzed sample area [28]. Another method focuses on characterizing
the surface features created by the production process. A set of such features includes,
for example, valleys and ridges, inextricably linked with the milling process, or craters
closely related to electrical discharge machining. Some topographic formations can be
described based on the ISO standard, but without specifying the observation scale of these
features. Due to the fact that the discernibility and visibility of certain surface formations
change with different scales of observation, a third method is used, which is based on the
multiscale approach. In scientific papers, it is described that certain geometric measures of
topographic features (length and area) change with the scale of observation, which is closely
related to physical phenomena and their influence on the surface formation process [29].
The method of multiscale curvatures allows for a more multifaceted description of surfaces,
including measurements of concavity and convexity of surface geometric features and the
degree of their bending in specific spatial directions [30–32].

The multiscale geometric approach is particularly applicable to irregular surface to-
pographic structures, mainly generated by interacting physical phenomena. The purpose
of using multiscale methods is to more accurately determine the functional correlations
between the parameters of machining processes and the created surface topographies [33].
Surface decomposition allows distinguishing its features, evident in many scales of ob-
servation, which depend on the interaction scales. Such a property is not available in
traditional topographic analysis methods [29]. Fractal complexity, one of the parameters
describing the surface, is determined on various scales for which it changes its values. In
multiscale analyses, in addition to the key surface height data, curvature tensors are also
processed [30].

There are two main types of multiscale analysis methods. In both of them, the scope
of the scales to be analyzed and the measurement intervals are selected. The first method is
distinguished by the constant sampling frequency distances for the surface decomposition
process, using the Gauss, wavelets, boxes, or area-scale approaches. The second method
is characterized by the use of scale searching algorithms in the surface decomposition
process, in which the sampling distances may be variable, e.g., the method of the slit island.
The basis for the use of multiscale methods is the earlier mathematical characterization of
surfaces with regular or irregular features. Type I of the surface is defined as a function
of the form z = f(x,y). Type II includes parametric surfaces z = Γ(t), and Type III combines
multiple curves with parametric features. Among the various parameters representing the
surface, the Sdr, defined as the ratio of the surface formations to the projected surface area,
is of particular importance [33].
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The functions of convolutions, variations, and coverings are used to describe the
surface topography. The first function decomposes the topography on the basis of find-
ing the features with the greatest degree of similarity. Meaning is attributed to scalable
wavelets essential to describe a decomposed topographic signature, complementing basic
mathematical forms interpreting simple and basic topographic features. Scale wavelets
are important in interpreting physical mechanisms in different scales [34,35]. Variance
functions refer to numerical indices that describe topographic diversity across multiple
scale ranges [36]. Coverings consist in determining the Minkowski–Bouligand dimension,
using box, sphere, and oscillation covers. This approach is complemented by Mandelbrot’s
concept of the classification of covering methods into fixed and variable yardsticks, then
the Minkowski and Packing system. In this approach, there is a method of determining
the fractal dimensions of the surface, consisting of the horizontal decomposition of topo-
graphic features shown in the form of islands, characterized by the relationship between
their surface and perimeter [33]. The categories described by Mandelbrot can be analyzed
using three basic multiscale methods: patchwork, box, and motifs. The first method used
is area-scale analysis. The classic version of this method consists in isolating the patches
of triangles of various sizes, covering the analyzed surface area. At each stage of this
analysis, the triangular 3D solids correspond to the scale of the area. The box method
uses rectangles that are divided into squares. In this variant, mainly Sa and Sz parameters
are analyzed. The multiscale analysis is based on the continuous change of the box size
and the calculation of topographic parameters. In the motif method, topographic motifs
are located, and the basic parameters describing the surface, such as height, diameter,
and orientation are calculated, using Wolf pruning. A pattern is defined as the distance
between two peaks and one valley between them, or two valleys and one peak in the
middle. The motif method uses a varied sampling distance, unlike the box and patchwork
methods [33,37,38]. A recent summary of the practical use of multiscale methods was
presented by Brown et al. [29].

In industrial practice, the VDI 3400 standard is widely recognized for assessing surface
roughness of EDMed parts. Although the method was developed more than 40 years ago,
in 1975, it is still used for a reference optical and tactile comparison of machined surfaces.
The changing industry requirements for defining surface topography renders the VDI
3400 standard incomplete for many precision industry applications. This standard allows
only the roughness parameter Ra to be verified, which does not fully show the surface
morphology and detailed topographic parameters [39].

In this paper, we apply the same material, manufacturing, and measurements tech-
niques that were described in our previous study [24]. That work was focused on control-
ling the wetting performance by adjusting technological parameters in order to achieve
a hydrophobic effect. This paper addresses the different research problems as it focuses
on the energy of electric discharges as a machining parameter, closely related to the to-
pography of the created surfaces. Workpiece texturing by EDM to modify the functional
properties of the surface offers development potential in many applications, for example in
the aerospace, automotive, and biomedicine industries. Similar research using multiscale
analysis was already performed for stainless [15,40] and tool steel [12]. This study is an
extension made for aluminum-based alloy and aims at verifying that similar observations
can be found for all material groups using multiscale geometric methods. According to the
literature review and the authors’ best knowledge, no previous research in Al-based alloys
using EDM and multiscale analysis was conducted. Additionally, the novelty and purpose
of this paper is to compare the performance of different multiscale approaches: length-,
area-scale, and curvature, i.e. how well they can discriminate between surfaces and how
well they perform in finding strong functional correlations between discharge energy and
corresponding characterization parameters. This paper presents analyses of production
samples made of aluminum alloy used in the automotive heat exchange industry, including
length-scale and area-scale analyses. This study aims to provide a more comprehensive
approach to the description of machined surface microgeometry than presented in indus-
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trial, not fully complete standards (VDI 3400), and also incompletely described in other
publications, which was recently well summarized by Jithin et al. [41].

2. Materials and Methods
2.1. Sample Preparation

The EDM process and surface topography analyses were performed on 11 rectangular
blocks with dimensions of 40 mm × 40 mm × 5 mm. The samples were made of aluminum
alloy 6060 T4 (Hydro Extrusion) with the chemical composition presented in Table 1. The
tested material is characterized by a yield point of 60 MPa, a tensile strength of 120 MPa,
and Brinell hardness of 40 HB. These parameters have been verified and given in the
certificate document by the material supplier.

Table 1. Chemical composition of AA 6060 T4.

Al Si Fe Cu Mn Mg Cr Zn Ti

rest 0.3–0.6 0.1–0.3 max.
0.1

max.
0.1 0.35–0.6 max.

0.05
max.
0.15

max.
0.1

The samples were first milled and then electro-eroded using an EDM machine GF Agie
Charmilles Form 20. In order to determine the effect of electrical discharge machining on
the surface topography, the process parameters were changed for each sample in accordance
with Table 2. In the area of the sample, during the EDM process, the discharge energy
changes into thermal energy, which is related to the local material melting. The discharge
energy is calculated on the basis of the changed EDM parameters, which are multiplied:
current, spark voltage, and electric discharge time [12]. It was the authors’ intention not to
focus on finding relations between all relevant machining parameters but concentrating
on a single unifying factor—discharge energy [12,15,24,40,41]. As the commercial EDM
machine tool is used, the figures are shown in Table 2 (voltage, current, single pulse time,
and break between pulses) were automatically adjusted by the machine tool control system
to achieve theoretical VDI class of surface texture for the given electrode and machined
material. The motivation here was, thus, to follow the industrial practice for practical
application of the hereby presented research work.

Table 2. Technological parameters used for the EDM of samples.

Surface Voltage,
V

Current,
A

Single
Pulse

Time, µs

Break between
Pulses,
µs

Single Discharge
Energy,

mJ

Theoretical
VDI Class

Theoretical
Roughness Ra,

µm

S1 150 1.2 2.7 15 0.486 15 0.56
S2 160 1.8 8.7 15 2.506 18 0.8
S3 180 2.4 11.5 15 4.968 21 1.12
S4 180 3.2 17.8 18 10.253 24 1.6
S5 180 4.4 20.5 27 16.236 27 2.24
S6 100 6.2 23.7 37 14.694 30 3.15
S7 100 10 31.6 49 31.600 33 4.5
S8 100 13 86.6 49 112.580 36 6.3
S9 100 21 133.4 49 280.140 39 9

S10 100 29 237.1 49 687.590 42 12.5
S11 100 39 356.2 49 1,389.180 45 18
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The constant variables of the process were a copper electrode with dimensions adapted
to the area of the treated surface to increase the efficiency of the process and to limit the
movement of the tool to reciprocating. The dielectric fluid was distilled water to minimize
the presence of EDM products on the surface of the samples subjected to further analysis.

Samples after electrical discharge machining are shown in Figure 1. The set parameters
of the EDM machine made it possible to obtain texturing of the surface with a roughness in
the range of 0.56–18 µm, which corresponds to classes 14–45 defined in the industrial stan-
dard VDI 3400. In order to prepare the samples for the analysis of the surface topography,
degreasing in acetone was performed (1 min), then in isopropyl alcohol (10 min).
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2.2. Measurements and Filtration

A Focus Variation Microscope (FVM)—Alicona InfiniteFocus G5, was used here for
the measurement of the samples. FVM is a contrast-detection-based technology that utilizes
both narrow depth of field of the microscopic lens and precise movement along the optical
axis in order to accurately estimate the coordinate of maximum point “sharpness” and
therefore its relative position to the neighboring points. Measurement parameters are
presented in Table 3. The choice of this particular measurement technique was dictated
by its ability to measure high slopes and variable surface asperities [42,43], which are
abundant on surfaces fabricated by EDM. This allowed the researchers to obtain datasets
nearly free from non-measured points, with fully measured curvature of the craters.
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Table 3. Surface measurement parameters.

Parameter Unit Value

Magnification – 50×
Area size µm 900× 900

Estimated vertical resolution µm 0.022
Estimated lateral resolution µm 1.500
Lateral sampling intervals µm 0.176

Selected magnification enabled accurate measurement of microscale roughness and
craters geometry. No polarizer or external light source was used. Prior to the measurement,
the samples were additionally cleaned using plain air to remove any residual dust particles.
Each measurement consisted of five sub-measurements located evenly on the sample
surface in a cross-like pattern. Samples were mounted in a fixture in order to preserve the
distance between the sub-measurements. Each sub-measurement was performed with the
exact same parameters ensuring constant conditions for each sample.

Measurement results were saved as a point cloud, which was then directly analyzed
in the dedicated software MountainsMap (Digital Surf, Besançon, France). All datasets
underwent the same processing procedure, which consisted of:

• dataset leveling—in this operation non-measured points and their neighboring areas
were excluded from the calculation of the least square polynomial surface of 1st degree.
There was no form-removal step since the samples were manufactured as a flat
surface and form deviation would not clearly manifest itself in the relatively small
measurement area;

• thresholding—this operation generally aids in the next step of software-driven outliers
removal, which does not always remove larger spikes, and plateau-like artifacts,
which are characteristic of FVM measurements [44]. Generally, for other surface
morphologies, this step would be omitted and only outliers removal procedure would
be performed [45];

• outliers removal—the built-in software operation was used to remove the outliers,
i.e., spikes, vertical slopes, etc.;

• filling in non-measured points—in this operation non-measured points were replaced
with a smooth shape calculated from the neighbors. In order to avoid the reappearance
of previously present artifacts, non-measured zones were dilated by 1.5 µm. None
of the measured surfaces contained significantly large (>15 µm in diameter) non-
measured areas.

It has to be emphasized that the measurement technique, further digital processing of
the data, and the applied software have a strong impact on the fidelity of the post-processed
surface topography and resulting characterization parameters [46–49]. Thus, providing a
detailed description of the methods is not only important from the repeatability perspective
but also improves the credibility of particular research. The presence of non-measured
points is critical for the reliable calculation of surface characterization parameters. In
rough surfaces, such as obtained with EDM, there are significant variations in surface
texture, resulting in multiple areas that may be either under or overexposed during the
measurement causing the non-measured points to occur. Manipulating the light intensity
in general eventually leads to a setting, where the least non-measured points ratio occurs.
As described by Pawlus et al. [46], the location of non-measured areas affects the surface
parameters differently, and, to some extent depends on light intensity, e.g., too little light
causes the presence of non-measured points in a valley area, while overexposure in the
peak area. Surface parameters that are most affected by the presence of non-measured
points are also listed in that study.
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2.3. Surface Characterization Methods
2.3.1. Standard Analysis with ISO Parameters (MM)

In this study, a conventional surface characterization is used using as described in
ISO 25178, as well as in EUR 15178N standard. Additional parameters (Smean, Sdar, and
Spar) were defined by the European SURFSTAND project [50] and are designed to describe
surface zones that actively take part in tribological phenomena. These parameters were
calculated according to the guidance of ISO 25178, i.e., for the S-L surface, with the nesting
index of 250 µm (Gaussian filter). According to Townsend et al. “filtering is based on the
roughness or scale of the largest significant feature” [51]. In the case of the predicted and
calculated roughness values, it indicated that the correct nesting index value should be as
aforementioned. Choosing a smaller value would lead to an excess transfer of roughness
information into the waviness surface. The same approach was also presented in [12]. The
full list of parameters is shown in Table 4 and their full meanings are given in Table A1.

Table 4. List of standard and non-standard areal parameters used to characterize measured surfaces.

Standard Parameter Group Parameter Symbol

ISO 25178

Height Sq, Ssk, Sku, Sp, Sv, Sz, Sa
Functional Smr, Smc, Sxp

Spatial Sal, Str, Std
Hybrid Sdq, Sdr

Functional (Volume) Vm, Vv, Vmp, Vmc, Vvc, Vvv
Feature Spd, Spc, S10z, S5p, S5v, Sda, Sha, Sdv, Shv

EUR 15178N Functional Indices Sbi, Sci, Svi
- Other Smean, Sdar, Spar

2.3.2. Length-Scale and Area-Scale Analyses

Length-, area-scale, and complexity-scale analyses [52,53] were performed on the
filtered files. In this study, symbols of the multiscale characterization parameters were
taken from the ASME standard. Length-scale analysis determines the relative length (Rel),
a ratio of the calculated to the nominal length of profile at each scale. The extension to
three-dimensional data is done through area-scale analysis which involves a determination
of the relative area (RelA), which is a ratio of the calculated to nominal areas, at each
scale. Since surfaces created by EDM are most often isotropic, the performance of both
aforementioned methods should be similar.

The relative lengths were calculated over profiles extracted horizontally (rows) and
vertically (columns) from areal measurements. Profiles were spaced by the original sam-
pling interval (1.5 µm). The relative areas of surfaces were evaluated over the areal scales
available in the measurement, from half the region measured (405,000 µm2) to the smallest
possible triangle (0.75 µm2). Computations of length- and area-scale parameters were
made using MountainsMap 9 software (DigitalSurf, Besançon, France). The relative area
is computed through the patchwork method [54] which tiles the surface with triangular
patches of equal area reflecting a scale. Visualizations of tiled surfaces for fine, middle,
and coarse scales were presented using GOM Inspect software (GOM GmbH, Braun-
schweig, Germany). The length- (Lsfc) and area-scale fractal complexities (Asfc) (ASME
B46.1), which are the slopes of the length-/area-scale plots, were also determined using the
aforementioned software.
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2.3.3. Multiscale Curvature Analysis

Curvature as a function of scale was evaluated using the method described in [12,15,24,28].
Statistical measures (average and standard deviation) of maximum (κ1), minimum (κ2),
mean (H), and Gaussian (K) curvature were determined for the range of scales between 1
and 66 µm. Both signed and unsigned curvature were considered here [23]. All curvature
computations were performed using Wolfram Mathematica software (version 12, Wolfram
Research, Oxfordshire, UK). A list of all curvature parameters is presented in Table A1.

Curvature is a measure that is indicative of local shape. For example, it can determine
if certain geometric topographic feature exhibits concavity or convexity and quantify the
amount by which a particular region of surface bends in any direction. For EDM parts,
surface morphology is a mosaic of overlapping craters which geometry can be evaluated
via curvature.

2.4. Discrimination Analysis

In order to determine if a given multiscale topographic characterization parameter
allows to statistically discriminate between surfaces, one-way ANOVA with post hoc Tukey
test was applied. The ability to tell the surfaces apart with 95% or greater confidence was
considered sufficient (p < 0.05). The normality of residuals was verified by the Shapiro–
Wilk test.

Strengths of correlations between discharge energy and multiscale surface characteri-
zation parameters were determined as a function of scale. Linear and non-linear regressions
(exponential and logarithmic) were considered. Strong correlations were assumed when
the coefficient of determination R2 was greater than 0.9.

3. Results
3.1. Measurements of Surface Topographies

Measurement of the surface topographies using FVM provided datasets nearly free
from outliers and non-measured points, both of which were eliminated during the post-
processing. Surfaces of EDMed parts may pose a challenge to the focus variation technology
in the case when small, shiny globules of melted material reside on the surface. However,
in this study, the obtained surfaces were generally matt and therefore with relatively
uniform reflectivity. High slopes of the craters were well mapped. Vertical lines, which
can be seen in Surface 11 in Figure 2 indicate the presence of re-entrant features [55],
which cannot be measured directly. The change in the discharge energy visibly affects the
surface morphology. Samples manufactured with higher energy exhibit larger and deeper
topographic features. The geometry of these craters was quantified using conventional and
multiscale methods.

3.2. Standard Analysis with ISO Parameters

Exemplary visualizations of conventional parameters from height and volume group,
calculated for each surface, are depicted as box-and-whisker plots (Figure 3). Results for
other parameters are given in the Supplementary Materials to this study. Apart from
kurtosis (Sku), the height parameter tends to increase with the discharge energy. That
characteristic trend as in Sa or Sq is also present for parameters from other groups: hybrid
(Sdq and Sdr), feature (S10z, S5p, S5v, Sda, Sha, Sdv, Shv), functional (Smc and Sxp), and
other (Sdar). A declining trend was observed for Svi and Smr. No clear relation can be seen
for other parameters.
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(a) height, (b) volume parameters. Please note that each box size indicates 25th and 75th percentiles,
the white bar represents median and whiskers shows maximum and minimum values calculated for
each scale.
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The strengths of correlations between particular areal characterization parameters and
the discharge energy are determined using linear, logarithmic, and exponential regressions.
The detailed results displaying the coefficient of determination (R2) are shown in Table 2
in Appendix A. Strong correlations (R2 > 0.9) were observed only for a limited number of
parameters and using linear regression: Sv, Spc, Shv, Spar. Maximum pit height, arithmetic
mean peak curvature, mean hill volume, and projected area perform the best at describing
surface morphology of EDMed samples with a reference to processing parameters. For
the analyzed case, no strong evidence was found referring to logarithmic or exponential
relations between analyzed areal parameters and the discharge energy.

3.3. Length- and Area-Scale Analyses

The use of relative areal provides a scale-sensitive characterization parameter, in
which both the order of the heights and the spacing of the surface features are employed
to quantitatively document the topography. In Figure 4, the effect of scale in the tiling
exercise is visualized for fine (100 µm2) and coarse (10,000 µm2) as computed for exemplary
surfaces S1, S6, and S11. Topographic features of small size are better “mapped” when
fine-scale tiling is considered. At a larger scale, the visual differences between surfaces S1
and S6 are subtle when compared to S11. Large size formations can still be discerned at the
coarse-scale for surface machined with the highest discharge energy. The nominal area,
which is the projected or x × y area, that is tiled in that particular scale, varies slightly with
each tiling exercise because only full tiles are used, all with the same area in a particular
tiling exercise. The tiling exercises are never able to cover exactly the same area as the
scale changes.
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Figure 4. Effect of scale manipulation in the area-scale method for three different surfaces S1, S6, and S11: mesh as measured
(left column), renderings of triangulated surfaces for scale equal to 100 µm2 (middle column) and 10,000 µm2 (right column)
visualized in wireframe style. Please note that each row represents different surfaces.

The results of the discrimination analysis for length- and area-scale parameters are
presented in Figure 5. It can be seen that the p-value is below 0.05 for all considered
parameters and scales, which means that those multiscale characterizations performed well
in telling the surfaces apart. The ability to discriminate appears to be somewhat weaker for
RelA and Asfc when the largest scales are taken into account. This is might be caused by
the fact that the effect of EDM with the lowest energies is marginal to form or waviness
which is characterized at coarse scales. The electrode shape was generally flat what is also
reflected in the planar form of the manufactured samples.
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Figure 5. Results of ANOVA for discriminating against discharge energy shown as p-value as a function of scale for
(a) length-scale analysis (rows), (b) length-scale analysis (columns), and (c) area-scale analysis.

Figure 6a–c shows an area-scale plot of the measured surfaces created with four
different discharge energies 0.486, 10.253, 112.58, and 1,389.18 mJ discharge pulses. Relative
areas of one indicate that the surfaces are essentially smooth at these scales. The smooth-to-
rough crossover (SRC) occurs at some larger scales where the relative areas are greater than
one, and the surface is rough at these scales. Depending on the threshold chosen in the
relative area the SRC could be between about 1000 and 100,000 µm2. For lower discharge
pulse energies, the SRC tends to finer scales. Additionally, the maximum relative areas,
which appear at the finest scales in the study, tend to decrease with the lower discharge
energies. The differences between length-scale parameters when calculated from profiles
extracted in the x- and y-directions are small. This suggests the morphology is most
probably isotropic. Similarities in the trends are visually observed for RelA and Asfc when
compared to Rel and Lsfc correspondingly. Figure 6d–f shows the mean length- (Lsfc)
and area-scale fractal complexity (Asfc) for all the measurements on each surface created
with the four aforementioned values of the discharge energy. For lower discharge pulse
energies, the fractal complexities tend to be smaller. The maximum Lsfc and Asfc are not
present at the finest scales, but rather their maximums, which decline with decreasing the
discharge energy, occur at some intermediate scales. These scales of the maximum fractal
complexities appear to increase with discharge pulse energy starting from 10 mJ.

Coefficients of determination, R2, for linear, logarithmic, and exponential regressions
of length- and area-scale parameters versus discharge energies are plotted as a function of
scale and presented in Figure 7. No matter the parameter, the strength of correlations are
weaker when the finest scales are considered. The strongest correlations (R2 > 0.9) can be
found for linear and exponential regressions considering intermediate and coarse scales for
RelA and Rel. Fractal complexity performs well only when linear regression is considered
(R2 > 0.9 for Asfc for scales between 2400 µm2 and 138,000 µm2 as well as for Lsfc for
scales larger than about 90 µm). While the trends for relative area and length are similar
no matter the regression type, the dispersion between Asfc and Lsfc is evident when the
evolutions of the coefficient of determinations are analyzed.
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3.4. Curvature

The ability to tell surfaces apart changes depending on the curvature parameter and
scale. For considered scales, all curvature parameters discriminate the EDMed surfaces at
p < 0.05, but with an exception found for κ1q and κ1qabs which both fail for scales finer
than 11µm.

The average and standard deviation of the mean curvature H, as a function of scale,
for all analyzed surfaces are shown in Figure 8. Results for other curvature parameters
are presented in the Supplementary Materials to this study. Mean curvature describes the
average shape of the surface at a given region. Considering Ha (average mean curvature)
and each surface separately, no clear tendency can be noticed as the values fluctuate with
the scale (Figure 8a). Whereas for standard deviation measure of mean curvature (Hq), the
values seem to converge with scale to constant values but at different rates, which might
be related to the fact that at the coarsest scale curvature of form is characterized.

Mean curvature can also be associated with average shape (convexity or concavity) at
a particular scale. Considering Ha, their values are generally positive which means that
surface is generally concave. This is supported by the fact that dominant surface features
are craters whose average shape is also concave. Although the craters can also have convex
ridges, their negative curvatures are not that significant in the totals. Hq is the measure
that characterizes the variation of curvature which declines with the scale. This can be
explained by the fact that the magnitudes of the curvatures tend to increase with decreasing
scale. At the finest scales, many small features characterized by the high curvature are
evident. Similar tendencies were noticed for parameters related to minimum, maximum,
and Gaussian curvature.

An evident effect of the discharge energy is manifested through the magnitude of
the principal curvatures and their combinations. The average minimum curvature κ2a
appeared to be the least influenced by changing the processing parameters because no clear
tendency was observed for all considered scales. For the other three average measures: κ1a,
Ha, and Ka, such relations can be found starting from the intermediate scales (between
36 and 41 µm). Considering absolute values (regardless of the sign of the curvature) and
standard deviations, these measures perform well in finding strong functional relations
between the discharge energy and the resulting curvature. This is noticed for scales greater
than 31 µm.

The strengths of the linear, logarithmic, and exponential regression analyses (R2) for
the curvatures versus the discharge energies are shown as a function of scale in Figure 9.
The strongest correlations were generally found for scales starting from 36 µm for linear
trends. The average Gaussian curvature was found to correlate the strongest with the range
of scales between 16 µm and 41 µm. Curvature does not correlate well when it is used to
describe the surface morphology at the finest scales, although the highest coefficients of
determination are noted for logarithmic regression. This tendency was also observed for
relative length and area as well as length-scale fractal complexity.

The coefficient of determination evolves with the scale in a similar manner for absolute
curvature parameters and standard deviation parameters of signed curvatures (κ1q, κ2q,
Hq, and Kq). These parameters describe the variation of curvature which, in the analyzed
case, appears to be heavily affected by the discharge energy. The average minimum
curvature performs the worst no matter scale and regression type. Unlike length- and
area-scale characterizations, all curvature parameters do not perform well when finding
strong correlations with processing when exponential regression was used.
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4. Discussion

The modeling of electrical discharge machining is based on the selection of technolog-
ical parameters of the process and the knowledge of the physical and chemical properties
of the machined materials. The EDM mechanism leads to the fabrication of topographic
features, including the formation of craters, visible in rendered images from a focus varia-
tion microscope. The key factor determining the size and the shape of surface topographic
features is the electric discharge energy, the increase of which leads to the formation of
craters of greater depth, length, area, and curvature.

Surface microgeometry was characterized by using conventional ISO and multiscale
quantitative methods. The geometric properties of the surface morphology strongly corre-
late with the energies of electrical discharges. The multiscale analysis allows for a more
detailed understanding of the interaction between surface characteristics and machining
process parameters, in particular determining the scales of interactions between fabrication
and the resulting texture [29]. In the studied case, the strongest correlations were observed
for the scales starting from intermediate values of about 16 µm and 31 µm for curvature
parameters and between 12 and 24 µm for relative length. Although length-scale and
curvature methods differ totally in terms of how the term “scale” is handled by both
methods and how the calculation procedure is performed, the convergence of the results is
high. This may suggest that geometric properties of the craters are the best discernible and
characterized starting from those scales. Length- and area-scale analysis performed the best
at discriminating the surfaces, while curvature failed at the lowest scales (<11 µm) when
the standard deviation of both signed and signed maximum curvature was considered.
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This shows that, generally, surfaces can be told apart when analyzing the entire range of
scales from original sampling interval to measured area size, which can be indicative of
EDM leaving its manufacturing signature at the entire range of scales. Although strong
correlations were found for limited ranges of scales using linear, logarithmic, and exponen-
tial regression, this does not mean that other, more complex, functional relations can be
confidently established at other scales.

The conventional parameters calculated based on the non-multiscale approach mostly
do not correlate strongly with the discharge energy. This might be caused by the fact that
they analyze the surface in the nominal scale associated with the original sampling interval
in x- and y-direction. Generally, at that finest scale, multiscale parameters also do not
correlate strongly with the discharge energy. There are two conventional parameters that
correspond to the presented multiscale geometric characterizations when analyzing at
the finest scale: Spc (mean peak curvature) and Sdr (surface developed ratio). The first
one correlates well when the linear model is considered (R2 = 0.925), although it only
characterizes the mean curvature of peaks. The latter which can be associated with RelA
also correlates strongly (with discharge energy (R2 = 0.857)) but only when regressed
logarithmically. The relative area also shows its best performance at the finest scale using
the same regression model. A recent study proved that Sdr was also found to correlate
with the discharge energy when non-linear regression was applied [56]. This indicates that
conventional characterizations can be useful in describing surface topography of EDMed
parts but only when evaluating appropriate aspects of surface morphology or particular
features [12,29]. Yet the conventional parameters are most commonly used to characterize
surface roughness and topography [41]. This is mainly caused by the fact that that they
are included in the widely used commercial software and they can be evaluated with
basic knowledge of surface metrology principles. Alternative approaches using multiscale
analysis or autocorrelation function are still rare [57,58], because, in principle, they are more
complicated and would require more skillful and mindful users. They will be appreciated
once they add value by advancing the understanding of the relations between topographies
and phenomena or if they can better exploit the acquired topographic information [29,59].
Therefore, the development of ready and free-to-use commercial or academic software
fitted with multiscale analysis tools should contribute to the popularization of the presented
methods.

The analyzed surfaces do not show significant differences on smaller scales, which
might suggest that the mechanism of creating fine-scale topographic features in the EDM
process is parallel and comparable regardless of the value of the discharge energy. A similar
observation was made in other multiscale studies related to a different material that was
processed: tool steel [12] and stainless steel [40].

There does not exist a single universal technological parameter that can fully quantify
the relations between the formation process (discharge energy, current, voltage, gap, polar-
ity, pulse duration) and fabricated surfaces, for all materials (electrode and workpiece), part
geometries, and other conditions (dielectric fluid and flushing). The main reason for that
is the intensity and randomness of electric discharges as well as the physical complexity
of the phenomena occurring during the process. This, in turn, makes the development of
analytical modeling for EDM a difficult endeavor. This is generally common for any other
manufacturing process which involves material removal or addition through energy (elec-
tric discharge, electron, or laser beam) [60–62]. Therefore, the phenomenological approach
which is based on functional correlations can be more convenient, especially from a prac-
tical perspective. Geometric characterizations which focus on the morphology of craters
(length, area, and curvature) were proved in this study to be successful in establishing
strong functional correlations between discharge energy and particular surface parameter
when analyzing at the appropriate scales.

Some implicit relations between VDI roughness and parameters of discharge are incor-
porated in the control systems of machine tools, as presented in this study. That standard,
however, was developed more than 50 years and, obviously, does not involve modern
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measurement and characterization techniques currently applied in surface metrology but
focuses on simple average roughness parameters. The directions of further research should
be the development of a universal function describing the relationship between the pa-
rameters of the EDM process and the features of the textured surface for a broad range of
processed material. Hereby, the presented work confirms that the similar relations between
discharge energy and surface microgeometry can be found not only for steel [12,15,40] but
also for aluminum alloys. EDM machine tool control systems operate on certain dependen-
cies between roughness and the parameters of electrical discharge pulses. However, they
do not capture the existing functional dependencies in a broader sense, as they focus on
simple average roughness regardless of scale. Morphological analysis of surface craters
is the starting point for reliable studies, due to their relationship to the nature of EDM
processes. The relationship between machining parameters and surface topography is
also of greater importance and influences other functional characteristics of the material,
including tribological wear, lubrication properties, and corrosion resistance.

5. Conclusions

The research results presented in this study show that the surface topography ob-
tained by EDM is strongly dependent on the electric discharge energy while processing.
This statement is confirmed by obtaining strong correlations between the energy and the
microgeometric parameters of the surface, mainly their curvature as well as length- and
area-scale parameters. In addition, research conducted on many scales of observation
provides an in-depth understanding of the phenomena contributing to the formed surface
topography. Similarities of the results produced by length-scale and curvature methods
were noted. In addition, the detailed conclusions can be formulated as follows:

• Strong correlations (R2 > 0.9) were found between the electrical discharge energy
values and the topographic parameters of the surface:

# Rel, Lsfc for scales >90 µm, RelA, Asfc for scales ranging between 2400 and
138,000 µm

# Curvature statistical measures (apart from κ2a) starting from scales between
36 a 41 µm.

• The highest coefficients of determination were noted generally for the coarse scales of
observation in which geometrical properties of large size morphological features are
best characterized. The strongest coefficients of determination R2 > 0.9 were noted for
linear (0.993 for Ka at scale = 41 µm, 0.951 for Rel at scale = 111.38 µm) and exponential
regressions (0.957 for Rel at scale 51.49 µm);

• Length- and area-scale analyses performed the best at discriminating the surfaces.
A similar observation was made for curvature, apart from standard deviations of
both signed and signed maximum curvature was considered, which failed at finest
scales (<11 µm);

• The convergence of the results obtained by the considered multiscale methods is
high for intermediate scales although the definition of scale differs depending on
the method;

• Apart from average mean curvature (Ha), characterizations of fine-scale features do
not correlate strongly with the energy of electrical discharges using the proposed
linear, logarithmic, and exponential models (as R2 < 0.9), although surfaces can be
confidently discriminated at those corresponding scales. A more complex statistical
model should be considered in those cases;

• Conventional surface characterization parameters generally do not correlate well with
the discharge weakly. Some exceptions were found for Sv, Spc, Shv, and Spar for
which R2 was found to be greater than 0.9;

• The effect of the discharge energy is shown in the magnitude of the surface principal
curvatures and their combinations. This relationship is evident mainly for the three
mean measures: κ1a, Ha, and Ka and occurs starting from the intermediate scales
(between 36 and 41 µm).
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Appendix A

Table A1. Abbreviations of surface characterization parameters and their full meanings.

Abbrevation Full Name

Sq Root-mean-square height
Ssk Skewness
Sku Kurtosis
Sp Maximum peak height
Sv Maximum pit height
Sz Maximum height
Sa Arithmetic mean height

Smr Areal material ratio
Smc Inverse areal material ratio
Sxp Extreme peak height
Sal Autocorrelation length
Str Texture-aspect ratio
Std Texture direction
Sdq Root-mean-square gradient
Sdr Developed interfacial area ratio
Vm Material volume
Vv Void volume

Vmp Peak material volume
Vmc Core material volume
Vvc Core void volume
Vvv Pit void volume
Spd Density of peaks
Spc Arithmetic mean peak curvature
S10z Ten point height
S5p Five point peak height
S5v Five point pit height
Sda Mean dale area
Sha Mean hill area
Sdv Mean dale volume
Shv Mean hill volume
Sbi Surface bearing index
Sci Core fluid retention index
Svi Valley fluid retention index

Smean Mean height in absolute
Sdar Developed area
Spar Projected area
Rel Relative length

https://www.mdpi.com/article/10.3390/cryst11111371/s1
https://www.mdpi.com/article/10.3390/cryst11111371/s1
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Table A1. Cont.

Abbrevation Full Name

RelA Relative area
Lsfc Length-scale fractal complexity
Asfc Area-scale fractal complexity
κ1a Average maximum curvature
κ1q Standard deviation of maximum curvature
κ2a Average minimum curvature
κ2q Standard deviation of minimum curvature
Ha Average mean curvature
Hq Standard deviation of mean curvature
Ka Average Gaussian curvature
Kq Standard deviation of Gaussian curvature

κ1aabs Average absolute maximum curvature
κ1qabs Standard deviation of absolute maximum curvature
κ2aabs Average absolute minimum curvature
κ2qabs Standard deviation of absolute minimum curvature
Haabs Average absolute mean curvature
Hqabs Standard deviation of absolute mean curvature
Kaabs Average absolute Gaussian curvature
Kqabs Standard deviation of absolute Gaussian curvature

Table 2. Coefficient of determination R2 calculated for linear, logarithmic and exponential regression between areal characterization
parameters and the discharge energy.

Parameter R2 Linear Regression R2 Logarithmic
Regression

R2 Exponential
Regression

Sq 0.833 0.776 0.577
Ssk 0.238 0.593 N/A
Sku 0.000 0.010 0.001
Sp 0.732 0.826 0.500
Sv 0.900 0.655 0.718
Sz 0.827 0.773 0.599
Sa 0.826 0.779 0.568

Smr (c = 1 µm under the highest peak) 0.392 0.355 0.755
Smc (p = 10%) 0.838 0.784 0.573

Sxp (p = 50%, q = 97.5%) 0.857 0.698 0.620
Sal (s = 0.2) 0.700 0.733 0.629
Str (s = 0.2) 0.060 0.336 0.046

Std (Reference angle = 0◦) 0.006 0.046 0.006
Sdq 0.794 0.842 0.558
Sdr 0.732 0.857 0.461

Vm (p = 10%) 0.801 0.808 0.532
Vv (p = 10%) 0.836 0.785 0.571

Vmp (p = 10%) 0.801 0.808 0.532
Vmc (p = 10%, q = 80%) 0.802 0.784 0.548
Vvc (p = 10%, q = 80%) 0.830 0.793 0.563

Vvv (p = 80%) 0.889 0.623 0.676
Spd (pruning = 2.5%) 0.320 0.393 0.572
Spc (pruning = 2.5%) 0.925 0.592 0.869
S10z (pruning = 2.5%) 0.809 0.776 0.585
S5p (pruning = 2.5%) 0.732 0.820 0.494
S5v (pruning = 2.5%) 0.883 0.648 0.727
Sda (pruning = 2.5%) 0.874 0.731 0.638
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Table 2. Cont.

Parameter R2 Linear Regression R2 Logarithmic
Regression

R2 Exponential
Regression

Sha (pruning = 2.5%) 0.779 0.698 0.534
Sdv (pruning = 2.5%) 0.899 0.775 0.508
Shv (pruning = 2.5%) 0.947 0.623 0.594

Sbi 0.196 0.004 0.165
Sci 0.394 0.723 0.374
Svi 0.118 0.497 0.113

Smean 0.780 0.429 N/A
Sdar 0.738 0.855 0.693
Spar 0.909 0.262 0.826
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