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Abstract: This paper aims to develop a method for determining the workability diagram by varying
frictional conditions in the cylinder upsetting test. The method is based on a known theoretical
relationship between the average stress triaxiality ratio and in-surface strains if the initiation of
fracture occurs at a traction-free surface. This relationship is valid for any rigid/plastic strain
hardening material obeying the Mises-type yield criterion and its associated flow rule, which shows
the wide applicability of the method. The experimental input to the method is the strain path at the
site of fracture initiation. Neither experimental nor numerical determination of stress components is
required at this site, though the general ductile fracture criterion involves the linear and quadratic
invariants of the stress tensor. The friction law’s formulation is neither required, though the friction
stress is the agent for varying the state of stress and strain at the site of ductile fracture initiation. The
upsetting tests are carried out on normalized medium-carbon steel C45E, for which the workability
diagram is available from the literature. Comparison of the latter and the diagram found using
the new method shows that the new method is reliable for determining a certain portion of the
workability diagram.

Keywords: ductile fracture; workability diagram; upsetting; friction

1. Introduction

Empirical ductile fracture criteria have been successfully used to predict fracture
initiation in metal forming processes for several decades (see [1–5] among many others).
Usually, such criteria involve several constitutive parameters that should be identified
using experimental or hybrid experimental-numerical approaches. The functions that
contain these parameters are specified before testing. For example, the predictive capacity
of several specified functions has been compared in [6,7]. It is evident that the result of
such comparisons depends on the material tested. An advantage of the fracture criterion
based on the workability diagram and an average stress triaxiality ratio is that this crite-
rion involves an arbitrary function rather than arbitrary parameters [8]. This function is
determined in the course of ductile fracture testing. Therefore, any set of experimental
data can be approximated with any accuracy if the effect of the cubic stress invariant on
the initiation of fracture is negligible. To increase the accuracy of the criterion, one has
to design experiments to cover a wide range of the stress triaxiality ratio at the site of
fracture initiation.

The upsetting of a specimen between two dies is a widely used method for identifying
ductile fracture criteria. The Rastegaev test can be regarded as one of the basic tests.
A description of this test is provided in [9]. The deformation is almost homogeneous in
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the Rastegaev test. A circular solid cylinder is used as the specimen in the original test.
However, the general methodology applies to specimens of other geometries [10]. To vary
the state of stress at the fracture initiation site, one can vary the initial shape of specimens
and/or the shape of dies. In particular, the collar test is widely used for identifying ductile
fracture criteria (for example, [10–12]). Specimens of hexagonal and square cross-sections
have been designed and tested in [11,13], respectively. Notched cylinders have been
used in [14,15]. Using various profiled dies, the upsetting process has been adopted for
identifying ductile fracture criteria in [16–19].

The present paper proposes to vary friction conditions to vary the state of stress at the
fracture initiation site. The efficiency of the method is demonstrated using the upsetting of
circular solid cylinders between flat dies. However, it is straightforward to combine this
method with the above methods developed for varying the state of stress at the fracture
initiation site.

Real boundary conditions are essential for calibrating ductile fracture criteria using
experimental-numerical methods [20]. Of course, friction cannot be regarded as such a
boundary condition. Nevertheless, standard procedures for identifying ductile fracture
criteria require numerical simulations [6,7,21], which is impossible without specifying a
friction law. An advantage of the method used in the present paper is that no numerical
simulation is required. Moreover, the specific friction law is not required for this method. It
is only important to vary friction conditions significantly. These conditions affect the state of
stress at the fracture initiation site. However, the average stress triaxiality ratio involved in
the ductile fracture criterion under consideration is expressed in terms of in-surface strains
if fracture initiation occurs at a traction-free surface [22]. Several experimental methods are
available to measure in-surface strains with good accuracy [10,23]. No theoretical method
other than the relationship developed in [22] is required. This relationship is valid for any
hardening law. A similar relationship is available for orthotropic materials under plane
stress conditions [24]. However, it has been derived assuming proportional strain paths.
This reduced form of the relationship has also been used for isotropic materials in [21].

Numerical methods are usually used to determine the evolution of the average stress
triaxiality throughout the process of deformation [25,26]. The relationship proven in [22]
significantly facilitates identifying ductile fracture criteria based on this quantity and in-
creases the accuracy of the final result since the boundary conditions involved in numerical
simulations do not affect the relationship [22].

The method developed applies to any strain hardening material that obeys the von
Mises yield criterion and its associated flow rule.

2. Theoretical Basis

The simplest workability diagram provides the dependence of the strain to fracture
on the stress triaxiality, assuming that the strain path is proportional [27]. The following
equation represents this dependence:

ε
f
eq = Φ(β). (1)

Here, ε
f
eq is the equivalent strain to fracture, β = 3σ/σeq is the stress triaxiality ratio, σ

is the hydrostatic stress, and σeq is the equivalent stress. Additionally,

σ =
σijδij

3
, σeq =

√
3
2

√(
σij − σδij

)(
σij − σδij

)
, ξeq =

√
2
3

√
ξijξij, εeq =

t∫
0

ξeqdτ. (2)

Here, t is the time, σij are the stress components, ξij are the strain rate components,
δij is the Kronecker symbol, ξeq is the equivalent strain rate, and the integral should be
evaluated over the strain path. The fracture criterion based on the workability diagram
reads [8]

ε
f
eq = Φ(βav) (3)
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where βav is the average stress triaxiality ratio defined as

βav =
1

εeq

t∫
0

βξeqdτ. (4)

The integral here should be evaluated over the strain path.
In general, it is difficult to determine βav experimentally. However, ductile fracture

often initiates on traction-free surfaces. In this case, Equation (4) simplifies to [22]

βav =
2(ε1 + ε2)

εeq
. (5)

Here, ε1 and ε2 are the principal logarithmic in-surface strains. It is relatively easy to
measure these strains experimentally. Then, no theoretical solution is required to apply
Equation (3) if the function Φ is known. Alternatively, one can combine experimental
results with Equations (1) and (3) to determine a portion of the workability diagram
corresponding to the available experimental data.

Equation (5) is valid for rigid plastic materials obeying the yield criterion σeq = σ0Ω
(
εeq
)

and its associated flow rule. Here, Ω
(
εeq
)

is an arbitrary function of its argument satisfying
the conditions Ω(0) = 1 and dΩ/dεeq ≥ 0 for all εeq, and σ0 is the tensile yield stress at
εeq = 0.

3. Design of Experiment

Four upsetting tests have been designed. A schematical diagram of a generic test is
shown in Figure 1, where F is the compression force and V is the speed of the upper die.
The initial specimen for each test is a circular solid cylinder of diameter 20 mm and height
of 24 mm. The tests are classified by the type of lubricant and the quality of the friction
surface. The friction surface has been turned or ground.
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Teflon (polytetrafluoroethylene PTFE) or mineral oil have been used as lubricants.
Some specimens have been upset with no lubricant. Table 1 shows the used combinations
of the types of lubricant and surface treatment. The table is self-explanatory. The tests have
been conducted on a Sach and Kieselbach hydraulic press with a capacity of 6.3 MN at
room temperature and V = 0.1 mm/s.
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Table 1. Upsetting test conditions.

Series Initial Geometry Geometric
Parameters

Tribological Conditions
Lubrication Surface

1
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Before testing, it was guessed that fracture would initiate on the lateral surface in the
vicinity of the plane of symmetry of the specimen. The experiment has confirmed this
guess. In this case, the principal strains involved in Equation (5) are the circumferential
and axial strains. The circumferential strain can be determined by measuring the diameter
of the specimen at the intersection of its lateral surface and plane of symmetry. Let d f be
this diameter at the instant of fracture initiation. Then, the circumferential strain at the
instant of fracture initiation is

ε
f
θ = ln

d f

d0
. (6)
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Here, d0 is the initial diameter of the cylinder. To measure the axial strain, two grid
lines have been applied at mid-height. The initial distance between the lines is z0 = 4 mm.
Then, the axial strain at the instant of fracture initiation is

ε
f
z = ln

z f

z0
. (7)

Here, z f is the distance between the grid lines at the instant of fracture initiation.
Using Equations (6) and (7), one rewrites Equation (5) as

β
f
av =

2
(

ε
f
θ + ε

f
z

)
ε

f
eq

. (8)

Here, β
f
av and ε

f
eq are βav and εeq at the instant of fracture initiation, respectively.

In addition to the tests above, the Rastegaev test has been carried out. Stearin has been
used as a lubricant. Table 1 shows the essential geometric parameters of the specimen.

In total, five series of tests shown in Table 1 have been conducted. Each series has
included testing of three nominally identical specimens. The values of d f and z f have been
measured at several locations of each specimen. The arithmetic mean of these values has
been used in Equations (6) and (7).

To find ε
f
θ and ε

f
z using Equations (6) and (7), one needs to measure d f and z f at the

instant of fracture initiation. However, it is besides necessary to evaluate the integral in
Equation (2) for determining ε

f
eq involved in Equation (8). For this reason, the upsetting

tests have been carried out incrementally. Each increment of the die’s displacement is
approximately equal to 10% of the current height of the specimen. This procedure allows for
producing the strain path as a discrete function. Then, one can approximate this function
with a continuous function and evaluate the integral in Equation (8) with no difficulty.

The nominal chemical composition of this steel is shown in Table 2.

Table 2. Chemical composition of steel C45E.

Chemical Element C Si Mn P S Cr Mo Ni Cu

Content (%) 0.46 0.23 0.64 0.008 0.022 0.18 0.02 0.08 0.17

4. Experimental Results

The specimens have been made of normalized medium-carbon steel C45E (EN stan-
dard) with the microstructure consisting of ferrite grains and pearlite colonies.

The shape of specimens at the instant of fracture initiation is illustrated in Figure 2.
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The experimental strain paths determined in five series of the upsetting process
(Table 1) according to the procedure described in the previous section are depicted in
Figure 4. The leftmost points correspond to the instant of fracture initiation. The cor-
responding values of ε

f
θ and ε

f
z are presented in Table 3. An optical microscope (Leitz

Orthoplan) has been used for measuring the distance between the grid lines. Some spec-
imens are significantly squeezed at the instant of fracture initiation (for example, the
rightmost image in Figure 3). Nevertheless, the grid lines are clearly visible, which al-
lows for measuring z with the same accuracy independently of the stage of the process.
An example is illustrated in Figure 5, where a specimen of Series 5 is shown.

Table 3. Circumferential and axial strains at the instant of fracture initiation.

Series 1 2 3 4 5

ε
f
θ

0.82 0.752 0.961 0.725 0.92

ε
f
z −1.082 −0.867 −1.426 −0.735 −1.74
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Figure 5. Illustration of measuring z f in a specimen of Series 5.

5. Workability Diagram

All the curves in Figure 4 are slightly concave down, suggesting that quadratic poly-
nomials are appropriate for interpolating these experimental data. In addition, εθ = 0 for
εz = 0. Therefore, the generic form of approximating functions is

εθ = Bε2
z + Aεz. (9)
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The coefficients A and B have been found using the method of least squares (Table 4).
The corresponding curves are shown in Figure 4 by solid lines. Taking into account the
equation of incompressibility and Equation (9), one can rewrite the integral in Equation (2)
as (see, for example, [10])

ε
f
eq = − 2√

3

ε
f
z∫

0

√
(A + 2Bεz)

2 + 2Bεz + A + 1dεz. (10)

Table 4. Coefficients A and B involved in Equation (9).

Series 1 2 3 4 5

A −0.5127 −0.3476 −0.3661 −0.6188 −0.4505

B 0.257 0.5589 0.2006 0.5612 0.0386

Using the data from Tables 3 and 4, one can evaluate this integral numerically. The
result of this integration is presented in Table 5. The data from Tables 4 and 5 combine with
Equation (8) to provide β

f
av. These β

f
av—values and the corresponding ε

f
eq—values from

Table 5 allow for finding five points of the workability diagram. These points are shown in
Figure 6. Since β

f
av = 0 in the torsion test, it is seen from this figure that series 4 can replace

this test.

Table 5. Equivalent strain at the instant of fracture initiation.

Series 1 2 3 4 5

ε
f
eq 1.15 0.95 1.47 0.85 1.74
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The workability diagram for C45E steel has been determined in [18] using another
method. The following equation approximates this diagram:

ε
f
eq = 0.33 · βav

2 − 0.75 · βav + 0.75. (11)
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The curve corresponding to Equation (11) is depicted in Figure 6. It is seen that
the experimental points determined in the present paper lie on the workability diagram
from [18], which confirms that the method proposed is reliable.

6. Conclusions

A new method for determining the workability diagram using the fracture criterion
(Equation (3)) has been proposed. From this work, the following conclusions can be drawn:

1. Compared to other methods, the new method requires specimens of very simple
shape (circular cylinders) and very simple dies (flat dies);

2. Neither experimental nor numerical determination of stress components is required
at the site of ductile fracture initiation;

3. The friction law’s formulation is not required, though the friction stress is the agent
for varying the state of stress and strain at the site of ductile fracture initiation;

4. It has been confirmed by comparing the workability diagrams available from the liter-
ature and determined in the present paper that the new method is reliable (Figure 6);

5. The new method covers the range of the average stress triaxiality between −1 to 0,
approximately (Figure 6). It can be combined with specimens of various geometric
shapes to extend this range. This will be the subject of a subsequent investigation.
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