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Abstract: The current work involves the synthesis of 2,2′-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis
(hydrazin-2-yl-1-ylidene))bis(methanylylidene))diphenol 4, characterization, and the DFT studies of
the reported compound. The crystal unit cell parameters of 4 are a = 8.1139(2) Å, b = 11.2637(2) Å,
c = 45.7836(8) Å. The unit cell volume is 4184.28(15) Å3 and Z = 4. It crystallized in the orthorhombic
crystal system and Pbca space group. The O . . . H, N . . . H, C . . . H, H . . . H and C . . . C inter-
molecular contacts which affect the crystal stability were quantitatively analyzed using Hirshfeld
calculations. Their percentages were calculated to be 9.8, 15.8, 23.7, 46.4, and 1.6% from the whole
contacts occurred in the crystal, respectively. Conformational analysis was performed using DFT
calculations for 17 suggested conformers and the most stable conformer was found to be the one
which is stabilized by two intramolecular O-H . . . N hydrogen bonding interactions. This conclusion
was further revealed by natural bond orbital calculations.

Keywords: s-triazine; bis-Schiff base; conformational analysis; Hirshfeld analysis; NBO

1. Introduction

Given the effectual reactivity of TCT (cyanuric chloride, 2,4,6-trichlorotriazine) with
a diversity of nucleophiles, it is regularly used in organic synthesis as template to access
numerous molecular systems [1,2]. TCT is an important moiety due to its lower price,
marketable availability, and the three chlorine atoms can be replaced in stepwise manner [1].
TCT derivatives were reported to have a broad range of biological activities [3]. Some new
s-triazine based chalcones and their derivatives were found to work as potent antimicrobial,
anti-cancer and anti-malarial agents [4–9].

On the other hand, Schiff bases of triazine derivatives are considered as extraordinary
class of compounds. The two connected nitrogen atoms (-CH=N-N-) are of distinct nature
and the C=N that is conjugated with a lone pair of the second nitrogen are responsible
for their properties [10–16]. This family of compounds are regularly used as polydentate
chelating agents that form a diversity of complexes with a range of different metals [17–19].
Enormous hydrazones derivatives and their complexes have been used in several applica-
tions, such as metal-ions extraction and microdetermination of metal-ion [20]. Moreover,
their biological activities have been reported in literatures [21–25]. Many synthesized
s-triazine hydrazone derivatives were reported and explored with superior interest in
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supramolecular and coordination chemistry [26,27], material chemistry [28], and complex-
ation with several metal-ions [29–33].

It is well known that the s-triazine bis-Schiff base compounds could exist in two
main structures which are shown in Figure 1. In view of the interesting importance and
the diverse structural features of this class of s-triazine based compounds, the present
work presents the synthesis, characterization, X-ray single crystal structure investigations
combined with Hirshfeld and DFT calculations of a novel giant s-triazine based Schiff base
(4). Relative stability of 17 suggested conformers of 4 were also investigated.

Crystals 2021, 11, x FOR PEER REVIEW 2 of 15 
 

 

synthesized s-triazine hydrazone derivatives were reported and explored with superior 
interest in supramolecular and coordination chemistry [26,27], material chemistry [28], 
and complexation with several metal-ions [29–33]. 

It is well known that the s-triazine bis-Schiff base compounds could exist in two main 
structures which are shown in Figure 1. In view of the interesting importance and the 
diverse structural features of this class of s-triazine based compounds, the present work 
presents the synthesis, characterization, X-ray single crystal structure investigations com-
bined with Hirshfeld and DFT calculations of a novel giant s-triazine based Schiff base (4). 
Relative stability of 17 suggested conformers of 4 were also investigated. 

 

  

 
Pyridine (py) Pyrimidine (pym) 

Form 1   Form 2 

Figure 1. The general structure of s-triazine bis-Schiff base. 

2. Materials and Methods 

Chemicals were purchased from Sigma-Aldrich Company (Chemie GmbH, 82024 
Taufkirchen, Germany). Perkin-Elmer 2400 instrument (PerkinElmer, Inc.940 Winter 
Street, Waltham, MA, USA) was used for CHN analyses.  

2.1. Synthesis of 2,2′-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(hydrazin-2 -yl-1-
ylidene))bis(methanylylidene))diphenol; 4 

2,4-Dihydrazinyl-6-(piperidin-1-yl)-1,3,5-triazine (10 mmoles) was added portion-
wise to a hot solution of 2-hydroxybenzaldehyde (10 mmoles) in ethanol (100 mL) con-
taining acetic acid (2–3 drops; Scheme 1). After complete addition, the reaction was heated 
under reflux for 6h and then was left cooling at room temperature and then filter the pure 
pale-yellow solid (the complete reaction was followed by TLC (ethyl acetate-hexane 2:1). 
The product was left to dry and then recrystallized from ethanol. Yield 95%; mp 263–265 
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C, 61.10; H, 5.59; N, 25.91. Found: C, 61.23; H, 6.61; N, 25.74. 

Figure 1. The general structure of s-triazine bis-Schiff base.

2. Materials and Methods

Chemicals were purchased from Sigma-Aldrich Company (Chemie GmbH, 82024
Taufkirchen, Germany). Perkin-Elmer 2400 instrument (PerkinElmer, Inc., 940 Winter
Street, Waltham, MA, USA) was used for CHN analyses.

2.1. Synthesis of 2,2′-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(hydrazin-2
-yl-1-ylidene))bis(methanylylidene))diphenol; 4

2,4-Dihydrazinyl-6-(piperidin-1-yl)-1,3,5-triazine (10 mmoles) was added portionwise
to a hot solution of 2-hydroxybenzaldehyde (10 mmoles) in ethanol (100 mL) containing
acetic acid (2–3 drops; Scheme 1). After complete addition, the reaction was heated under
reflux for 6h and then was left cooling at room temperature and then filter the pure pale-
yellow solid (the complete reaction was followed by TLC (ethyl acetate-hexane 2:1). The
product was left to dry and then recrystallized from ethanol. Yield 95%; mp 263–265 ◦C;
1H NMR (DMSO-d6): δ = 1.52 (brs, 4H, 2CH2), 1.63 (brs, 2H, CH2), 3.80 (brs, 2H, CH2),
6.87–6.95 (m, 4H, Ar), 7.37–7.41 (m, 2H, Ar), 7.21–7.26 (m, 2H, Ar), 8.29 (s, 2H,CH=N), 11.20
(brs, 2H, NH), 12.15 (brs, 2H, OH) ppm; 13C NMR (DMSO-d6): δ = 24.3, 25.6, 43.6, 116.1,
118.9, 130.3, 143.9, 157.4, 162.8, 164.2 ppm; Anal. Calc. for C22H24N8O2 (432.49 g/mol): C,
61.10; H, 5.59; N, 25.91. Found: C, 61.23; H, 6.61; N, 25.74.

2.2. X-ray Structure Determinations

The crystal of 4 was immersed in cryo-oil, mounted in a loop at 120 K, and the data
were collected on a Rigaku Oxford Diffraction Supernova diffractometer using Cu Kα radi-
ation. The CrysAlisPro(v.1.171.40.67a) [34] software package was used for cell refinement
and data reduction. A gaussian absorption correction (CrysAlisPro [34]) was applied to
the intensities before structure solution. The structure was solved by intrinsic phasing
(SHELXT [35]) method. Structural refinement was carried out using SHELXL(2018/3) [36]
software with SHELXLE [37] graphical user interface. The NH and OH hydrogen atoms
were located from the difference Fourier map and refined isotropically. All other hydrogen
atoms were positioned geometrically and constrained to ride on their parent atoms, with
C-H = 0.95–0.99 Å and Uiso = 1.2·Ueq(parent atom). The CIF data are given in details in
Supplementary data and crystal structure measurement and refinments details are sum-
marized in Table 1. Crystal Explorer 17.5 program [38] was used for Hirshfeld surface
analysis.



Crystals 2021, 11, 1418 3 of 14
Crystals 2021, 11, x FOR PEER REVIEW 3 of 15 
 

 

 
Scheme 1. Synthesis of 4. 

2.2. X-ray Structure Determinations 
The crystal of 4 was immersed in cryo-oil, mounted in a loop at 120 K, and the data 

were collected on a Rigaku Oxford Diffraction Supernova diffractometer using Cu Kα ra-
diation. The CrysAlisPro(v.1.171.40.67a) [34] software package was used for cell refine-
ment and data reduction. A gaussian absorption correction (CrysAlisPro [34]) was applied 
to the intensities before structure solution. The structure was solved by intrinsic phasing 
(SHELXT [35]) method. Structural refinement was carried out using SHELXL(2018/3) [36] 
software with SHELXLE [37] graphical user interface. The NH and OH hydrogen atoms 
were located from the difference Fourier map and refined isotropically. All other hydro-
gen atoms were positioned geometrically and constrained to ride on their parent atoms, 
with C-H = 0.95–0.99 Å and Uiso = 1.2·Ueq(parent atom). The CIF data are given in details 
in Supplementary data and crystal structure measurement and refinments details are 
summarized in Table 1. Crystal Explorer 17.5 program [38] was used for Hirshfeld surface 
analysis. 

Table 1. Crystal Data of 4. 

CCDC 2118553 
empirical formula C22H24N8O2 
Fw 432.49 
temp (K) 120(2)  
λ (Å) 1.54184  
Crystal system Orthorhombic 
space group Pbca 
a (Å) 8.1139(2)  
b (Å) 11.2637(2)  
c (Å) 45.7836(8)  
V (Å3) 4184.28(15) 
Z 8 

Scheme 1. Synthesis of 4.

Table 1. Crystal Data of 4.

CCDC 2118553
empirical formula C22H24N8O2
Fw 432.49
temp (K) 120(2)
λ (Å) 1.54184
Crystal system Orthorhombic
space group Pbca
a (Å) 8.1139(2)
b (Å) 11.2637(2)
c (Å) 45.7836(8)
V (Å3) 4184.28(15)
Z 8
ρcalc (Mg/m3) 1.373
µ (Mo Kα) (mm−1) 0.762
No. reflns. 29,199
Unique reflns. 4404
Completeness to θ = 67.684◦ 99.9%
GOOF (F2) 1.047
Rint 0.0345
R1 a (I ≥ 2σ) 0.0374
wR2 b (I ≥ 2σ) 0.0911

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]]1/2.

3. Computational Details

Density functional calculations (DFT) at the B3LYP method and using 6-31G(d,p) basis
sets were performed to optimize the molecular structure of the suggested 17 conformers
of the studied s-triazine bis-Schiff base (Figure 2). For this task, Gaussian 09 package
was used [39,40]. All optimized structures are local minimum as indicated from the
absence of any imaginary vibrational mode. The calculated energies and thermodynamic
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parameters of the suggested conformers were used to predict the most stable form. NBO
3.1 program [41] was used for natural bond orbital analysis.
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4. Results and Discussion
4.1. Crystal Structure Description

The X-ray structure of 4 is shown in Figure 3. The compound crystallized in the or-
thorhombic crystal system and Pbca space group with unit cell parameters of a = 8.1139(2) Å,
b = 11.2637(2) Å, c = 45.7836(8) Å, and unit cell volume of 4184.28(15) Å3 while Z = 4. Some
bond distances and angles are depicted in Table 2.
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Figure 3. X-ray structure with thermal ellipsoids at 50% probability level for 4.

Table 2. Selected bond lengths [Å] and angles [◦] for 4.

Atoms Distance Atoms Distance

O1-C1 1.3578(14) N4-C9 1.3477(15)
O2-C22 1.3624(16) N5-C15 1.3379(15)
N1-C7 1.2882(15) N5-C8 1.3445(15)
N1-N2 1.3697(13) N6-C9 1.3493(15)
N2-C8 1.3691(15) N6-C10 1.4657(15)
N3-C8 1.3291(15) N6-C14 1.4707(15)
N3-C9 1.3622(15) N7-C15 1.3565(15)

N4-C15 1.3394(15) N7-N8 1.3622(14)
Atoms Angle Atoms Angle

C7-N1-N2 116.50(10) C10-N6-C14 114.56(10)
C8-N2-N1 121.50(10) C15-N7-N8 120.60(10)
C8-N3-C9 113.29(10) C16-N8-N7 117.41(10)

C15-N4-C9 113.93(10) O1-C1-C2 118.15(11)
C15-N5-C8 112.03(10) O1-C1-C6 121.81(11)
C9-N6-C10 122.81(10) C2-C1-C6 120.03(11)
C9-N6-C14 121.91(10) C3-C2-C1 120.06(12)

It is well known that the s-triazine bis-Schiff base compounds could exist in two main
structures which are shown in Figure 1. The solid-state structure of 4 indicated that the
conformation of the two hydrazine arms are quite different and exists in Form 2 rather
than Form 1. A main reason for the extrastability of Form 2 is the less steric among the
salicylidene moieties. In Form 1, strong repulsion between the two salicylidene arms makes
this option is not sterically favored situation.

In addition, this molecular conformation of the bis-Schiff base s-triazine is found
stabilized by two strong intramolecular O-H . . . N hydrogen bonding interactions between
the OH group of the salicylidene moiety acting as hydrogen bond donor with the nitrogen
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atom of the azomethine group as a hydrogen bond acceptor. The donor-acceptor distances
are 2.648(3) and 2.608(1) Å for the O1-H1...N1 and O2-H2...N8 intramolecular O-H . . .
N hydrogen bonds, respectively. Additionally, there are two weak intramolecular C-H
. . . N hydrogen bonds which are C10-H10B...N3 and C14-H14A...N4 with donor-acceptor
distances of 2.785(2) and 2.746(2) Å, respectively. More details regarding the hydrogen
bond parameters are listed in Table 3. The intramolecular hydrogen bonding interactions
are presented as turquoise dotted lines in the upper part of Figure 4, while the red dotted
lines represent the intermolecular hydrogen bonding interactions.

Table 3. Hydrogen bonds for 4 [Å and ◦].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O1-H1...N1 0.958(2) 1.789(2) 2.648(1) 147.6(2)
O2-H2...N8 0.92(2) 1.80(2) 2.608(1) 145.0(2)

N7-H7...O2 i 0.927(2) 1.996(2) 2.918(1) 173.9(2)
C7-H7A...N3 ii 0.95 2.61 3.494(1) 155.0
C10-H10B...N3 0.99 2.35 2.7846(15) 106.0

C12-H12B...O1 iii 0.99 2.57 3.2842(15) 129.0
C14-H14A...N4 0.99 2.29 2.7459(16) 107.0
C20-H20...N5 iv 0.95 2.52 3.4165(18) 158.0

i 1/2 − x, 1/2 + y, z; ii 1/2 − x, −1/2 + y, z; iii 3/2 − x, 1/2 + y, z and iv −1/2 + x, 1/2 − y, 1 − z.
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The supramolecular structure of 4 is controlled by strong N7-H7...O2 hydrogen bond-
ing interaction with a hydrogen-acceptor distance of 1.996(2) Å and donor-acceptor distance
of 2.918(1) Å. In addition, the molecules are further connected by weak C-H...O interactions
(Table 3). Presentation of the molecular packing is given in Figure 4 (lower part).
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4.2. Analysis of Molecular Packing

The Hirshfeld surfaces of 4 are shown in Figure 5. The most important contacts having
interaction distances shorter than the van der Waals (vdW) radii sum of the two interacting
atoms are labeled A to E in the dnorm map. The O . . . H, N . . . H, C . . . H, H . . . H, and
C . . . C contacts are the most important in the crystal stability. The interaction distances
obtained from the Hirshfeld calculations are depicted in Table 4.
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Table 4. Intermolecular interactions in 4.

Contact Distance Contact Distance

H12A . . . C5 2.747 H2A . . . N4 2.522
H7A . . . C9 2.499 H7A . . . N3 2.488
H7A . . . C9 2.494 H20 . . . N5 2.394
H16 . . . C22 2.756 O2 . . . H7 1.914
H15 . . . C21 2.509 O1 . . . H3 2.533
C16 . . . C21 3.348 H1 . . . H12B 2.155
C16 . . . C22 3.235 H21 . . . H16 2.294 a

a longer distances compared to the vdWs radii sum.

The percentage contributions for all possible interactions in the crystal are presented
graphically in Figure 6. The O . . . H, N . . . H, C . . . H, H . . . H and C . . . C contributed by
9.8, 15.8, 23.7, 46.4, and 1.6% from the whole fingerprint area, respectively. As can be seen
from Figure 5, all these interactions appeared as red colour regions in the dnorm where the
contact distances are shorter than vdW sum of the interacting atoms.

In addition, the decomposed fingerprint plot gave good indication on the importance
of these contacts (Figure 7). For example, the O . . . H interactions appeared as very sharp
spikes indicating strong interactions. The presence of some short C . . . C contacts as
red spots in the dnorm with red/blue triangle in the shape index and flat green area in
curvedness map revealed very well the presence of π-π stacking interactions. The shortest
C . . . C contacts are C16 . . . C21 (3.348 Å) and C16 . . . C22 (3.235 Å).
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4.3. Conformational Analysis

The structure of the 17 suggested conformers were calculated and the optimized
geometries are shown in Figure 8. The total energies and thermodynamic parameters of
the of the studied s-triazine bis-Schiff base are depicted in Table 5. The results indicated
that conformer 4 is the most stable thermodynamically as this conformer has the lowest
energy among the studied conformers which is found in accord with the reported X-ray
structure of this compound. The second and third most stable conformers are 4I and 4L,
respectively. These conformers are energetically higher than the most stable one by only
0.2951 and 2.2345 kcal/mol, respectively. A clear common reason for the extrastabilty of
these three conformers is the presence of two intramolecular O-H . . . N hydrogen bonds in
the three structures (Figure 8). On the other hand, some of the other conformers showed
one intramolecular O-H . . . N hydrogen while the others did not show any intramolecular
O-H . . . N hydrogen bond. The conformers 4B, 4K, and 4N were the highest energetically
as these conformers did not comprise any intramolecular O-H . . . N hydrogen bond. The
relative energies of the studied conformers are presented graphically in Figure 9.
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Table 5. The calculated energies and thermodynamic properties of the studied conformers.

Param. 4 4A 4B 4C 4D 4E 4F 4G 4H

E a −1441.3046 −1441.2844 −1441.2635 −1441.2841 −1441.286847 −1441.290592 −1441.272653 −1441.276378 −1441.272801
ZPVE a 0.4535 0.4526 0.4517 0.4525 0.452338 0.452615 0.451841 0.452084 0.451863

Etot
a −1440.8511 −1440.8318 −1440.8118 −1440.8316 −1440.8345 −1440.8380 −1440.8208 −1440.8243 −1440.8209

∆E b 0.0000 12.0882 24.6525 12.2360 10.4044 8.2278 18.9990 16.8140 18.9203
H a −1440.8229 −1440.8031 −1440.7827 −1440.8029 −1440.805625 −1440.80919 −1440.791531 −1440.795082 −1440.791662

∆H b 0.0000 12.3787 25.2167 12.5274 10.8118 8.5748 19.6558 17.4276 19.5736
G a −1440.9125 −1440.8946 −1440.8756 −1440.8942 −1440.897779 −1440.900977 −1440.884482 −1440.887956 −1440.884582

∆G b 0.0000 11.2197 23.1635 11.4368 9.2211 7.2144 17.5650 15.3850 17.5022
S c 188.6180 192.5080 195.5080 192.2760 193.953 193.183 195.632 195.469 195.568

4I 4J 4K 4L 4M 4N 4O 4P
E a −1441.3044 −1441.2844 −1441.2638 −1441.3010 −1441.2878 −1441.2597 −1441.2747 −1441.2672

ZPVE a 0.4538 0.4526 0.4518 0.4534 0.4526 0.4515 0.4521 0.4516
Etot

a −1440.8506 −1440.8318 −1440.8120 −1440.8475 −1440.8353 −1440.8081 −1440.8227 −1440.8156
∆E b 0.2951 12.1058 24.5161 2.2345 9.9103 26.9448 17.8395 22.2519
H a −1440.8228 −1440.8031 −1440.7830 −1440.8192 −1440.8069 −1440.7790 −1440.7935 −1440.7863

∆H b 0.0201 12.3743 25.0285 2.2916 10.0362 27.5096 18.4359 22.9514
G a −1440.9125 −1440.8939 −1440.8750 −1440.9093 −1440.8955 −1440.8715 −1440.8856 −1440.8790

∆G b 0.0094 11.6414 23.5444 1.9785 10.6518 25.7024 16.8559 21.0106
S c 188.6540 191.0780 193.5960 189.6690 186.5540 194.6810 193.9180 195.1290

a A.U. b kcal/mol c Cal/Mol. K.
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4.4. Optimized Geometry

The calculated structure of 4 is shown in Figure 10. Few differences between the ex-
perimental and optimized structures were detected where the deviations in bond distances
not exceed 0.02 Å (Table S1; Supplementary Data). These deviations could be attributed to
the crystal packing effects. Generally, there are good correlations between the calculated
bond angles and distances with the experimental measurements (Figure 11).
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The studied system comprised CHNO skeleton where the oxygen and nitrogen atoms
as well as the majority of carbon atoms are negatively charged (Figure 12). The morpholine
oxygen atoms and the s-triazine N-atoms have the highest negative charge. The studied
compound is polar molecule (2.7591 Debye) and the dipole moment vector is shown in
Figure 13 (left part). The red regions in molecular electrostatic potential reveal high electron
density related to hydroxyl oxygen atoms and the aryl moieties. In contrast, the blue
regions are related to the atomic sites with lowest electron density which is close to the NH
protons.
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It is clear that the HOMO and LUMO levels are mainly distributed over the π-system
of 4 (Figure 13). As a result, the HOMO→LUMO excitation is mainly a π-π* transition. The
HOMO→LUMO excitation energy is 4.1536 eV. In addition, the reactivity indices include
ionization potential (I = −EHOMO), electron affinity (A = −ELUMO), chemical potential
(µ =−(I + A)/2), hardness (η = (I− A)/2), as well as electrophilicity index (ω = µ2/2η) [42–47].
The calculated values of these descriptors are 5.5391, 1.3856, −3.4624, 4.1536, and 1.4431,
respectively.

4.5. NBO Analysis

The intramolecular charge transfer (IMCT) plays very important rule in the stabil-
ity of compound. In this regard, the different IMCT processes (σ-σ*, π→π*, n→σ* and
n→π*) in 4 were calculated [48,49] and their stabilization energies (E(2)) are listed in
Table 6. The maximum interaction energy due to the σ-σ* intramolecular charge transfer
(IMCT) is 5.99 kcal/mol for the BD(1)N7-C23→BD*(1)N9-C40. The π→π*, n→π* and



Crystals 2021, 11, 1418 12 of 14

n→σ* IMCT processes have higher interaction energies with maximum E(2) values of 48.26,
71.52, and 24.48 kcal/mol for the BD(2)N5-C24→BD*(2)N7-C23, LP(1)N8→BD*(2)N5-
C24, and LP(1)N3→BD*(1)O1-H56 IMCT, respectively. Interestingly, the presence of
LP(1)N3→BD*(1)O1-H56 and LP(1)N10→BD*(1)O2-H55 IMCT processes with high E(2)

values of 24.48 and 23.08 kcal/mol, respectively confirmed the stability of conformer 4 via
intramolecular O-H . . . N hydrogen bonding interactions.

Table 6. The IMCT processes and E(2) values calculated using NBO method.

NBOi NBOj E(2) NBOi NBOj E(2)

σ→σ* π→π*

BD(1)O1-H56 BD*(1)C11-C12 5.06 BD(2)N3-C21 BD*(2)C18-C20 7.87
BD(1)O2-H55 BD*(1)C50-C52 5.02 BD(2)N5-C24 BD*(2)N 7-C23 48.26
BD(1)N5-C24 BD*(1)N 4-C23 5.63 BD(2)N6-C40 BD*(2)N 5-C24 39.11
BD(1)N7-C23 BD*(1)N 9-C40 5.99 BD(2)N7-C23 BD*(2)N 6-C40 45.32
BD(1)C20-C21 BD*(1)N 3-N 4 5.22 BD(2)N10-C41 BD*(2)C43-C44 7.88
BD(1)C41-C43 BD*(1)N 9-N10 5.20 BD(2)C11-C12 BD*(2)C14-C16 25.09

BD(2)C11-C12 BD*(2)C18-C20 17.00
BD(2)C14-C16 BD*(2)C11-C12 17.55
BD(2)C14-C16 BD*(2)C18-C20 24.64
BD(2)C18-C20 BD*(2)N 3-C21 24.97
BD(2)C18-C20 BD*(2)C11-C12 21.73

n→σ* n→π*

LP(1)O 1 BD*(1)C11-C20 7.96 BD(2)C18-C20 BD*(2)C14-C16 17.03
LP(1)O 2 BD*(1)C43-C52 8.02 BD(2)C43-C44 BD*(2)N10-C41 24.95
LP(1)N 3 BD*(1)O 1-H56 24.48 BD(2)C43-C44 BD*(2)C46-C48 17.02
LP(1)N 3 BD*(1)N 4-H54 8.74 BD(2)C43-C44 BD*(2)C50-C52 21.68
LP(1)N 3 BD*(1)C21-H22 9.92 BD(2)C46-C48 BD*(2)C43-C44 24.65
LP(1)N 5 BD*(1)N 7-C23 13.54 BD(2)C46-C48 BD*(2)C50-C52 17.57
LP(1)N 5 BD*(1)N 6-C24 12.09 BD(2)C50-C52 BD*(2)C43-C44 17.07
LP(1)N 6 BD*(1)N 5-C24 11.84 BD(2)C50-C52 BD*(2)C46-C48 25.10
LP(1)N 6 BD*(1)N 7-C40 13.29 LP(2)O 1 BD*(2)C11-C12 35.52
LP(1)N 7 BD*(1)N 5-C23 12.74 LP(2)O 2 BD*(2)C50-C52 35.53
LP(1)N 7 BD*(1)N 6-C40 12.66 LP(1)N 4 BD*(2)N 3-C21 31.38
LP(1)N10 BD*(1)O 2-H55 23.08 LP(1)N 4 BD*(2)N 7-C23 53.44
LP(1)N10 BD*(1)C41-H42 10.00 LP(1)N 8 BD*(2)N 5-C24 71.52
LP(1)N10 BD*(1)N 9-H53 8.82 LP(1)N 9 BD*(2)N 6-C40 52.75

LP(1)N 9 BD*(2)N10-C41 31.48

5. Conclusions

The synthesis and X-ray structure of the new 2,2′-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-
diyl)bis(hydrazin-2-yl-1-ylidene))bis(methanylylidene))diphenol giant s-triazine bis-Schiff
base were presented. Among the suggested 17 conformers, 4 was found to be the most
stable one in agreement with the reported X-ray structure. Generally, conformers with
larger number of intramolecular O-H . . . N hydrogen bonding interactions are the most
stable. The presence of intramolecular O-H . . . N hydrogen bonds was further revealed by
NBO calculations. Using Hirshfeld calculations, the O . . . H, N . . . H, C . . . H, H . . . H,
and C . . . C intermolecular contacts are the most important in the crystal stability. Their
percentages were calculated to be 9.8, 15.8, 23.7, 46.4, and 1.6% from the whole contacts
occurred in the crystal, respectively. MEP, HOMO, LUMO, dipole moment, and natural
charges were also presented.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11111418/s1, Table S1: The calculated and experimental bond distances and angles,
Table S2: Bond lengths [Å] and angles [◦] for 4, Table S3: Anisotropic displacement pa-rameters
(Å2 × 103) for 4. The anisotropic displacement factor exponent takes the form: −2p2[h2 a*2U11 + . . .
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+ 2 h k a* b* U12], Table S4: Hydrogen coordinates (× 104) and iso-tropic displacement parameters
(Å2 × 103) for 4, Table S5: Torsion angles [◦] for 4, Figure S1: 1H and 13C NMR spectra of 4.
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