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Abstract: Lead-containing relaxor ferroelectrics show enormous piezoelectric capabilities relating
to their heterogeneous structures. Time-resolved nanobeam X-ray diffraction reveals the time and
position dependences of the local lattice strain on a relaxor ferroelectric single crystal mechanically
vibrating and alternately switching, as well as its polarization under an alternating electric field. The
complicated time and position dependences of the Bragg intensity distributions under an alternating
electric field demonstrate that nanodomains with the various lattice constants and orientations ex-
hibiting different electric field responses exist in the measured local area, as the translation symmetry
breaks to the microscale. The dynamic motion of nanodomains in the heterogeneous structure, with
widely distributed local lattice strain, enables enormous piezoelectric lattice strain and fatigue-free
ferroelectric polarization switching.

Keywords: synchrotron radiation; nanobeam X-ray diffraction; time-resolved X-ray diffraction;
relaxor ferroelectrics

1. Introduction

Lead-containing composite perovskites, (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-
PT) and (1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3 (PZN-PT), are well known as relaxor ferro-
electrics and are widely used in many applications due to their excellent piezoelectric
properties [1–3]. Their piezoelectric constants and electromechanical coupling factors
strongly depend on the PbTiO3 (PT) fraction x and have a maximum value near the
morphotropic phase boundary (MPB) that separates low-PT rhombohedral and high-PT
tetragonal phases [4–8]. The piezoelectric constants of PMN-PT with x = 0.30 (PMN-30PT)
and PZN-PT with x = 0.08 (PZN-8PT) near their MPBs exceed 2 × 103 pC/N [7,8]. It
has been suggested that electric field-induced phase transitions involving polarization
rotation and electric field responses of polar nano regions (PNRs) aiding the polarization
rotation explain the enormous piezoelectric capabilities around MPB [9–24]. Monoclinic
and orthorhombic phases exist in a narrow composition region near MPB and are easily
induced by applying an electric field [8,10,11,14,17,18]. PNRs first occur below the Burns
temperature in the high-temperature paraelectric cubic phase, expanding with cooling and
coexisting with regular ferroelectric domains in low-temperature ferroelectric phases [21].

We have recently reported the results of the time-resolved crystal structure analysis of
a PZN-4.5PT single crystal under a sinusoidal alternating electric field [25]. Disordered
Pb atoms partially occupying off-center sites show an intersite rotational displacement
involving polarization rotation under an alternating electric field with an amplitude bigger
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than the coercive field for polarization switching. The average crystal structure of the
single-crystal size below 0.1 mm was successfully analyzed using a rhombohedral and
a monoclinic structure model with disordered Pb atoms under zero and non-zero fields,
respectively. However, the crystal with PNRs must have a heterogeneous structure in
which the lattice is locally strained, and the Pb displacements are locally modulated. In fact,
heterogeneous spatial distributions of Pb displacements in relaxor ferroelectric perovskites
have been discovered by diffuse and total scattering using X-ray, neutron, and transmis-
sion electron microscopy [26–29]. The structural responses of the heterogeneous local Pb
displacements and the local lattice strain to an electric field are crucial to understanding
the giant piezoelectric properties of relaxor ferroelectric perovskites.

In this study, we used time-resolved scanning nanobeam X-ray diffraction (XRD) of
a single-crystal PMN-30PT under an alternating electric field to show the position and
time dependences of the local lattice strain in relaxor ferroelectric perovskites under an
alternating electric field. With high accuracy, scanning nanobeam XRD can visualize a
distribution of local lattice strains on a crystal surface [30,31]. The X-ray beam size of
300 nm is much larger than the PNR’s size of 20 nm [21]. However, a fractal character
has been found in relaxor ferroelectric perovskites by quasi-elastic light scattering and
X-ray diffuse scattering measurements [32,33]. The nanobeam XRD detects submicron
scale structural inhomogeneity originating from the fractal character. The time-resolved
scanning nanobeam XRD for PMN-30PT under an alternating electric field in this study
provides essential information about the local lattice strain with such a fractal character, as
well as its electric field responses relating to the giant piezoelectric properties.

2. Materials and Methods

We performed three kinds of XRD experiments on PMN-30PT single crystals: (1) time-
resolved XRD for the average structure under an AC field, (2) time-resolved nanobeam
XRD for the local structure under an AC field, and (3) nanobeam XRD for the local structure
under a DC field. The time-resolved XRD for the average structure was performed at the
beamline BL02B1 of a SPring-8 large synchrotron radiation facility [34]. The nanobeam
XRD for the local structure was performed at the beamline BL13XU of SPring-8 [35].

A schematic layout of the time-resolved XRD for the average structure under the AC
field is shown in Figure 1a. The PMN-30PT single crystal with a size of 0.15 × 0.15 × 0.10
// [001] mm3 was obtained from a commercial crystal and embedded in an epoxy thin
plate. Two crystal surfaces perpendicular to [001] and parallel to the epoxy thin plate were
polished bare and coated by an evaporated Au thin film for application of AC fields. A
high-energy X-ray with a wavelength of λ = 0.300 Å and a penetration depth of 0.12 mm
for PMN-30PT was used to reduce the absorption effects of the Pb atoms. The X-ray beam
size at 0.2 mm is larger than the crystal size. Repetitive X-ray pulses with a pulse width
of 1.5 µs were extracted with a high-repetition-rate X-ray chopper [36] at a repetition rate
of 2.6 kHz and radiated onto the PMN-30PT single crystal. The PMN-30PT single crystal
was mechanically vibrating and alternately switching its polarization under a bipolar
sinusoidal electric field along [001] with an amplitude of 10 kV/cm and a frequency of
2.6 kHz, which synchronized with the repetitive X-ray pulses. The time-resolved X-ray
intensities of the 006 Bragg reflection were measured by transmission geometry using a
large cylindrical imaging plate camera with a radius of 191.3 mm by changing the delay
time ∆t of the repetitive X-ray pulses to the sinusoidal electric field. We monitored the time
dependences of the voltage and current between the two electrodes on the crystal surfaces
with a digital oscilloscope.
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Figure 1. Schematic layouts of (a) time-resolved XRD for average structure under AC field and
(b) time-resolved nanobeam XRD for local structure under AC field.

A schematic layout of the time-resolved nanobeam XRD for the local structure under
the AC field is shown in Figure 1b. A commercially available [001] oriented thin single-
crystal plate of PMN-30PT with surfaces of 3 × 2 mm2 coated by Au electrodes and a
thickness of 0.1 mm was used in the experiment. The Au-coated PMN-30PT single crystal
attached to an Au-coated glass plate with silver paste was mounted on a nanobeam X-ray
diffractometer to align the crystal surface perpendicular to the horizontal plane and parallel
to the incident X-ray beam axis at the crystal orientation angle ω = 0. The incident X-ray
beam with the λ = 1.55 Å wavelength was focused on the crystal surface using a Fresnel
zone plate. The penetration depth of the X-ray was 7 µm for PMN-30PT. The X-ray beam
size at the sample position was 430 (horizontal) × 190 (vertical) nm2 at the full width of
half maximum (FWHM). Repetitive X-ray pulses with a pulse width of 1.5 µs, extracted
at a repetition rate of 2.0 kHz, were radiated onto the PMN-30PT single crystal, while
mechanically vibrating and alternately switching its polarization under a bipolar sinusoidal
electric field along [001] with an amplitude of 6 kV/cm and frequency of 2.0 kHz. A
motorized sample stage scanned the beam position on the crystal surface. Only the vertical
position z was scanned from 0 to 10 µm in this study. The time-resolved X-ray intensities of
the 002 Bragg reflection were measured in surface-sensitive reflection geometry using a
Timepix STPX-65k (Amsterdam Scientific Instruments BV) two-dimensional hybrid pixel
detector located at the diffraction angle of 2θ = 45.2◦ and the camera length of 338 mm by
changing the delay time ∆t. Time dependences of voltage and current between the two
electrodes on the crystal surfaces were monitored with a digital oscilloscope.

The nanobeam XRD for the local structure under the DC field was performed using a
DC source instead of an AC source without an X-ray chopper in the experimental layout
of Figure 1b. The X-ray intensities of the 002 Bragg reflection were measured under static
electric fields from E = −8 to 8 kV/cm applied [001] perpendicular to the crystal surface.
The vertical beam position z was scanned from 0 to 10 µm using a motorized sample stage.

3. Results
3.1. Transient Average Structure under AC Field

Figure 2a,b shows the time dependences of the Qr and Qv one-dimensional profiles of
the 006 Bragg peak through the intensity maxima, respectively, which were diffracted from
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a whole crystal of PMN-30PT (R3m, a = 4.028 Å, α = 89.92◦) in the experimental layout of
Figure 1a. Both Qr and Qv represent two-dimensional reciprocal space coordinates along
the crystal rotation ω-axis and [001] parallel to the electric field, respectively (Figure 1a),
where the scattering vector length is Q =

√
Qr2 + Qv2 = 4π sin θ/λ = 2π/d (d: d-spacing).

A peak broadening along Qr and a peak shift along Qv, due to the polarization switching,
can be seen in the time region from ∆t = 16 to 46 µs. The time dependences of the voltage
and current between the two electrodes on the crystal surfaces were monitored by a digital
oscilloscope from ∆t = −40 to 70 µs, as shown in Figure 3a. A transient positive current
peak caused by the polarization switching is clearly seen in the time region from ∆t = 16 to
46 µs with the maximum at ∆t = 33 µs.
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Figure 3. Time (∆t) dependences of (a) voltage (red) and current (blue) between two electrodes on
the crystal surfaces, and (b) FWHM along Qr (wr) (square) and Qv at the intensity maximum (circle)
of the 006 Bragg peak in the time-resolved XRD for average structure under AC field. Red and blue
dashed lines indicate times when the voltage becomes zero at ∆t = 0 and the current becomes the
maximum at ∆t = 33 µs, respectively.
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The time dependences of the FWHM along Qr (wr) and the Qv position at the intensity
maximum were obtained by least-squares fitting using a pseudo-Voigt function as shown
in Figure 3b. The rhombohedral crystal with a multi-domain structure consisting of four
domains with the polarization along [11 1], [111], [111], and [111] at ∆t = −34 µs after
poling under a negative electric field antiparallel to [001]. wr decreased and Qv increased
from ∆t = −34 to 6 µs while changing the field (voltage) from a negative to a positive value.
The peak sharpening was caused by the easing of the lattice strain, and the relaxation of
the mismatch in boundaries between the ferroelectric domains, accompanied by decreases
in polarization. The increase in Qv was caused by a piezoelectric tensile lattice strain with
the contraction of the rhombohedral lattice constant a along [001]. When the polarization
switching started at ∆t = 6 µs, wr increased and Qv decreased with the increase in the
polarization switching current. After wr and the polarization switching current reached
their maxima at ∆t = 33 µs, wr and Qv decreased with the decrease in polarization switching
current. The peak broadening was caused by the increase in crystal mosaicity, accompanied
by nucleation, and the growth of the polarization-reversed ferroelectric domains. The
decrease in Qv was caused by a ferroelectric polarization switch with the elongation of the
rhombohedral lattice constant a along [001]. The time dependences of wr and Qv of the 006
Bragg peak under an alternating electric field were basically the same as those previously
observed in PZN-4.5PT [25].

3.2. Transient Local Structure under AC Field

Figure 4a,b shows the time dependences in the Qh and Qv one-dimensional profiles
of the 002 Bragg peak through the intensity maxima, respectively, which were diffracted
from a local area on the crystal surface at z = 0.0 µm, as shown in the experimental layout
in Figure 1b. The Qh is a reciprocal space coordinate perpendicular to both the crystal
rotation ω-axis, and [001] parallel to the electric field (Figure 1b), where the scattering
vector length is Q =

√
Qh

2 + Qv2 = 4π sin θ/λ = 2π/d. The corresponding Qh and Qv
profiles at z = 5.0 and 10.0 µm are also shown in Figure 4c–f. Unlike the Bragg profiles of the
whole crystal in Figure 2, those with local areas on the crystal surface consisted of several
sharp peaks and a weak broad peak that demonstrated strong position dependences. The
results suggest that nanodomains with various lattice constants, and orientations, exist
in the measured local area, and the translation symmetry breaks into the microscale. A
few nanodomains with larger volumes in the local area contributed to strong, sharp peaks.
However, smaller nanodomains with various lattice constants and orientations contributed
to a weak broad peak. The average intensity distributions obtained by averaging the
intensity distributions through z = 0–10 µm displayed a near single-peak shape, consistent
with the Bragg peak shape of the whole crystal, as shown in Figure 2.

The time dependences of the voltage and current between the two electrodes on the
crystal surfaces, as monitored by a digital oscilloscope from ∆t =−20 to 100 µs, are shown in
Figure 5a. A transient positive current peak caused by the polarization switching is clearly
seen with its maximum at ∆t = 24 µs. The complicated time and position dependences
of the 002 Bragg intensity distributions are shown in Figure 4. However, the intensity
distributions were apparently different in three time-regions, before, during, and after
the polarization switching. The start and finishing times of the polarization switching,
confirmed by the intensity distributions, seemed to depend on the local location. We
attributed this to the Bragg peak broadening during the polarization switching of the
average structure, as shown in Figures 2a and 3b. After the polarization, the switching
finished at around ∆t = 60 µs, and the dynamic intensity redistributions were attributed to
the reorientations of the nanodomains.



Crystals 2021, 11, 1419 6 of 11

Crystals 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

vector length is 𝑄 = 𝑄 + 𝑄 = 4𝜋 sin 𝜃 𝜆⁄ = 2𝜋 𝑑⁄ . The corresponding Qh and Qv pro-
files at z = 5.0 and 10.0 μm are also shown in Figure 4c–f. Unlike the Bragg profiles of the 
whole crystal in Figure 2, those with local areas on the crystal surface consisted of several 
sharp peaks and a weak broad peak that demonstrated strong position dependences. The 
results suggest that nanodomains with various lattice constants, and orientations, exist in 
the measured local area, and the translation symmetry breaks into the microscale. A few 
nanodomains with larger volumes in the local area contributed to strong, sharp peaks. 
However, smaller nanodomains with various lattice constants and orientations contrib-
uted to a weak broad peak. The average intensity distributions obtained by averaging the 
intensity distributions through z = 0 − 10 μm displayed a near single-peak shape, con-
sistent with the Bragg peak shape of the whole crystal, as shown in Figure 2. 

 
Figure 4. Time (∆t) dependences of Qh and Qv one-dimensional profiles of the 002 Bragg peak
through the intensity maxima at z = (a,b) 0.0, (c,d) 5.0, and (e,f) 10.0 µm in the time-resolved
nanobeam XRD for local structure under AC field. Profiles before, during, and after polarization
switching are colored in red, green, and blue, respectively.

The time dependences of the averaged Qh and Qv in the two-dimensional intensity
distributions, calculated by 〈Qh〉 = ∑

i
Qhi Ii/ ∑

i
Ii and 〈Qv〉 = ∑

i
Qvi Ii/ ∑

i
Ii at each local

location, are shown in Figure 5b,c, respectively. The 〈Qh〉 was shifted to the positive side
with the progression of the switching polarization. The time dependence of 〈Qh〉was likely
caused by the switching of the rhombohedral lattice angle α from 90 − ∆α to 90 + ∆α (◦)
(∆α = 0.08◦), accompanied with the polarization switching. Such time dependence is not
observed in the Bragg peak of the average structure, as shown in Figure 2a, because of
its multi-domain structure. The rhombohedral multi-domain crystal poled along [001]
formed a domain structure consisting of four domains with the polarization along [111],
[111], [111], and [111]. The time dependence of 〈Qv〉 is basically same as that of Qv at the
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intensity maximum of the average structure, as shown in Figure 3b. Both the 〈Qh〉 and
〈Qv〉 under the AC field shared certain position dependences, forming the heterogeneous
structure, which consisted of nanodomains with various lattice constants and orientations.
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respectively.

3.3. Static Local Structure under DC Field

Figure 6a,b shows, respectively, both the DC field dependences of the Qh and Qv
one-dimensional profiles of the 002 Bragg peak through the intensity maxima, which were
diffracted from a local area on the crystal surface at z = 0.0 µm in the experimental layout
in Figure 1b. The corresponding Qh and Qv profiles at z = 5.0 and 10.0 µm are also shown
in Figure 6c–f. The DC field was changed from E = −8.0 to 8.0 kV/cm (−80 to 80 V in
voltage). The field dependences of 〈Qh〉 and 〈Qv〉 from E = −2.0 to 8.0 kV/cm at each
local location are shown in Figure 7a,b, respectively. Discontinuous peak shifts along Qh
with intensity redistributions were observed between E = 2 and 3 kV/cm (20 and 30 V in
voltage). This behavior is explained by the switching of the rhombohedral lattice angle
α from 90 − ∆α to 90 + ∆α (◦) (∆α = 0.08◦), accompanied by the polarization switching,
and the redistribution of the polar nanodomains with a heterogeneous structure. The
moment-to-moment change in 〈Qh〉, due to the discontinuous lattice deformation, was
detected in the time-resolved nanobeam XRD under AC field, as shown in Figure 5b. The
DC field dependences of 〈Qv〉 were consistent with the time dependence of 〈Qv〉 under
the AC field, as shown in Figure 5c. The field-induced tensile lattice strain calculated from



Crystals 2021, 11, 1419 8 of 11

〈Qv〉 was s = 1.3 × 10−3 at E = 8.0 kV/cm. The piezoelectric constant estimated from the
tensile lattice strain was d = s/E = 1.6 × 103 pC/N, which was consistent with the bulk
piezoelectric constant. While both 〈Qh〉 and 〈Qv〉 were under the zero and DC fields, some
position dependences were observed, resulting in the heterogeneous structure consisting
of nanodomains with various lattice constants and orientations.
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4. Discussion

The time dependences of the 006 Bragg peak under the AC field measured for a whole
crystal of PMN-30PT (Figures 2 and 3b) are similar to those of PZN-4.5PT reported previ-
ously [25]. It is expected that PMN-30PT also exhibits an intersite rotational displacement
of disordered Pb atoms under the AC field, which has been found in PZN-4.5PT. The
time-resolved crystal structure analysis of PMN-30PT to reveal the Pb atomic motion under
the AC field is progressing and will be reported shortly.

The time dependences of the Bragg intensity distribution, under the AC field, mea-
sured for local areas of PMN-30PT (Figure 4), are quite different from those measured for a
whole crystal (Figure 2), and show strong position dependences. The results demonstrate
that the crystal has a heterogeneous structure consisting of nanodomains with various
lattice constants, and orientations exhibiting different electric field responses as the transla-
tion symmetry is broken down from nano to microscale pieces. The nano-to-microscale
heterogeneous crystal structure, with its widely and continuously distributed local lattice
strain, would enable the enormous electric field-induced lattice strain and fatigue-free
polarization switching.

Changes in the 〈Qh〉 of the Bragg intensity distribution measured for local areas
of PMN-30PT under the AC field (Figure 5b) are smaller than those under the DC field
(Figure 7b). Instead, the dynamic intensity redistributions attributed to reorientations
of the nanodomains, were observed in the time-resolved nanobeam XRD, under the AC
field (Figure 4). Therefore, the shear lattice strain switching the α angle accompanied with
the polarization switching is gradually increased with reorientations of the nanodomains.
The dynamic motion of the nanodomains in the heterogeneous structure relaxes a lattice
mismatch of the ferroelectric domains, and should contribute to the enormous electric field
induced lattice strain, and the fatigue-free polarization switching.

5. Conclusions

The time-resolved nanobeam XRD revealed the time and position dependences of
the local lattice strain on a relaxor ferroelectric single crystal of PMN-30PT mechanically
vibrating and alternately switching its polarization under an alternating electric field. A
heterogeneous structure consisting of nanodomains with various lattice constants and
orientations exhibiting different electric field responses, and breaking the translation sym-
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metry, was detected. The enormous piezoelectric lattice strain and fatigue-free ferroelectric
polarization switching could be caused by the field-induced intersite rotational displace-
ment of disordered Pb atoms, along with the dynamic motion of the nanodomains in the
heterogeneous structure.
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