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Abstract: The effective mechanical properties of a polycrystal depend directly on the single-crystal
properties of each grain and its crystallographic orientation with respect to the load axis. While the
micromechanical approach has been used quite extensively to study the influence of grain shape and
crystallographic texture on the resulting mechanical behavior of a polycrystal, the influence of the
crystal plasticity parameters, which describe the constitutive behavior of the single crystal, requires to
be investigated systemically because, typically, these parameters are fitted to describe a given material
behavior. In the current research, this gap is filled by systemically studying the effect of changes in
crystal plasticity parameters on the effective mechanical properties of polycrystals. The numerical
model employed here consists of a representative volume element of 100 grains, and the material
properties are described by using a non-local crystal plasticity model. A proper homogenization
technique was used to homogenize the micromechanical results to an effective macroscopic material
response. The equivalent stress versus equivalent plastic strain curve was obtained numerically by
introducing the Voce-type hardening law, mimicking the material behavior in uniaxial tensile tests.
The four parameters of the Voce-type hardening law were fitted to the macroscopic stress-strain
curves, and the correlation between the crystal plasticity parameters and the Voce parameters has
been studied, which is an efficient way to study the influence of microscopic material descriptions on
the macroscopic behavior of polycrystals.

Keywords: polycrystals; non-local crystal plasticity; homogenization method; Voce-type hardening
law; micromechanical analysis

1. Introduction

Micromechanical analysis is the study of heterogeneous materials at the level of the
individual components making up these materials. The main goal of micromechanical
modeling is to build a bridge between large-scale modeling and micromechanical phenom-
ena [1]. Heterogeneous materials have, due to the presence of various phases, different
physical and mechanical properties, leading to anisotropic material behavior. Therefore,
micromechanical analyses are used to predict the macroscopic anisotropic behavior of
these heterogeneous materials based on each phase’s material geometry and properties.
This procedure is known as homogenization [2–6], which aims at deriving a mean-field
description of the macroscopic material behavior from microstructural information [7].
The homogenization technique was applied to analyze macroscopic responses of textured
polycrystals [3], composites [4,6], and the calibration of the yield surface of different
steels [5].

From a materials science point of view, establishing a link between microstructure
features and mechanical properties is crucial to obtain an accurate mechanical response
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of the material on the macroscopic level. One key principle of micromechanical mod-
eling is generating a representative volume element (RVE) that can capture important
microstructure features such as grain size and grain shape distribution [6]. Among the
various existing techniques, developing an RVE based on the weighted Voronoi tessellation
concept is the most favorable technique due to the least input parameters [8–11]. Based
on this concept, an artificial microstructure model is developed here to predict the strain
hardening behavior of DP-Steel [8], a micromorphology model is expanded under heat
treatment [9], and a two-phase composite is characterized [10].

Due to advances in computational power, the crystal plasticity finite element (CPFE)
approach has successfully been applied to simulate the plastic deformation behavior of
various crystalline materials in recent decades [12], from single crystal [13], polycrystal [14]
to multicrystalline materials [15]. The most significant benefit of using the CPFE method is
that it can consider the anisotropy in the individual grains’ deformation behavior, which
is a consequence of their crystallographic orientations with respect to the main loading
axis. From a mechanical point of view, mesoscale approaches to the multiscale modeling
of granular materials are fundamentally based on the development of crystal plasticity
theories [16,17]. A universal characteristic of these theories is the explicit modeling of slip
systems within the crystal lattice to constitute a model that naturally accounts for plastic slip
and dislocation motion and their interaction. Even though the widespread implementation
of a dislocation-based multiscale plasticity model is generally rather limited due to the
tremendous need for computational resources, crystal plasticity theories provide a robust
theoretical framework leading to the development of better phenomenological plasticity
models [18,19].

Although the influence of deformation gradients has been ignored in some of the
proposed crystal plasticity theories, size effects are crucial in some applications based on
experimental results, such as polycrystalline nickel bending [20], single-crystal copper, and
single-crystal aluminum microbending experiments [21,22], and polycrystalline copper
twisting [23]. Advanced non-local constitutive models have been developed to consider
the effect of the deformation gradient, which is responsible for different types of size effects,
such as bending and twisting of a polycrystalline. It mostly occurs at grain boundaries
between polycrystal grains whose misorientations cause a large deformation mismatch
in their behavior. Hence, the produced internal stresses due to mechanical loads are
characterized by non-local plasticity models. Most of these constituent models are derived
from the principle of the geometrically necessary dislocation (GND) density tensor [24–26].

On the one hand, the mechanical response of polycrystalline materials using non-local
crystal plasticity theory is very time-consuming and computationally ineffective. On the
other hand, the large parameter space for the non-local crystal plasticity model makes it
difficult to parametrize all the parameters [27]. Therefore, it will be beneficial to simulate the
material response by using empirical hardening functions [28], which have the advantage
of consisting of just a few parameters while precisely capturing the hardening behavior of
the material during plastic deformation. For instance, the hardening behavior of single-
crystalline niobium was simulated by finding a proper model which could identify crystal
plasticity parameters that matched well with experimental results [29]. Many classical work
hardening laws were used to describe the mechanical behavior of different materials [30].
Based on experimental data, all parameters defined in the different work hardening laws
have been identified precisely.

In the present study, micromechanical analyses are conducted by using the homoge-
nization method and creating an RVE to investigate the effect of non-local crystal plasticity
parameters on the deformation behavior of a polycrystalline solid. Then the relation of
non-local crystal plasticity parameters with macroscopic hardening parameters has been
obtained through a scale-bridging approach to represent the macroscopic response of
the material.

In Section 2, a numerical model consisting of 100 grains is developed to simulate
the polycrystals, and the implemented non-local crystal plasticity model describes their
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behavior. The homogenization technique is introduced to produce periodic boundary
conditions and to derive the stresses and strains at the macroscopic level. In the last part of
Section 2, a 4-parameter Voce-type hardening law is proposed to mimic the plastic behavior
of the polycrystals by the non-local crystal plasticity model. In Section 3, the influence of
the non-local crystal plasticity parameters is studied by changing them in a range, and the
trends of the proposed hardening law parameters are obtained by changing the non-local
crystal plasticity parameters.

2. Numerical Model
2.1. RVE Generation

For this study, quasi-2D RVEs are created using the dynamic microstructure generator
(DMG) method [31–33], as depicted in Figure 1. This in-house software couples a particle
simulation method with a radical Voronoi tessellation algorithm. As input parameters, it
requires the target grain size distribution determined via a log-normal distribution in the
form of the average grain diameter and the standard deviation. The number and size of
spheres are calculated to mimic the targeted grain size distribution with the prescribed
distribution parameters. In the next step, the spheres are randomly placed into a large
finite volume, which is compressed. During this process, the spheres are allowed to move
freely under a repulsive potential to avoid overlapping. The updated sphere positions and
the diameter of every sphere from all time steps are then forwarded to a radical Voronoi
tessellation algorithm from the open-source software Voro++ [33] to create the RVE. The
resulting grain size distribution of the RVE obtained from each time step is then compared
with the target distribution, and the RVE with the minimum difference is selected. The
geometry of the 2D RVE is then extruded for 1% of a side length and meshed with 8-node
linear brick elements (C3D8) by using CUBIT [34].
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Based on the commercial finite element packaging software, ABAQUS [35], and
implementing many subroutines, the material’s mechanical response in terms of stress-
strain curves is obtained.

From mesh sensitivity analyses performed on the generated RVE consisting of 100 grains
with an average grain size of 50 µm and a standard deviation of 0.1 µm, the optimum mesh
size of approximately 0.003 mm is adopted, which totally included 9796 elements. The
100-grain RVE is meshed with 8-node linear brick elements (C3D8) and has a thickness of one
element with the size of 0.002 mm. Therefore, the simulations are assumed to be quasi-2D
under plane stress conditions.

2.2. Nonlocal Crystal Plasticity Model

The material considered in this study is Ferrite, which is categorized as a body-
centered cubic (BCC) form of iron, and its behavior is characterized by a non-local crystal
plasticity model developed by a user-defined material subroutine (UMAT) in ABAQUS.
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With the assumption of large displacements, the total deformation gradient tensor, F,
is separated by multiplicative decomposition as

F = FeFp, (1)

where Fe and Fp are the elastic and the plastic part of the deformation gradient tensor. The
rate of plastic deformation is related to the plastic part of the deformation gradient tensor
as below .

F = LpFp, (2)

where Lp is the plastic part of the gradient velocity tensor and in the case of dislocation
slip as the only deformation process, results in

Lp = ∑NS
α=1

.
γαM̃α, (3)

where
.
γα is the slip rate and M̃α = dα

⊗
nα defines the Schmid tensor in the intermediate

configuration for the slip system α, which is defined by the slip direction dα and the slip
plane normal nα. The symbol ⊗ denotes the dyadic product of two vectors resulting in a
second-rank tensor. N counts the total number of slip systems. Based on large deformation
theory and by introducing the stiffness tensor C̃, the elastic response can be formulated as

S̃ =
1
2

C̃(F
eT

Fe−I), (4)

where S̃ is the second Piola–Kirchhoff stress tensor in the intermediate configuration. The
Cauchy stress in the current configuration is defined as

σ =
1

detFe FeS̃F
eT

, (5)

The plastic deformation mechanism here is governed by the slip mechanism where
dislocations slip in well-designed slip systems. In the plastic regime, the flow rule and the
strain hardening law are defined as below:

.
γα =

.
γ0

∣∣∣∣∣τα+τGNDk
α

τ̂α+τ̂
GNDi
α

∣∣∣∣∣
p1

sign
(
τα + τGNDk

α

)
, (6)

.
τ̂α = ∑NS

β=1 h0χαβ

(
1− τ̂α
τ̂sat

)p2 ∣∣ .
γβ
∣∣, (7)

where
.
γ0 is the reference shear rate, p1 the inverse value of the strain rate sensitivity, h0 the

initial hardening rate, τ̂sat the saturation slip resistance, and p2 a fitting parameter. χαβ is
the cross-hardening matrix between crystallographic mobile dislocations and super GNDs.

The flow rule described in Equation (6) includes two back stresses, τ̂GNDi
α and τGNDk

α

which define the additional hardening caused by GNDs due to strain gradients [26].
This additional hardening can be separated into isotropic (τ̂GNDi

α ) and kinematic (τGNDk
α )

hardening contributions.
In the case of treating Fp as additional degree of freedom (DOF) to consider the non-

local effect, [36,37], it is possible to calculate the dislocation density tensor in the reference
configuration as following

G = −(F p ×∇
)
. (8)

The net Burgers vector b can be determined with the help of the dislocation density
tensor for an arbitrary unit area with a normal vector n, [38] as

b = Gn. (9)
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The dislocation density tensor is projected to the global Cartesian coordinates of the
system, and then geometrically necessary super dislocations are defined individually. Then,
the far-field stress of the crystallographic GND population can be described with good
accuracy [26]. In this way, the GND density tensor is separated into nine independent parts

∑9
α=1 ραdα ⊗ tα =

G
b

, (10)

where dα and tα are permutations of the Cartesian unit vectors and b is the norm of the
Burgers vector. ρα is named as super GND density, of which the three first densities belong
to the screw super GND densities, and the last six ones represent the edge super GND
densities.

Due to strong cross hardening produced by GNDs, the additional passing stress has
to be considered [39] for mobile dislocations caused by super GNDs

τ̂GNDi
α = c1µb

√
∑9

β=1 χ
GND
αβ

∣∣ρβ∣∣, (11)

where c1 is a geometrical factor [26] and µ is the shear modulus. With the assumption of
small elastic strains, the resolved shear stress, τα, and the back stress, τGND

α , within the
intermediate configuration are written as

τα= S̃M̃α, (12)

τ
GNDk
α = S̃

GND
M̃α, (13)

where S̃
GND

is the internal stress in the intermediate configurations [26].
In the present study, the parameters c1, τ0,

.
γ0, p2, τ̂sat and h0 are changed in a specified

range, and their influences are evaluated on the equivalent stress-equivalent plastic strain
diagram. The equivalent stress is defined according to the von Mises yield criterion, which
in a Cartesian coordinate system (along x, y, and z-direction) is defined as

σeq =

√
1
2

[(
σxx − σyy

)2
+
(
σyy − σzz

)2
+ (σzz − σxx)

2 + 6
(

τ2
xy + τ2

yz + τ2
zx

)]
, (14)

and the equivalent plastic strain is written in a manner consistent with the equivalent von
Mises stress as follows

ε
p
eq =

√
2

3

√[(
ε

p
xx − ε

p
yy

)2
+
(
ε

p
yy − ε

p
zz

)2
+
(
ε

p
zz − ε

p
xx

)2
+

3
2

(
ε

p
xy2 + ε

p
yz2 + ε

p
zx2
)]

. (15)

2.3. Homogenization Technique

In simulations, to preserve the periodicity during deformation, periodic boundary con-
ditions are applied [8] such that from one side of the model, the DOFs of the selected nodes
are coupled to those of their counterparts on the opposite side, and due to cross-contraction
effects, lateral shrinkage is not constrained. The full description of the implemented
formulations of the periodic boundary condition applied in this work can be found in [31].

Periodic boundary conditions in the Cartesian coordinate system have been used for
displacement and DOF for the non-local effect, i.e., the plastic deformation gradient. In
order to apply periodic boundary conditions, opposite surfaces must have exactly the same
surface mesh, which requires a well-controlled meshing process.

The macroscopic loading condition of the RVE is quantified by transferring the me-
chanical boundary conditions of the model into macroscopic stress- and strain tensors.
Therefore, to implement periodic boundary conditions, the deformation state is applied
to the four reference nodes V1, V2, V4, and H1 as visualized in Figure 2. We constrained
displacements along x, y, and z directions at V1 in order to hinder rigid body motion and
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along x and y directions at H1. Displacement along y and x directions, respectively, are
fixed at nodes V2 and V4, together with rotation around z-axis.
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Since the specified boundary nodes of the model track the kinetics of these reference
nodes, the macroscopic strain tensor can easily be calculated from the nodal displacements
of these nodes [31]. The mathematical description of the macroscopic strain tensor with
the assumption of small macroscopic deformations and its corresponding macroscopic
stress tensor has been formulated from the nodal displacements unode

i and the reaction
force vectors (F node) of these four nodes, respectively [5]. Due to the periodic coupling, the
reaction forces at these four nodes are the resultant of all forces on the considered surface
representing directly the resultant of all forces needed to determine the stress tensor.

εRVE =


u

V2
1

∆x
1
2

(
u

V4
1

∆y + u
V2
2

∆x

)
1
2

(
u

H1
1

∆z + u
V2
3

∆x

)
1
2

(
u

V4
1

∆y + u
V2
2

∆x

)
u

V4
2

∆y
1
2

(
u

H1
2

∆z + u
V4
3

∆y

)
1
2

(
u

H1
1

∆z + u
V2
3

∆x

)
1
2

(
u

H1
2

∆z + u
V4
3

∆y

)
u

H1
3

∆z

 (16)

where ∆x, ∆y, and ∆z are the periodic box dimensions in the global Cartesian coordinate
system. The macroscopic stress tensor is calculated by using the reaction force vectors
at the four reference nodes and the current nodal position vectors xnode of the reference
nodes [5] as follows:

σ =
1

VRVE
sym

[(
xV4−xV1

)⊗
FV4 +

(
xV2−xV1

)⊗
FV2 +

(
xH1−xV1

)⊗
FH1

]
, (17)

where the symmetric tensor is defined as sym = 1/2[A + AT] for tensor A and its transposed AT.

2.4. Empirical Hardening Relation

An empirical relation is proposed to mimic the work hardening behavior of the
considered material in the present study,. From the many available empirical and mathe-
matical descriptions of the strain hardening phenomenon, a Voce-type hardening relation
is selected to project the strain hardening of the Ferrite as follows.

σ
(
εp
)
= a−

(
a− σy

)
exp

(
−bεp

c), (18)

where σ
(
εp
)

represents the equivalent stress and εp is the equivalent plastic strain. a, b
and c are hardening parameters, and σy represents the yield limit. The most influence of
parameter a is on the slope of the hardening during plastic deformation and an increase of
a results in a higher level of equivalent stress. Parameter b changes the hardening slope
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with a higher rate compared to a. Parameter c affects both the yield limit and the hardening
behavior such that higher values of c lead to a lower quantity for the yield limit and to a
change of the hardening behavior from exponential to linear.

The fitting procedure of the hardening relation defined in Equation (18) is described
in a MATLAB environment [40]. The “fit” function has been chosen from MATLAB tools
and uses the hardening function as a guess function; then, its parameters are identified by
defining a lower and upper bound for parameters and making an initial guess.

The curve-fitting toolbox software uses the “nonlinear least-squares” formulation to
fit a nonlinear model to data. A nonlinear model is defined as a nonlinear equation in the
coefficients or a combination of linear and nonlinear in the coefficients.

In matrix form, nonlinear models are given by the formula

y = f(x, λ) + ε, (19)

where y is an n-by-1 vector of responses, f is a function of λ and x, λ is an m-by-1 vector of
coefficients, x is the n-by-m design matrix for the model, and ε is an n-by-1 vector of errors.

Since estimating the coefficients using simple matrix techniques is difficult in nonlinear
models, an iterative approach is required [40]. In the following fitted results, the error is
less than 0.1%.

3. Results and Discussion

The considered non-local crystal plasticity parameters are changed in a specific and
physically meaningful range to study their influence on the hardening behavior of the
material and their relations with the hardening parameters defined in Equation (18). Based
on the macroscopic response using the crystal plasticity model, the hardening parameters
are obtained by the nonlinear least-squares method.

The default values of the parameters are listed in Table 1, and to study the effect of
each parameter on the material response, the corresponding parameter is changed, and the
others will keep unchanged and equal to the default value.

Table 1. The default value of considered material parameters.

τ0.
(MPa)

^
τsat

(MPa)
h0

(MPa)
p2
(−−−)

.
γ0
(−−−)

c1
(−−−)

52 400 500 10.7 0.001 0.01

The results of changing the initial critical resolved shear stress, τ0, on the equivalent,
stress-equivalent plastic strain curve are shown in Figure 3. Parameter τ0 has been varied in
the range of 50–70 MPa with steps of 2 MPa. It is evident that, with the increase in τ0, both
the initial yield stress and the stresses during the hardening of the material will increase
with approximately the same hardening slope. As a whole, changing the τ0 parameter
will affect the overall response of the material, improve the mechanical capability of the
considered material, and shift the overall response to the higher stress level. Furthermore,
based on the hardening function and using the fitting procedure, the material’s behavior is
identified as largely comparable with the equivalent stress-equivalent plastic strain graphs.

Figure 4 visualizes the trend of changes in identified Voce-type hardening parameters
with different τ0 values. An increase of the τ0 in the considered range leads to a rising
trend in both a and σy although the trend is different as a nonlinear and linear function,
respectively (Figure 4a,b). A nonlinear trend is observed in b and c parameters by an
increase in the τ0. Visibly, the wide range of change in parameters a and b by varying the τ0
is highlighting the mechanical behavior observed in Figure 3 that the hardening behavior
has been most affected.
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In the following, the results of changing the saturation resolved shear stress, τ̂sat,
on the equivalent, stress-equivalent plastic strains are shown. Here, parameter τ̂sat has
been changed in the range of 300–600 MPa with steps of 50 MPa, of which the results are
visualized in Figure 5. Visibly, with an increase in τ̂sat, stresses during material hardening
will increase, and the initial yield stress remains unchanged. In addition, the hardening
slope of the equivalent stress-plastic strain curves goes up.

Crystals 2021, 11, x FOR PEER REVIEW 9 of 18 
 

 

 
(c) (d) 

Figure 4. Variation of hardening parameters with change in τ0, (a) a, (b) σy, (c) b and (d) c. 

In the following, the results of changing the saturation resolved shear stress, τsat, on 
the equivalent, stress-equivalent plastic strains are shown. Here, parameter τsat has been 
changed in the range of 300–600 MPa with steps of 50 MPa, of which the results are visu-
alized in Figure 5. Visibly, with an increase in τsat, stresses during material hardening will 
increase, and the initial yield stress remains unchanged. In addition, the hardening slope 
of the equivalent stress-plastic strain curves goes up.  

The equivalent stress-equivalent plastic strain curves represented in Figure 5 are fit-
ted well, using the Voce-type hardening law with numerical results based on the crystal 
plasticity model. The trend of change in the Voce-type hardening law parameters with 
different saturation resolved shear stresses are visualized in Figure 6, where a and σy de-
crease and b and c increase while the trend for the two latter parameters is quadratic in 
nature. The yield limit, σy  in the Voce-type hardening law is mostly unaffected by a 
change in the saturation resolved shear stress as also has been represented in Figure 5. 

 
Figure 5. Comparison between numerical results and fitted curves with change in τsat. Figure 5. Comparison between numerical results and fitted curves with change in τ̂sat.

The equivalent stress-equivalent plastic strain curves represented in Figure 5 are
fitted well, using the Voce-type hardening law with numerical results based on the crystal
plasticity model. The trend of change in the Voce-type hardening law parameters with
different saturation resolved shear stresses are visualized in Figure 6, where a and σy
decrease and b and c increase while the trend for the two latter parameters is quadratic in
nature. The yield limit, σy in the Voce-type hardening law is mostly unaffected by a change
in the saturation resolved shear stress as also has been represented in Figure 5.

In the following, the results of changing the initial hardening rate, h0, from 300
to 600 MPa on equivalent stress-equivalent plastic strain curves are depicted in Figure 7.
As the results highlight, with an increase in h0, stresses during the hardening of the
material will increase approximately with the same slope, and the initial yield stress
remains unchanged. Figure 7 also emphasizes that the proposed hardening function can
describe the material response accurately.

Adopting different h0 will cause various trends in the hardening parameters, see
Figure 8. With a change in the h0 in the defined range, a reduces at the initial level and
remains constant for the larger h0 as represented in Figure 6a. On the other hand, σy
illustrates a different behavior such that a very small increase occurs and then it decreases,
mimicking a quadratic function. b and c hardening parameters both go up in quadratic form
by increasing h0 (see Figure 8b–d). Among the Voce-type hardening parameters, σy and c
are not changing significantly by various initial hardening rates. These two parameters are
mostly affecting the yield limit, as it is verifiable in Figure 7.
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Another crystal plasticity parameter and its influence that was studied is the exponent
of strain hardening, p2. It is changed in the range of 8–12 with steps of 0.5, and the results
are shown in Figure 9 together with the fitted behavior using hardening parameters. As
p2 increases, stress during hardening of the material decreases, but the initial yield stress
remains unchanged, and the hardening slope decreases to some extent. Figure 10 shows
the trend of changes in identified hardening parameters with different p2. With an increase
in p2, a and σy go up exponentially and like a quadratic function, respectively, but b and c
diminish linearly. By adopting different values of p2, in the Voce-type hardening law, a, c
and σy will not vary drastically, as the yield limit was unaffected and the hardening rate
did not change significantly compared to the change in other crystal plasticity parameters.
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The next crystal plasticity parameter in this study is the reference shear rate,
.
γ0. It

has been changed in the range of 0.001–0.005 with steps of 0.0005, of which the results
are visualized in Figure 11. It is seen that with an increase in

.
γ0, both, the initial yield

limit and the stresses during the hardening of the material, decrease, but the reduction
trend is not significant, and also the hardening slope remains unchanged. Therefore, it can
be concluded that the overall behavior is not sensitive to a change in the reference shear
rates. On the other hand, the hardening parameters could show results coming close to the
numerical results depicted in Figure 11, and the trend of change in these parameters with
different reference shear rates is visualized in Figure 12, where a and σy decrease and b and
c increase while the trend for all them is quadratic. By changing the reference shear rate,
the macroscopic hardening parameters do not change in a wide range, as predicted from
the stress-strain curve in Figure 11.
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The influence of both, saturating critical resolved shear stress, τ̂sat, and geometrical
factor, c1, was investigated on the equivalent stress versus equivalent plastic strain of the
considered material. Therefore, their values are changed, and the material response is
obtained, as illustrated in Figure 13. As τ̂sat increases, stresses during the hardening of
the material will increase, and the initial yield stress remains unchanged. In addition, the
hardening slope of the equivalent stress-equivalent plastic strain curves increased with
the value of τ̂sat. On the other hand, adopting higher quantities for the geometrical factor
results in an increase in the initial yield limit, the stresses during the hardening of the
material, and the slope of the hardening behavior.

The trend of variation in the identified hardening parameters due to the simultaneous
change of both τ̂sat and c1 parameters is visualized in Figure 14. It is seen that higher
geometrical factors and lower values of saturating shear stress lead to an increase in the
hardening parameter. Therefore, a is very sensitive to a higher contribution of c1 and lower
quantities of τ̂sat. On the contrary, variation of the other hardening parameters, σy, b and c,
is mostly affected by lower c1 and higher τ̂sat.
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Figure 15 visualizes a heatmap revealing the correlation between the crystal plasticity
parameters and the Voce-type hardening parameters. The light yellow and dark blue colors
represent the positive and negative linear relation between these parameters. The heatmap
highlights that almost all crystal plasticity parameters have a positive/negative linear
correlation with the yield limit, σy. Among all Voce-type hardening parameters, a has the
least linear correlation with the crystal plasticity parameters.
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The represented heatmap leads to a proper understanding of the correlation between
the crystal plasticity parameters and the macroscopic material behavior, which improves
the fitting of crystal plasticity parameters to experimental stress-strain curves.

4. Conclusions

This study investigates the effect of different non-local crystal plasticity parameters
on polycrystals’ resulting macroscopic equivalent stress-equivalent plastic strain curves.
The non-local crystal plasticity parameters are changed in a specific range that is physically
meaningful. The macroscopic behavior of the material is fitted by an empirical strain
hardening relation using the nonlinear least-squares method, and the trend of variations in
the hardening parameters induced by a change in material properties has been obtained.

The crystal plasticity properties that varied in this study include the initial critical
resolved shear stress, τ0, the saturation critical resolved shear stress, τ̂sat, the initial hard-
ening rate, h0, the exponent of strain hardening, p2, the reference shear rate,

.
γ0, and the

geometrical factor, c1. The influence of all these parameters on the effective stress-strain
behavior of the polycrystal has been quantified by fitting the resulting polycrystal flow
curves with a Voce-type hardening model.

Changing the τ0 parameter led to an increase in both, the initial yield limit and the
hardening rate of the polycrystal and, thus, generally to a shift in the material response
towards a higher stress level. Varying the value of h0 revealed no change in the initial yield
stress but an increase in the hardening behavior with the same slope. By increasing p2, the
initial yield stress did not change, but the hardening rate decreased significantly. Higher

.
γ0

quantities reduced both, the initial yield stress and the hardening behavior of the material,
although this reduction is very insignificant, and it can be concluded that the material
behavior is unaffected by an increase in

.
γ0 values in the defined range. It is noted here,

however, that this parameter might influence the loading rate dependence of the strength.
Results showed that, with an increase in c1, the initial yield limit and the hardening rate of
the material increased significantly.

To represent the correlation between crystal plasticity and Voce-type hardening param-
eters, a heatmap was created that indicates that all crystal plasticity parameters strongly
correlate with the yield limit and the hardening law. These partly nonlinear relationships
between crystal plasticity parameters and the global mechanical properties of polycrystals
are clarified in this work.
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