
crystals

Article

Chitosan/Selenium Nanoparticles Attenuate Diclofenac
Sodium-Induced Testicular Toxicity in Male Rats

Samy M. El-Megharbel 1,*, Fawziah A. Al-Salmi 2, Sarah Al-Harthi 1 , Khadeejah Alsolami 3

and Reham Z. Hamza 2

����������
�������

Citation: El-Megharbel, S.M.;

Al-Salmi, F.A.; Al-Harthi, S.; Alsolami,

K.; Hamza, R.Z. Chitosan/Selenium

Nanoparticles Attenuate Diclofenac

Sodium-Induced Testicular Toxicity

in Male Rats. Crystals 2021, 11, 1477.

https://doi.org/10.3390/

cryst11121477

Academic Editors: Assem Barakat

and Alexander S. Novikov

Received: 26 October 2021

Accepted: 25 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemistry Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
Sarah.alharthi@tu.edu.sa

2 Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
f.alsalmi@tu.edu.sa (F.A.A.-S.); Reham.z@tu.edu.sa (R.Z.H.)

3 Pharmacology and Toxicology Department, College of Pharmacy, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; K.alsolami@tu.edu.sa

* Correspondence: s.megherbel@tu.edu.sa

Abstract: The detrimental effect of diclofenac sodium (Diclo-Na) on male reproductive organs is
reported upon in this paper. Chitosan is a polysaccharide composed of various amounts of glu-
cosamine. Chitosan nanoparticles (CH-NPs) have attracted much attention owing to their biomedical
activity. Selenium (Se) has a vital role in nutrition, plays an important role in enhancing male re-
production, and has a wide range of free radical scavenging activities. However, the study of the
impact of chitosan nanoparticles in combination with Se (IV) (CH-NPs/Se) on male reproductive
toxicity associated with Diclo-Na administration is lacking in recent literature. The current study
assessed the ameliorative effects of complexes of CH-NPs/Se (IV) on Diclo-Na and the ways in
which they alter reproductive toxicity in male rats. Male rats were treated for 30 days successively,
either with Diclo-Na (10 mg/kg) or co-treated with a CH-NPs/Se complex (280 mg/kg). Sperm
characteristics, marker enzymes of testicular function, LH, FSH, and testosterone were evaluated in
addition to oxidative stress markers and histological alterations. CH-NPs/Se significantly alleviated
Diclo-Na-induced decline in sperm count and motility, testicular function enzymes, and levels of
LH and testosterone in serum. Additionally, CH-NPs/Se co-administration at 280 mg/Kg, inhibited
the Diclo-Na-induced decline of antioxidant enzyme activities and elevated oxidative stress indices
and reactive free radicals in testicular homogenates of male rats. CH-NPs/Se (280 mg/kg) alone
improved Diclo-Na and ameliorated histological damages in exposed rats. In conclusion, chitosan
improved testicular function in Diclo-Na-treated rats by enhancing the testosterone hormone levels,
ameliorating testicular tissue, and inhibiting markers of oxidative stress in male rats.

Keywords: male reproduction; selenium; diclofenac-sodium; oxidative stress markers; chitosan
nanoparticles

1. Introduction

Diclofenac monosodium (Diclo-Na) is a non-steroidal anti-inflammatory drug (NSAID)
that has high biological activity, is analgesic, and is a potential inhibitor of pain and
rheumatic inflammation [1]. Diclofenac is used globally for the treatment of inflammation,
pain, and degenerative joint diseases [2].

About 940 tons of Diclo-Na are consumed yearly [3]. Although Diclo-Na is an effective
anti-inflammatory drug, it has many harmful side effects that are associated with the
inhibition of prostaglandin biosynthesis. Diclo-Na is well documented to be related to the
induction of oxidative injury [4].

Previous studies have documented that Diclo-Na treatment adversely affected the re-
productive system [5]. The placental transfer of Diclo-Na has been reported previously [6].
Diclo-Na usage has been reported to cause marked reduction in testes weight and sperm
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count, with the main degeneration taking place in the histological structure of the testes [7].
The metabolism of Diclo-Na has been associated with excessive ROS production, which
induces oxidative stress and death by progressive apoptosis [8]. Hence, this study was con-
ducted with the aim of minimizing the harmful effects of Diclo-Na on the male reproductive
system.

Chitosan, an abundant natural polysaccharide, is the N-deacetylated product of chitin.
Chitosan is well studied because of its numerous features, including biocompatibility, safety,
and wide biodegradability [9]. Chitosan-based agents are active in diabetes prevention
and treatment. Chitosan was also reported to possess strong antioxidant activity relative to
pure selenite [10].

Chitosan is a polysaccharide compound composed of various amounts of glucosamine,
linked by glycosidic bonds. It is a powder derived from several types of the compound
chitin, which is widely found in the outer shells of crustacean species such as shrimps and
crabs [10].

Chitosan nanoparticles (CH-NPs) have multiple ameliorative effects, such as im-
munomodulatory effects and anticancer activities. Moreover, nanoparticles possess a
potent surface warp, which produces more decay pressure with an increment in solubil-
ity [10].

Additionally, the incorporation of active compounds that possess antioxidant agents
into nanoparticle coatings represents a novel step. CH-NPs have attracted high attention
as biomedical active compounds, as they possess a broad spectrum of biological activities,
such as immunostimulatory effects, anti-inflammatory activities, and free radicals (ROS)
scavenging activities [11].

Selenium (Se) is a trace element essential for nutrition. Se forms are present in multi-
dietary supplements [12]. Se is an essential element for the biosynthesis of several seleno-
proteins, such as glutathione peroxidase (GPx), which are mainly involved in prevention
of oxidative stress and cellular death by apoptosis. Additionally, Se is essential for biosyn-
thesis and sperm production and motility [13].

Deficiency in Se levels has been reported to be related to the fragility of sperm and
a decline in the sperm characteristics. Recently, studies have shown that Se offers high
protection against toxicity to testicular tissue sustained through food additives [14] and
reproductive toxicity from cadmium exposure [15].

Nanoparticle formulations provide stable pharmaceutical bases for enhancing the
bioavailability and therapeutic effectiveness of medication. CH-NPs have elevated immu-
nity relative to large chitosan particles. Additionally, CH-NPs possess a stronger surface
area; this produces increased solubility [16].

Several previous studies have shown that antioxidant administration can overcome
the toxic effects of drugs; in particular, an antioxidant that can be utilized is chitosan.

Recently, there has been a shortage in data on the important role that chitosan may
play in the alleviation of Diclo-Na-induced reproductive toxicity in male rats. Therefore,
the current paper reports on the important role of CH-NPs/Se as a dietary supplement for
toxicity alleviation.

2. Materials and Methods
2.1. Chemicals

Commercial chemicals were used without purification from Sigma-Aldrich. Chitosan
with a low molecular weight (60–190 kDa) and 80–85% degree of deacetylation, and
selenium tetrachloride, Se (IV) with a purity ≥ 98%. The percentage of carbon, hydrogen,
and nitrogen was measured using Vario EL Fab. CHN. The morphological surface was
estimated using a Quanta FEG 250 scanning (SEM) and transmission (TEM) electron
microscopes with 20 kV accelerating voltage, and the shapes and sizes of these particles
were visualized using JEOL JEM-1200 EX II and JEOL 100s microscopes, respectively.
Thermogravimetric analysis of the complexes was performed from room temperature to
800 ◦C using a TGA/DTA–50H Shimadzu thermal analyzer. The following were purchased
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from Sigma Chemical Co. (St. Louis, MI, USA): diclofenac sodium and ELISA kits used for
the assessment of F.S.H, L.H., and testosterone. All chemicals used for this study were of
high analytical grade.

2.2. Synthesis of Se/Chitosan

A solution of 1% acetic acid was used to dissolve chitosan, and the resulting solution
was filtered to remove impurities; we then added 2 M sodium hydroxide to the chitosan
solution and stirred for 2 h. Then, the solution was filtered and washed using distilled
water and the pH value was adjusted to 7–8. Next, the solution was frozen for 72 h. By
using thiourea, purified chitosan was used for the preparation of (CH-NPs/Se) [17,18]. A
total of 3.0 mmol of the purified chitosan was added to 140 mL of distilled water. Then, a
solution of SeCl4 (Se (IV), 0.804 mmol in 60 mL distilled water) was added dropwise to the
chitosan and the solution was stirred for 40 min to achieve homogeneity. Then, thiourea
solution (0.0901 mmol) in 100 mL distilled water was added dropwise and was cooled for
3 h. Ethanol (C2H5OH) was added to wash the (CH-NPs/Se) sample before drying for 48 h
at 75 ◦C.

2.3. Experimental Animal Care

Forty male Wistar rats (age: 6 weeks old, 160–180 g) used in this study were obtained
from the faculty of veterinary medicine, Zagazig University, Egypt. Experimental rats were
kept in plastic cages under standard conditions: temperature of 25 ± 4 ◦C and a natural
photoperiod (12 h light/12 h dark cycle). They were provided free access to drinking water
and food. The experimental procedures were executed according to the Guide for the Care
and Use of Laboratory Animals by the National Institute of Health (NIH). The experiment
was carried out according to approval number 39-31-0034 of Taif University.

2.4. Experimental Design

Experimental rats were assigned randomly into four main groups (10 rats each), and
280 mg/kg chitosan nanoparticles (CH-NPs/Se) [10] was administered following 10 mg/kg
diclofenac–sodium Diclo-Na [5] administration by oral gavage for 30 successive days. The
stock solutions of Diclo-Na and CH-NPs/Se were prepared daily before administration to
the experimental animals. Diclo-Na was administered first, followed by CH-NPs/Se within
30 min of Diclo-Na administration in the combination group. Group 1, the control group,
received distilled H2O only. Group 2 was administered Diclo-Na (10 mg/kg) only. Group
3 was administered CH-NPs/Se (280 mg/kg) only. Group 4 (Diclo-Na + CH-NPs/Se) was
co-administered Diclo-Na (10 mg/kg) and (CH-NPs/Se) (280 mg/kg), as shown in the
experimental protocol (Figure 1).

On the last day of the experiment, blood samples were withdrawn from the retro-
orbital venous plexus under light ether anesthesia. Then, the serum was obtained. The
two testes were removed gently, weighed, and processed for histopathological and further
biochemical analysis.
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Figure 1. Experimental protocol.

2.5. Sperm Characteristics and Marker Enzymes of Testicular Function Assessment

Sperm abnormalities and viability were evaluated, and then epididymal spermatozoa
were obtained and released onto the sterile glass slide. Approximately one drop of the
diluted sperm suspension was mixed with freshly prepared stain and allowed to stand at
37 ◦C. We used a Neubauer chamber with the aid of a light microscope for scoring.

2.6. Assessment of Testosterone Hormone

Testosterone levels were estimated by ELISA kits. To reduce the inter-assay variation,
all hormonal analyses were carried out simultaneously.

2.7. Assessment of Antioxidant and Oxidative Stress Indices

Small pieces of the testes were separated and homogenized using cold Tris–HCl buffer
(pH 7.4) and were centrifuged to obtain the supernatant that was used for further bio-
chemical assays. Superoxide dismutase (SOD) and catalase (CAT) activities were measured
according to Beers and Sizer [19]. Glutathione peroxidase (GPx) activities were evalu-
ated as described by Sedlak and Lindsay [20]. MDA (estimation of final marker of lipid
peroxidation ROS) was measured as described earlier by Ohkawa et al. [21].

2.8. Histological Assessment

Microscopic assessment of the testes pieces was performed by using a standard
method and staining with hematoxylin and eosin [22].
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2.9. Statistical Analysis

Data were expressed as mean ± SD. The values were analyzed using one-way ANOVA
performed using GraphPad Prism (version 8.3.0). Values were considered statistically
significant at p < 0.05 [23].

3. Results
3.1. FTIR Studies

For the chitosan derivatives, the infrared spectral data (Figure 2) showed the main
bands referring to functional groups. For chitosan, bands at 3290 cm−1 represent the
vibrational stretching motions of OH and NH2 groups. The bands at 2920 and 2885 cm−1

represent the vibrational stretching motions of C–H, as explained in the literature [24].
The vibrational stretching at 1635 cm−1 represent the amide I NH–CO group, whereas the
NH–CO amide II group appears at 1595 cm−1, with vibrational bending motion due to the
NH–CO amide group [25]. Bands in the ring structure of chitosan that appeared at 1420
and 1335 cm−1 indicate the hydroxyl and carbon–hydrogen vibrations, respectively. The
vibrational and bending motions for carbon–nitrogen of the NH–CO amide appeared at
1278 cm−1. The bands appeared between 1150 and 800 cm−1 for chitosan, indicating the
vibrational stretching of carbon–oxygen [25]. After chelation of chitosan selenium with
chitosan, a shift appeared at 3271 cm−1 for the stretching vibration of the amino group NH2,
and at 2917 cm−1 for the C–H group; bands for the NH-CO amide group I and NH-CO
amide group II appeared at 1645 and 1555 cm−1, respectively. Based on the above, the
shifts in the band positions confirmed the chelation between selenium and chitosan [26,27].
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3.2. Thermal Analysis

For the CH-NPs complex, thermal degradation began at 50 ◦C, corresponding to a
loss of moisture, which was in agreement with the literature [28]. For the chitosan complex,
a degradation peak occurred between 270 and 380 ◦C, which was attributed to the loss of
the CO2 moiety [28]. There was a 5% temperature weight loss for Se/Chitosan, as shown
in Table 1 [28]. The thermal behavior observed for the decomposition of Se/Chitosan
confirmed the product’s stability up to temperatures of 460 ◦C [28], and the final product
of the thermal decomposition for the Se/Chitosan complex was SeO2.

Table 1. Thermal behavior of chitosan and its derivatives.

Sample
Name

Weight Loss
5%

Weight Loss
10%

Weight Loss
20% Residue %

Temperature
of 1st

Derivative
Weight Loss

Chitosan 47.00 ◦C 71.98 ◦C 298.00 ◦C 21.08% 310.00 ◦C

Se/Chitosan 65.00 ◦C 93.00 ◦C 277.00 ◦C 25.95% 300.00 ◦C

3.3. XRD

For the (CH-NPs/Se) complex, XRD was carried out using an X-ray diffractome-
ter with anodic copper, K-alpha [nm] = 0.154178, and the generator settings 3 of 0 mA,
40 KV. We used the Debye–Scherer equation, B = kλ/s·cos θ, where s = crystallite size,
λ = wavelength, k = constant taken as 0.94, θ = diffraction angle (5.4947◦), and B = full
width at half maximum height (FWHM) (0.2509◦). The crystallite size of the selenium (IV)
complex was found to be 35 nm. Line broadening of the crystalline diffraction peak in
the Se(IV) complex showed higher crystallinity of crystalline sizes associated with XRD
data, ranging between 45 and 50 nm. The range of nanoparticle sizes was confirmed by
the increasing molecular weight of the precursor; the increase for particle size r can be
attributed to the larger atomic weights that enhance the merging of the crystal nucleus.
This increases the density of nucleation centers in prepared complexes [29,30].

3.4. Scanning Electron Microscopy (SEM)

Scanning electron microscopy provides valuable information regarding the physical
behavior of the selenium complex with chitosan nanoparticles (Figure 3). SEM cannot be
used as a basic method to confirm the structure of the complex, but it can be used as a
tool for identifying the presence of single components within a synthesized complex. The
SEM for the selenium–chitosan complex showed a nano feature product with small-sized
particles.
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3.5. Transmittance Electron Microscopy (TEM)

The TEM image for the CH-NPs/Se complex produced from reaction between Se (VI)
and chitosan is displayed in Figure 4. After the chelation, the particle sizes were found to
be in the range of 50 nm with black spherical spots, which was in agreement with the X-ray
powder diffraction data.
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3.6. CH-NPs/Se Complex Improved Testosterone Hormone Levels and Sperm Characteristics in
Diclo-Na Treated Rats

The novel CH-NPs/Se complex prevented the Diclo-Na-induced reduction in the
level of testosterone hormone in male rats. The administration of Diclo-Na significantly
decreased serum testosterone levels as compared with the control, although the novel CH-
NPs/Se complex significantly (p < 0.05) increased serum levels of testosterone compared to
the Diclo-Na only group (Table 1). The novel CH-NPs/Se complex elevated (p < 0.05) LH
levels and maintained FSH levels as compared with Diclo-Na alone (Table 2). Meanwhile,
sperm motility and viability were greatly improved in the group treated with a combination
of the novel CH-NPs/Se complex and Diclo-Na, as shown in Table 3.

Table 2. Effect of CH-NPs/Se on serum reproductive hormones in male rats treated with Diclo-Na.

Title Control Diclo-Na CH-NPs/Se Diclo-Na +
CH-NPs/Se

LH (ng/mL) 0.15 ± 0.01 0.10 ± 0.04 * 0.16 ± 0.03 0.13 ± 0.03 **

FSH (ng/mL) 0.80 ± 0.04 0.72 ± 0.01 0.82 ± 0.01 0.78 ± 0.01

Testosterone
(ng/mL) 2.35 ± 0.02 1.02 ± 0.08 * 2.34 ± 0.01 2.06 ± 0.05 **

Values represent mean ± SD of 10 rats. * p < 0.05 versus control; ** p < 0.05 versus Diclo-Na alone.

Table 3. Effect of CH-NPs/Se on sperm functional characteristics in male rats treated with Diclo-Na.

Title Control Diclo-Na CH-NPs/Se Diclo-Na +
CH-NPs/Se

Count 98 ± 7.01 81.65 ± 6.05 * 99.28 ± 9.06 90.85 ± 5.33 **

Viability 96.11 ± 4.26 90.11 ± 5.43 96.90 ± 3.55 93.44 ± 4.23

Motility 91.00 ± 6.44 68.98 ± 4.28 * 91.15 ± 8.08 84.87 ± 5.13 **

Abnormality 4.68 ± 0.85 8.94 ± 1.06 4.79 ± 0.87 5.74 ± 0.88
Values represent mean ± SD of 10 rats. * p < 0.05 versus control; ** p < 0.05 versus Diclo-Na alone.
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3.7. CH-NPs/Se Complex Alleviated Diclo-Na-Induced Oxidative Stress in the Testicular Tissue

Diclo-Na administration reduced (p < 0.05) antioxidant defense enzymes (CAT and
SOD activities) in testicular tissue (Figure 5). CH-NPs reversed the Diclo-Na-mediated
decrease in testicular function antioxidant markers.
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3.8. CH-NPs/Se Complex Improved Testicular Structure in Diclo-Na-Treated Rats

Diclo-Na induced a marked congestion in testicular tissue, whereas Diclo-Na and
CH-NPs/Se co-treatment ameliorated the lesions induced by Diclo-Na in treated male rats.
CH-NPs/Se evidently ameliorated Diclo-Na-induced testicular damage (Figure 6).
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Figure 6. Photomicrograph of cross-section of (A) control group showing normal histological struc-
ture of seminiferous tubule and interstitial tissue (**). The seminiferous tubules consists of normal
somatic sperms (green arrow), and spermatogenic cells (red arrow), surrounded by peritubular
myoid cells (*). (H&E ×400). (B) Photomicrograph of cross-section of experimental mice after ad-
ministration of toxic material. The seminiferous tubules contain some normal somatic sperms and
showing toxicity in the form of degenerative changes of germ cells (***), expansion of interstitial
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space (**), and disarrangement of spermatogonia with cellular debris (green arrow), with derange-
ment of normal contours of the seminiferous tubules. (H&E ×400). (C) Photomicrograph of cross-
section of chitosan/selenium-treated group showing normal histological structure of seminiferous
tubules and interstitial tissue. The seminiferous tubules consist of normal somatic sperm (**), and
spermatogenic cells (arrowhead), surrounded by peritubular myoid cells, with a collection of Leydig
cells in the intertubular area. (H&E ×400). (D) Photomicrograph of cross-section of experimental
mice after administration of toxic material showing mild toxicity in the form of disarrangement and
loss of some spermatogenic cells (arrowhead), presence of normal somatic sperm (**), thinning and
loss of interstitial tissue, and loss of peritubular myoid cells, resulting in expansion of the interstitial
space. (H&E ×400).

4. Discussion

Pharmaceuticals, including NSAIDs, are used widely as a treatment for health issues
despite the many adverse effects associated with environmental contamination [31].

This study revealed that co-treatment with a novel complex (CH-NPs/Se) inhibited
the reproductive toxicity associated with Diclo-Na in male rats. Hormonal control of
testicular function acts through the endocrine pathway [32]. The basic endocrinal factors
regulating the testicular functions are mainly testosterone, LH, and FSH in mammals [33].

Spermatogenesis is s initiated when Leydig cells are activated by LH to produce the
testosterone hormone, which conjugates with FSH [34] to enhance the spermatogenesis
of Sertoli cells [35] and facilitates the germ cells’ progression of spermatozoa and the
nourishment of new sperm [36–39].

The decline in testosterone was accompanied by a clear decline in LH in Diclo-Na-
treated rats; these are vital enzyme marker activities for spermatogenesis [5]. Meanwhile,
an increment in testosterone hormone and antioxidant enzymes in rats treated with combi-
nation of CH-NPs/Se and Diclo-Na revealed the ameliorative effects of the novel complex
(CH-NPs/Se) on Diclo-Na-induced reproductive toxicity. Therefore, CH-NPs/Se enhanced
spermatogenesis and reduced Diclo-Na-induced testicular dysfunction.

The epididymis is responsible for the storage and maturation of the spermatozoa [40].
This study demonstrated that the novel complex (CH-NPs/Se) protects against Diclo-Na-
induced reproductive toxicity and decline in the sperm characteristics.

Oxidative stress is often accompanied by the development of tissue injury. An ox-
idative burst involves a rapid increase in reactive oxygen species production, resulting
in the oxidation of a diverse range of biological molecules, such as nucleic acids, lipids,
and proteins [41]. The alleviation of this severe oxidative injury might be helpful for
both ameliorating oxidation-induced testicular damage and controlling the activation of
signaling cascades of protein kinases and cytokines [41].

From the point of view of histopathology, in the current study, the absence of essential
spermatocytes indicated the impairment of spermatogenesis due to reduced testosterone
levels induced by Diclo-Na. Moreover, the authors of [42] mentioned that treatment
of male mice with Diclo-Na impaired seminiferous tubules and induced apoptosis in
spermatogonia and spermatocytes as well as Sertoli and Leydig cells. These changes may
lead to cellular toxicity accompanied by androgen disturbance [43,44].

These degenerative structural changes in the testes were not associated with any sort
of lymphocyte aggregation and apoptosis that was induced by Diclo-Na. Interestingly,
CH-NPs/Se nearly restored normal testicular structure.

Sertoli cells play a vital role in spermatogenesis [45]. Leydig cells are the main source
of androgen production. These Sertoli cells can be affected by chemicals. Alteration in
these cellular functions may lead to changes in the hormonal balance and may induce
disturbance of male fertility [46].

Germ cells were degenerated in the Diclo-Na treated group [47]. Additionally, Diclo-
Na had damaging effects on testicular structure [48].

The chitosan-containing selenium nano-formulation had a strong ameliorative effect
on reproductive toxicity induced by Diclo-Na. The supplementation with different CH-
NPs/Se lead to significant improvements in the reproductive tissues and hormonal level
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in male rats. Chitosan/selenium nanoparticles (CH-NPs/Se) were significantly more
effective than free Se-Na and CH-NPs, as reported previously by the authors of [49], in the
prevention of oxidative stress and the improvement of antioxidant activity in testicular
tissues of male rats. These chitosan/selenium nanoparticles can be encapsulated in a wide
range of other dietary supplements to confer bioavailability to testicular tissues. Overall,
these (CH-NPs/Se) have the potential to attenuate Diclo-Na reproductive toxicity and
enhance antioxidant capacities.

5. Conclusions

In conclusion, we demonstrated that the novel CH-NPs/Se complexes had a potent
effect against Diclo-Na-induced testicular toxicity and hormonal disturbance in male rats, in
particular high oxidative stress, thus protecting against testicular necrosis and dysfunction.
The enhancement of serum antioxidant enzymes by CH-NPs/Se indicated the possible
antioxidant activity of this novel complex as an animal supplement. The antioxidant
activity of CH-NPs/Se in the testicular tissues was also studied.
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