
crystals

Article

As-Grown Domain Structure in Calcium
Orthovanadate Crystals

Ekaterina Shishkina 1 , Vladimir Yuzhakov 1, Maksim Nebogatikov 1, Elena Pelegova 1, Eduard Linker 1,
Lyudmila Ivleva 2 and Vladimir Shur 1,*

����������
�������

Citation: Shishkina, E.; Yuzhakov, V.;

Nebogatikov, M.; Pelegova, E.; Linker,

E.; Ivleva, L.; Shur, V. As-Grown

Domain Structure in Calcium

Orthovanadate Crystals. Crystals

2021, 11, 1508. https://doi.org/

10.3390/cryst11121508

Academic Editor: Ludmila Isaenko

Received: 31 October 2021

Accepted: 30 November 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia;
ekaterina.shishkina@urfu.ru (E.S.); vladimir.yuzhakoff@mail.ru (V.Y.); maxneb@urfu.ru (M.N.);
elena.pelegova@urfu.ru (E.P.); eduard.linker@urfu.ru (E.L.)

2 Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; ivleva@lst.gpi.ru
* Correspondence: vladimir.shur@urfu.ru; Tel.: +7-343-389-9568

Abstract: An as-grown domain structure in nominally pure and Mn-doped calcium orthovanadate
(CVO) crystals was studied by several methods of domain imaging: optical microscopy, piezoelectric
force microscopy, and Cherenkov-type second harmonic generation. The combination of imaging
methods provided an opportunity for comprehensive study of the domain structure on the polar
surface and in the bulk of the samples. It was shown that, in nominally pure CVO crystals, an
irregular 3D maze of rounded domains, with charged walls, essentially tilted from the polar direction,
was present. It was proposed that the domain structure was formed just below the phase transition
temperature and persisted during subsequent cooling. Such behavior is due to effective bulk screen-
ing of the depolarization field and a low value of the pyroelectric field which appears during cooling.
The revealed formation of triangular domains and flat fragments of domain walls in Mn-doped CVO
was attributed to polarization reversal under the action of the polar component of the pyroelectric
field, above the threshold value for domain switching. This fact represents the first observation of the
domain switching in CVO crystals.

Keywords: domain structure; charged domain walls; domain imaging; second harmonic generation;
pyroelectric field

1. Introduction

The single crystals of calcium orthovanadate (Ca3(VO4)2) (CVO) are considered as a
laser host material [1]. It has been shown that the high optical damage threshold [2] and
nonlinear optical coefficients of CVO are comparable to those of potassium dihydrophos-
phate (KH2PO4) (KDP) [3]; therefore, these crystals are potentially useful for frequency
conversion of tunable laser sources. CVO possesses the trigonal space group R3c [2], and,
being acentric, demonstrates intense second harmonic generation. Recently, nominally
pure CVO crystals, and those doped by Mn and rare earth elements (Tm, Ho), have become
of special interest due to their potential application as a new active medium for 2 µm
lasers [4–7].

Ferroelectricity in CVO single crystals was discovered by Glass et al. in 1978 [2]. The
ferroelectric phase transition temperature (Tc = 1383 K) was determined by differential thermal
analysis and dielectric studies. The spontaneous polarization value (PS = 68 µC/cm2) was
calculated using an empirical dependence of TC, because high conductivity prevented direct
hysteresis measurements [2]. It was claimed that the observations of electrical domains,
pyroelectric behavior, and dielectric and thermal evidence of a phase transition “leave little
doubt that this material is correctly classified as ferroelectric” [2]. As-grown domain structure,
revealed by etching, represented the shapeless domains up to millimeter size.

The domains at the surface of CVO plates, revealed by etching in a 0.5% boric acid
solution, are usually imaged by optical microscopy [2,4,5,7]. Recently, it has been demon-
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strated that confocal Raman microscopy (CRM) [8] and piezoelectric force microscopy
(PFM) [9] could be used for detail analysis of as-grown domain structure in CVO [10].
Nevertheless, domain structure in the bulk of CVO single crystals is still unstudied.

In this paper, we present the results of an experimental study of as-grown domain
structure in CVO by several methods of domain imaging: optical microscopy, PFM, and
Cherenkov-type second harmonic generation (CSHG) [11,12]. The combination of imaging
methods provided a unique opportunity for the comprehensive study of domain structure
in the bulk, and allowed the revelation of the domain switching during cooling, under the
action of the pyroelectric field.

2. Materials and Methods

The studied nominally pure CVO single crystals, and those doped with Mn ions
(at 0.05% and 0.1%), were grown from the melt, in air, by the Czochralski method with
pulling in [100] directions [7]. The grown crystals were about 12 mm in diameter and up to
45 mm in length. Then, 0.6-mm-thick plates were cut perpendicular to the polar axis. A
final surface treatment was done by mechanochemical polishing, using a PM5 machine
(Logitech Ltd., Glasgow, UK) with 50 nm colloidal silica suspension (Allied High Tech
Products, Inc., Compton, CA, USA). The polishing procedure revealed a shallow relief
corresponding to the surface domain pattern, with a step height of about 100 nm, which
was enough for obtaining optical contrast.

Both polar surfaces of the sample were studied by optical microscopy and PFM. Var-
ious imaging optical modes (transmitted and reflected light, phase contrast, and bright
and dark fields) were realized by means of an optical microscope BX-61 (Olympus, Tokyo,
Japan). PFM imaging was performed using an NTEGRA Aura scanning probe microscope
(NT-MDT, Moscow, Russia) with silicon NSC-16 tips (MikroMasch, Sofia, Bulgaria), con-
ductive platinum coating, and a typical curvature radius about 25 nm. AC modulation
voltage with amplitude Umod = 10 V and frequency fmod = 20 kHz was applied between
the tip and the silver-paste solid-bottom electrode. The obtained contrast of piezoelectric
response proved that the optical images correspond to ferroelectric domains on the polar
surface (Figure 1).
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Figure 1. Images of an isolated domain on the polar surface of a nominally pure CVO single crystal:
(a) PFM, (b) optical microscopy.

Application of CSHG allowed us to obtain a set of 2D domain images at different
depths, with spatial resolution of about 500 nm. This method was realized by means of
a homemade setup based on an NTEGRA Spectra scanning probe microscope (NT-MDT
SI, Moscow, Russia) with a Yb fiber laser (1064 nm, 40 mW). Treatment of the obtained
data by the Blender 3D computer graphics software toolset allowed the construction of 3D
domain images.
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3. Results
3.1. Surface Domain Structure

As-grown domain structure, imaged on the polar surface of all the studied samples by
optical microscopy, mostly consisted of rounded shapeless domains (Figure 2). Bright-field
transmitted-light optical microscopy allowed imaging of the domain walls on both polar
surfaces simultaneously (Figure 2a). The significant difference in the domain wall positions
on the opposite polar surfaces proved the existence of charged domain walls in the bulk.
Moreover, rounded isolated domains, with diameter below the sample thickness, reached,
typically, only one surface, which indicated the absence of essential domain elongation in
the polar direction. The typical domain size on the surface ranged from 50 µm to 1 mm.
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Figure 2. Optical images of as-grown domain structure in (a) nominally pure, (b) 0.05% Mn-doped, and (c) 0.1% Mn-doped
CVO single crystals. Transmitted light: (a) bright field, (b) phase contrast, (c) dark field.

3.2. Bulk Domain Structure

Complete information about domain shape in the bulk was obtained by CSHG. The 3D
images of domains in CVO crystals were more complicated than those of domains formed
during polarization reversal in lithium niobate (LN) and lithium tantalate (LT) crystals,
which typically demonstrate a small tilt of the domain walls from the polar direction [13,14].
The domain wall images in the bulk of CVO crystals represent interferometric patterns
(Figure 3), which, according to Kampfe et al. [15], correspond to abnormally tilted charged
domain walls.
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Figure 3. XY scans of as-grown domain structure in nominally pure CVO single crystal, obtained by CSHG, at different
focal depths: (a) 78 µm, (b) 104 µm, (c) 143 µm.

We used CSHG to image as-grown domains in the bulk of CVO crystals by recording
XY scans at different focal depths with 13 µm steps (Figure 3). According to [15], every
bright line in the images represents a cross-section of the domain wall at different depths.
The axial displacement between cross sections was equal to 5.8 µm, for the used funda-
mental wavelength (λ = 1064 nm). The depth of independent cross sections, recorded in a
single XY scan, was defined by numerical aperture of the used objective. The local topology
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of the domain wall was calculated from the obtained XY scans. 3D reconstruction of the
domain structure from Figure 3 was obtained by deconvolution (Figure 4) (see the rotated
image in Video S1 in Supplementary Materials).
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Figure 4. 3D reconstruction of as-grown domains in the vicinity of the polar surface in nominally
pure CVO, obtained from the data presented in Figure 4. (a) Top view, (b) side view. Video S1,
Supplementary Materials.

Analysis of domain wall position in the bulk allowed us to observe that the domain wall
tilt from the polar direction ranged from 11.2◦ to 71.4◦, with an average value of about 35◦.

It was demonstrated that as-grown domain structure in CVO crystals represented a
3D maze, with randomly oriented charged domain walls, strongly tilted from the polar
direction. According to bulk imaging, isolated rounded domains rarely occurred. This fact
indicates that optical images of rounded domains, observed on the polar surfaces, usually
correspond to cross-sections of a large irregular domain maze.

The optically observed as-grown domain structure in both Mn-doped CVO crystals
(Figure 2b,c) looked similar to that of nominally pure ones (Figure 2a). However, the
essential difference between the shapes of isolated domains and domain walls of these
crystals was revealed. In nominally pure CVO, all domains were rounded (Figure 2a),
whereas in 0.05% Mn-doped (Figure 5a–c) and 0.1% Mn-doped CVO (Figure 5d), single
crystals sometimes showed triangular isolated domains and oriented flat fragments of
domain walls, appearing together with rounded domains.
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4. Discussion

The obtained results can be discussed in terms of kinetic approach [16] to formation
of as-grown domain structure during phase transition and subsequent cooling [17]. The
geometry of the domain structure, formed during slow cooling just below TC, is determined
by spatial distribution of the internal field, produced by bulk defects and composition inho-
mogeneities. The obtained absence of the quasi-regular layered domain structure justifies
random spatial distribution of the defects, without pronounced growth striations [18–23].
Formation of charged domain walls is caused by low value of the depolarization field and
high bulk conductivity, near TC. The fast bulk screening of the depolarization field at high
temperature stabilizes the formed domain pattern and provides its permanence during
slow cooling [17].

During fast cooling to the room temperature, the domain structure can change under
the action of the pyroelectric field [17,24,25], for implementation of the following relation:

Epyr.z(T, dT/dt) − Eth(T) > 0, (1)

where Epyr.z(T, dT/dt) is the polar component of the pyroelectric field, which depends on
temperature and cooling rate, and Eth(T) is the temperature-dependent threshold field for
domain switching.

It is important to point out that the shape of the isolated ferroelectric domains that
arise during polarization reversal is defined by the crystal’s symmetry [26]. A triangular
or hexagonal shape in isolated domains is typical for uniaxial ferroelectric crystals of C3
symmetry [21,27,28]. The formation of flat domain walls is a result of determined step
generation and kink motion along the wall [26].

Thereby, it is possible to claim that, in nominally pure CVO crystals, the geometry of
the as-grown domain structure, with rounded domains formed near TC, persists during
subsequent cooling due to effective bulk screening of the depolarization field. The flat
oriented fragments of domain walls and triangular domains in Mn-doped CVO appear
during switching, under the action of the polar component of the pyroelectric field, above
the threshold value. This fact represents the first observation of the domain switching in
CVO crystals.

5. Conclusions

The domain structure formed after crystal growth in the paraelectric phase and cooling
to room temperature, through the ferroelectric phase transition, was studied experimentally
in nominally pure and Mn-doped calcium orthovanadate (CVO) crystals. Several methods
were used for domain imaging: at the surface—optical microscopy and piezoelectric force
microscopy, and in the bulk—Cherenkov-type second harmonic generation. Formation
of an irregular 3D maze of rounded domains with charged walls, essentially tilted from
the polar direction, was revealed in nominally pure and Mn-doped CVO crystals. The
geometry of the domain structure formed during slow cooling, just below TC, is determined
by spatial distribution of the internal field produced by bulk defects and composition
inhomogeneities. The obtained absence of the quasi-regular layered domain structure
justifies random spatial distribution of defects, without pronounced growth striations. The
persistence of the domain structure with charged walls during cooling can be attributed to
effective bulk screening of the depolarization field, and low value of the pyroelectric field.
The rare formation of triangular domains and flat fragments of domain walls revealed
in Mn-doped CVO was attributed to the action of the excess polar component of the
pyroelectric field, above the threshold value for domain switching. This fact represents the
first observation of domain switching in CVO crystals. Therefore, we plan to study domain
switching in pure and Mn-doped CVO crystals under the action of the pyroelectric field,
which arises during heating and cooling with controlled rates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cryst11121508/s1, Video S1: rotating 3D image of as-grown domains.
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