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Abstract: Simultaneous occurrence of Dirac-like cones at the center of the Brillouin zone (Γ) at two
different energy states is termed Dual-Dirac-like cones (DDC) in this article. The occurrence of DDC
is a rare phenomenon. Thus, the generation of multiple Dirac-like cones at the center of the Brillouin
zone is usually non-manipulative and poses a challenge to achieve through traditional accidental
degeneracy. However, if predictively created, DDC will have multiple engineering applications
with acoustics and vibration. Thus, the possibilities of creating DDC have been identified herein
using a simple square periodic array of tunable square phononic crystals (PnCs) in air media. It was
found that antisymmetric deaf bands may play critical roles in tracking the DDC. Hence, pivoting
on the deaf bands at two different energy states, an optimized tuning parameter was found to
achieve Dirac-like cones at two distinct frequency states, simultaneously. Orthogonal wave transport
identified as key Dirac phenomena was achieved at two frequencies, herein. It was identified that
beyond the Dirac-like cone, the Dirac phenomena remain dominant when a doubly degenerated
state created by a top band with positive curvature and a near-flat deaf band are lifted from a bottom
band with negative curvature. Utilizing a mechanism of rotating the PnCs near a fixed deaf band,
frequencies are tracked to form the DDC, and orthogonal wave transport is demonstrated. Exploiting
the dispersion behavior, unique acoustic phenomena, such as ballistic wave transmission, pseudo
diffusion and acoustic cloaking are also demonstrated at the Dirac frequencies using numerical
simulation. The proposed tunable acoustic PnCs will have important applications in acoustic and
ultrasonic imaging, waveguiding and even acoustic computing.

Keywords: phononic crystals; Dirac cone; Dirac-like cone; deaf band; degeneracy; double-Dirac cone;
accidental degeneracy; metamaterial

1. Introduction

Phononic crystals (PnCs) are an elastic hetero structure with different elastic proper-
ties that has created a new direction of research in acoustic and elastic wave propagation.
Wave phenomena in PnCs are extensively studied, with numerous potential applications
utilizing the physical understanding of the periodic media [1–7]. Prohibition of certain
elastic/acoustic vibrations near bandgaps is one of the prime applications of PnCs, which
ultimately helped to understand the Anderson localization [8–10]. Acoustic/elastic isola-
tors, noise filter/control, design of innovative transducers and waveguides have potential
applications in biomedical and sensing applications.

Numerous approaches are described in the literature to control the width of the
bandgaps by placing tunable phononic crystals at well-defined places. Waveguiding was
manipulated by reducing the symmetry of the crystals. Symmetry breaking helped remove
the band degeneracies, allowing directional bandgaps [11–15]. However, at any high-
symmetry points, accidental threefold-degenerated Bloch mode yields Dirac-like cones.
Multifold degeneracy may occur due to periodic symmetry of the hard inclusions when
hosted in a matrix. This phenomenon has been meticulously reported at the edge of the
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Brillouin zone (BZ). This is popularly known as the topological edge effect or quantum
valley Hall effect (QVHE). QVHE was demonstrated through many structures [16–19].
However, generating such phenomena at the center of the BZ is challenging because the
periodic insertions reshape the spectral responses, especially when their elastic density
is very high compared to other constituents. This phenomenon often occurs in solid
inclusions in a fluid matrix.

Artificial increases of the acoustic bandgaps were reported by removing band de-
generacies. This was achieved by doubly or triply degenerated bands to maneuver the
spectral responses. However, the same process to engineer the double-Dirac cones is rare.
Apart from the rigid cylinders in fluid media, [6,11,13,20–22], various geometrical unit
shapes with different lattices were studied. Correlations between the lattice symmetry
and complete acoustic bandgaps [9,10,23,24] were reported. Tunable PnCs were used
to lift or move certain bands. Such band movement increased the bandgaps. Square
inclusion in air medium was reported to find complete acoustic bandgaps. Tuning of the
square PnCs [20] is reported multiple times, especially for widening the complete acoustic
bandgaps by decoupling the degenerated states. Such tuning was achieved by rotating
the rods with respect to their initial lattice orientation. Using square inclusion in the air
matrix, tuning techniques are reported primarily to break the degeneracy and yield the
bandgaps [8,9,25–29].

Unlike bandgaps, the predictability of the Dirac-like phenomena is challenging. The
triple degeneration due to accidental degeneracies makes it difficult to propose a predictive
design method. However, it is shown that exploiting a similar square geometric tuning,
more than one triply degenerated points, i.e., Dual-Dirac-like cones reported herein were
not reported earlier. Defying a convenient way, deaf band-based tuning is demonstrated in
this article to obtain multiple Dirac-like points at two different energy states. Recently, a
deaf band-based predictive model was proposed to control the Dirac-cones [30], which is
exploited in this article.

Dirac-like cones, which only occur at the center of the BZ (Γ point), contain double
and single degenerated states, forming a triple degeneracy. Triple degeneracy shows

linear dispersion at
→
k = 0. Among three of the degenerated bands, a flat band passes

through the degenerated point, having zero or minimal group velocity. Due to near flatness
and having no group velocity, it exhibits spatial localization, allowing minimum to no
acoustic energy transported through the PnCs. Due to the non-transporting acoustical
deafness behavior, the band is called a “deaf band”. The deaf band plays a major role in
increasing and reducing the bandgaps above or below the respective bands and helps to
form degeneration from non-degenerate modes. Due to an antisymmetric acoustic mode
shape with respect to the direction of incidence of the plane wave, it can only be excited
with the incidence of nonzero k-parallel components [31–35]. The tuning techniques
proposed by the researchers, including authors, require total replacement of the PnCs
due to the change in the geometrical dimension. However, in this article, a deaf band-
based predictive modeling and tuning technique are proposed, where replacement of the
inclusions is not necessary. This helps avoid the process of shape optimization. Instead
of cylindrical inclusion, square-section rods hosted in the air are distributed in a square
lattice arrangement. The tuning technique proposed is based on a rotating mechanism.

In this article, the tunable dependency between acoustic deaf band modes and rotation
of the solid square rod with respect to the lattice orientation is studied. An orthogonal
guiding of the elastic waves through PnCs near Dirac frequencies were observed to confirm
the emergence of a Dual-Dirac cone at the center of the BZ. Simultaneous occurrence
of Dirac-like cones at the center of the Brillouin zone (Γ) at two different energy states
is termed Dual-Dirac-like cones (DDC) in this article. The method of finding the band
structure for composite media and numerical models is briefly reported in Section 2. The
numerical results are discussed in Section 3 and concluded with prime findings in Section 4.
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2. Method and Numerical Model Formulation

In solid/fluid mixed media, the coupling of transverse and longitudinal modes is
inevitable due to inhomogeneous elastic constants of the constituents. Pure transverse
mode propagates along the normal axis and is completely independent of the coupled
modes (longitudinal) propagating through PnCs along the plane [36] of the incidence. In
this article, square PnCs in air media are considered and plane-wave expansion (PWE) is
used [37,38]. The governing wave motion equation for the longitudinal wave modes in
solid–fluid media is expressed as

σij,j(xk) + fi = ρ(xk)
..
ui (1)

where i, j and k are the index notation with values 1 and 2 considering the 2D cross-
sectional plane of PnCs, σij,j(xk) is the derivative of the stresses at location xk with respect
to the jth direction, fi is the body force in the ith direction, ρ(xk) is the density at location
xk in the material, and

..
ui is the acceleration in the ith direction.

The Bloch–Floquet periodic boundary conditions [39] are then applied in the reciprocal
wave number space. G1 = 2πm/D1 and G2 = 2πn/D2 are real values of the periodic wave
numbers or Bloch wave numbers (where m = −∞ to + ∞ and n = −∞ to + ∞ using only
integers) added with the eigen wave number to obtain the Bloch–Floquet displacement
function. Di is the periodicity of the media in the ith direction. If the wave number k in
Equations (2) and (3) is a solution of the system at a certain frequency ω, then k + G is also
a solution of the system at the same frequency. The Bloch–Floquet displacement function is
expressed as

u1(xk, t) = ∑m ∑n Amneik.xeiG.xe−iωt (2)

u2(xk, t) = ∑m ∑n Bmneik.xeiG.xe−iωt, (3)

where G = Gi êi and êi are the Cartesian basis vectors and G.x = Gkxk is the dot product
between the reciprocal Bloch wave number and position vector. Similarly, differentiating
the displacement function twice with respect to time, the acceleration is

..
u1(xk, t) = −ω2 ∑m ∑n Amnei(k+G).xe−iωt (4)

..
u2(xk, t) = −ω2 ∑m ∑n Bmnei(k+G).xe−iωt (5)

The expressions in Equations (2)–(5) signify the summations over a range of integer
values of m and n. In continuum mechanics, the stresses in Equation (1) are further
expressed as a product of the constitutive properties of the medium and strain tensor. The
strain tensor can be further expressed by the derivative of the displacement functions
(Equations (2) and (3)) with respect to the spatial domain xk. Within an array of PnCs, the
constitutive matrix can be assumed to be the periodic function of the space, and respective
Fourier coefficients can be found. Hence, applying the Fourier transform of the constitutive
function Cij(x), the Fourier coefficients Cpq

ij can be expressed as

Cij(xk) =
∞

∑
p=−∞

∞

∑
q=−∞

Cmn
ij ei( 2πp

D1
x1+

2πq
D2

x2) = ∑ ∑ Cpq
ij eiG.x (6)

where p = −∞ to + ∞ and q = −∞ to + ∞ use integer values. The derivative of the
constitutive function with respect to space xl is expressed as

∂Cij (xk)

∂xl
= (−1)l+1 ∑ ∑ iCpq

ij
2π(p(2− l) + q(1− l))

Dl
eiG.x (7)

where l is also an index with values 1 and 2.
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The Fourier coefficients of the constitutive properties are

Cpq
ij =

1
Ac

∫
Cij(xk) e−iG.xdx (8)

Similarly, the Fourier coefficients of the density ρ(xk) are expressed as

ρpq =
1

Ac

∫
ρ(xk) e−iG.xdx (9)

A generalized expression for the modulus and/or density is thus expressed as

αpq =
1

Ac

∫
α(xk) e−iG.xdx (10)

where α(xk) is equivalent to Cij(xk) or ρ(xk).
Substituting Equation (8) into Equation (7) and then substituting Equations (7) and (8)

into Equation (1), two governing equations are obtained in a generalized form:

∑
m

∑
n

∑p ∑q

[
AmnCpq

11 ei(k+Gpq+Gmn).x
(

k1 +
2πm
D1

)[
−k1 − 2πm

D1
− 2πp

D1

]
+ 1

2 AmnCpq
66 ei(k+Gpq+Gmn).x

(
k2 +

2πn
D2

)[
−k2 − 2πn

D2
− 2πq

D2

]
+BmnCpq

12 ei(k+Gpq+Gmn).x
(

k2 +
2πn
D2

)[
−k1 − 2πm

D1
− 2πp

D1

]
+ 1

2 BmnCpq
66 ei(k+Gpq+Gmn).x

(
k1 +

2πm
D1

)[
−k2 − 2πn

D2
− 2πq

D2

]]
= −ω2 ∑

m
∑
n

∑
p

∑
q

Amnρpqei(k+Gpq+Gmn).x

(11)

∑
m

∑
n

∑p ∑q

[
AmnCpq

21 ei(k+Gpq+Gmn).x
(

k1 +
2πm
D1

)[
−k2 − 2πn

D2
− 2πq

D2

]
+ 1

2 AmnCpq
66 ei(k+Gpq+Gmn).x

(
k2 +

2πn
D2

)[
−k1 − 2πm

D1
− 2πp

D1

]
+BmnCpq

22 ei(k+Gpq+Gmn).x
(

k2 +
2πn
D2

)[
−k2 − 2πn

D2
− 2πq

D2

]
+ 1

2 BmnCpq
66 ei(k+Gpq+Gmn).x

(
k1 +

2πm
D1

)[
−k1 − 2πm

D1
− 2πp

D1

]
]

= −ω2 ∑
m

∑
n

∑
p

∑
q

Bmnρpqei(k+Gpq+Gmn).x,

(12)

where k = k1 ê1 + k2 ê2, x = x1 ê1 + x2 ê2 Gpq = 2πp
D1

ê1 +
2πq
D2

ê2, and Gmn = 2πm
D1

ê1 +
2πn
D2

ê2.
For square PnCs with dimension b in an air matrix with equal periodicity D1 = D2 = a

in both directions, the Fourier coefficients are expressed as

αmn =
4αsq

a2G1G2
sin
(

G1b
2

)
sin
(

G2b
2

)
, (13)

where αsq is the numerical value of the respective property (modulus or density) of a square
PnC. Equation (13) is proposed to tune the Bloch modes to obtain the Dual-Dirac-like cones
at the Γ point in the Brillouin zone. Hence, by rotating the square rod at an angle θ, the
reciprocal lattice vectors following Equation (A14) G1′ and G2′ in the transformed system
can be written as

G1′ =
2π

a
(m cos θ + n sin θ) G2′ =

2π

a
(−m sin θ + n cos θ), (14)

where m and n are the integers defined earlier, and a is the lattice constant defined. Hence,
due to the rotation of the square PnCs, both Gpq

′ and Gmn
′ are transformed with their
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respective integers and are substituted in Equations (11) and (12). Equations (11) and (12)
together create an eigenvalue problem and at given frequency ω, k will solve the system of
the equations. The solution in the k−ω domain is the dispersion solution. To obtain the
converged dispersion relationship using the PWE on the periodic media, the eigen analysis
was conducted with 625 reciprocal vectors, which was adequate when m and n were −12
to 12 [40].

3. Results and Discussion

First, an isolated polyvinyl chloride (PVC) square rod in an air medium is investigated.
PVC rods are perfectly rigid, and sound propagation is assumed to be prohibited through
the solid constituents. In-plane wave is assumed as having no out-of-plane displacement
components. Hence, square rods are the strong reflectors on a 2D plane, allowing the
acoustic propagation to be dominated in the air media. A total reflection of the acoustic
wave is considered due to high acoustic impedance mismatch between fluid and solid.
Thus, waves prefer to get confined inside the lowest impedance region where the medium
has low density and low longitudinal velocity.

It is known that the generation of a triply degenerated point at the center of Brillouin
zone (BZ) or Γ point is the result of accidental degeneracy. A tunable engineered PnCs
system is proposed [20], where multiple Dirac-like points can be generated at Γ point by
tuning the orientation of the solid resonator. PVC rods with dimension s = 0.342a and filling
fraction = 0.1169, where a = lattice constant ≈ 25.4 mm, shown in Figure 1a are considered
in this study. The first BZ (Figure 1b), which is the entire red square inside the supercell of
Figure 1c, is reduced to a smaller region, ΓMX to be the irreducible BZ due to the lattice
symmetry [26]. The acoustic dispersion curves are obtained along the periphery of the
irreducible BZ (ΓMX) as shown in Figure 1d. Here, multiple regions are observed where a
doubly degenerated mode and a single mode coexist. Two regions, named as “Dirac region
A” (DRA) and “Dirac region B” (DRB) are selected for further tracking through tuning of
the PnCs. It is to be noted that DRB is very close to a triply degenerated state, while DRA
has apparent double degenerated state with a nearby single band with a partial BG between
them. Therefore, to achieve DDC at two distinct energy states, a specific configuration of
the PnCs, where both DRA and DRB are triply degenerated, needs to be found.

In this study, square PVC rods of infinite length are arranged in a square array. Initially,
the rods have no rotation (i.e., θ = 0o) with respect to lattice orientation (Figure 1b). It is
shown that with a careful tuning of the structure by rotating the lattices counterclockwise,
the dispersion behavior helps to get triply degenerated at multiple frequencies at the Γ
point (center of the BZ). Close observation of both the regions (DRA and DRB) reveals
that the bands (red in Figure 2a), which are near-flat or parallel to the wave vector axis,
are the “deaf bands”. The blue and the green bands are designated as T band (Top bands)
and B band (Bottom bands), respectively. To prove the deafness of the deaf bands, the
acoustic pressure mode shapes and the solid deformations of the PVC rods at DRA are
presented in Figure 2a. With close observation, it is apparent from the mode shapes that
the T and B bands are mutually orthogonal, with quadrupolar mode shapes. They hold
proper symmetry with respect to the incident plane wave along ΓX [100] and MΓ [010]
directions. However, both the deaf bands are antisymmetric with respect to the incident
wave direction, lacking group velocity. In Figure 2b, the transmission study validates the
deafness of the band, showing almost zero transmission near the deaf band. Thus, the deaf
band remains inert to any kind of normal-incident plane wave due to antisymmetry. The
concept of pivoting on the deaf bands and achieve Dirac-like cones at respective frequencies
is a relatively new concept, and it is presented herein by performing a rotational tuning of
the PnCs simultaneously at multiple frequencies.
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Figure 1. (a) Schematic representation of the two-dimensional periodic systems of hard square rods
in a square lattice. The filling fraction is 0.1169 and the square array has the same orientation as the
lattice, (b) Schematic view of the cross-section of the proposed PnC, composed of PVC having side,
2l = 0.342a hosted in air media, (c) transverse cross-section of the 2D square lattice of 3 × 3 supercell
showing the irreducible Brillouin zone (ΓMX), two constituents are denoted by white and blue as
air and PVC rods, respectively, (d) Acoustic band structure for PVC square rods of filling fraction,
F = 0.1169 embedded in air host, rotational angle is θ = 0◦. The colored regions along Γ denote
probable Dirac region A and Dirac region B, having bands colored in green and blue, respectively.
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Figure 2. (a) The dispersion relation near DRA with the acoustic pressure mode distribution and
solid displacement mode distribution of three of the bands near Γ point. The red band is termed
as deaf band, (b) the deafness of the red deaf band is proved by the numerical calculation of the
transmissibilty study through a 40 × 7 cell of PVC/air matrix, showing almost zero transmission
near the “deaf band”.

In Figure 3a, unit cells with different angular rotation of the PVC rod and their
respective dispersion behavior are presented in a sequence. Only DRA and DRB areas
are shown in Figure 3b with incremental angular tuning with increasing angle of rotation
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(counterclockwise rotation). The B band at DRA experiences a significant alteration with
respect to the energy state (frequency), whereas the doubly degenerated T band and the deaf
band energy state remain approximately fixed with respect to the frequency axis. At θ = 9.7◦,
the counterclockwise angular rotation guarantees triple degenerated states at DRA forming
a local linear dispersion. On the other hand, the DRB has very close triply degenerate
state from the beginning (θ = 0◦) and protects the triple degeneracy at θ = 9.7◦. Hence, this
establishes that two full triply degenerated points at the center of BZ are achieved with
DRA and DRB at a tuning angle θ = 9.7◦. In the literature, Quadro-degenerated points
were reported before, where four bands intersected at a Dirac point, calling it a double
Dirac-like cone [39,41,42]. However, in this case, six bands are involved in generating
two Dirac cone locations at two distinct frequencies. Henceforth, this deaf band-based
optimized formation of Dirac-like cone has been named as “Dual-Dirac-like cones” (DDC).
Figure 4a,b presents both the Dirac-like cones (at θ = 9.7◦) and present 3D equifrequency
surfaces (EFS) for B band, deaf band and T band, respectively (Figure 4(a1–a3,b1–b3)).
Concentric circular shapes of EFSs indicate the existence of Dirac-like cones. With close
observation, it is found that for both DRA and DRB with a tuning angle θ = 9.7◦, the B band
has a small but equal bandgap from the doubly degenerated state formed by a T band and
the deaf band. It is found that to prevail Dirac cone behaviors, the above band structure
is necessary, whereas the converse is not true. The converse occurs when the B band is
degenerated with a deaf band, and the T band is lifted, leaving a bandgap.
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Figure 3. (a) Geometric representation of square rods rotated counterclockwise (CCW) at θ = −5◦, 0◦,
5◦, 9.7◦, 15◦, 20◦ and 25◦, embedded in air host. This angular tuning has been performed for the entire
90◦ CCW to demonstrate the Dual-Dirac phenomenon, among which only the above-mentioned are
reported here, (b) The respective band structure dispersion relation for above-mentioned rotations
for the rods, demonstrating the gradual process of undergoing triple degeneracy for DRA and DRB
for θ = 9.7◦, generating a Dual-Dirac phenomenon. Notably, both the deaf bands (red) remain almost
fixed in position with respect to the frequency.

Furthermore, the existence of the Dirac-like points is confirmed by modeling a set
of PnCs using COMSOL 4.3 Multiphysics simulation. The numerical frequency domain
studies were conducted on a periodic structure made of square PnCS, rotated at an angle
θ = 9.7◦, as shown in Figure 5. In the numerical simulations, the PVC rods are assumed
to be infinite in the third dimension, and the simulations are performed on a 2D plane
to achieve fully converged results. Full 3D simulations are time consuming and are a
limitation of numerical solutions.
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Figure 5. (a) Wave propagation and acoustic pressure distribution in a PnC guide with a 58 × 9 matrix
of PVC/air media at DRA and DRB at excitation frequencies at the Dirac point f = ~12.46 kHz and
f = ~18.374 kHz, respectively. The square PnCs are not rotated. (b1,b2) Wave propagation in the PnC
guide at DRA and DRB at excitation frequencies at the Dirac points. The square PnCs are rotated at
angles of 7◦ and 17◦, respectively. DRB demonstrates Dirac phenomena at 7◦, and DRA demonstrates
Dirac phenomena at 17◦. (c) Wave propagation in the PnC guide at DRA and DRB at excitation
frequencies at the Dirac points. In this arrangement, the square PnCs are rotated at a 9.7◦ angle. Both
frequencies demonstrate perfect Dirac phenomena. (d) Absolute acoustic pressure mode shapes of
the unit cells in the MΓ and ΓX directions for DRA and DRB, respectively, for the T, deaf and B bands
when the PnCs are rotated at a 9.7◦ angle.
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A periodic arrangement having 58 × 9 solid PVC square rods of filling fraction,
f = 0.1169, are placed in the air medium. Acoustic pressure field distributions for both the
DRA and DRB regions are presented in Figure 5. Acoustic pressure modes along ΓX and
MΓ for all the bands of DRA and DRB are shown in Figure 5 as well. The actuation of the
periodic square PnCs was achieved by a guided plane wave source located at ~110 mm
away from the air–PVC interface. A plane wave radiation boundary condition is assumed
at all the boundaries to avoid unnecessary wave reflections. Triangular elements are
selected for finite meshing of the simulation domain, with a maximum element size of
λmedia/10, where λmedia is the acoustic wavelength at the maximum frequency 50 kHz.
Orthogonal wave transportation at Dirac-like frequencies, can be visualized by making the
arrangement portrayed in Figure 5a–c. Both Dirac regions demonstrate their respective
unique features that are explained through wave-dispersion behavior below. The acoustic
pressure distribution in the metastructure is shown in Figure 5a, where the PnCs are
not rotated and regular arrangement of the square matrix at θ = 0◦ is demonstrated.
It shows no sign of Dirac phenomena on the grid. However, when the square PnCs
on the grid are rotated together at an angle θ = 7◦, as predicted, DRB at frequency
~18.38 kHz demonstrates absolute Dirac phenomena, shown in Figure 5(b1). DRA at
frequency ~12.46 kHz also shows a trace of Dirac cone behavior [43], but it is not fully
developed. When the square PnCs on the grid are rotated together at an angle θ = 17◦,
as predicted, DRA at frequency ~12.46 kHz demonstrates absolute Dirac phenomena,
shown in Figure 5(b2). However, the Dirac behavior at DRB is totally dispersed. As the
angle of rotation increases, DRB experiences a large separation/bandgap (∆ fdb) between
the B band and the doubly degenerated T and deaf bands. This is not the case for DRA
when the rotational angle is θ = 7◦. At DRA, ∆ fdb slowly changes due to the relative
curvature of the B and deaf bands, as the angle of rotation changes between 7◦ and 17◦.
Guided by the ∆ fdb gap between the B and deaf bands at DRA and DRB, an equal gap
of ~166 Hz is identified at θ = ~9.7◦ where the Dirac phenomena predictively prevail. To
prove this, a numerical experiment was conducted at both Dirac frequencies. The acoustic
pressure distribution on the grid at DRA and DRB is shown in Figure 5c, when the PnCs
are rotated together at an angle θ = 9.7◦. The incident plane wave propagates in the
actuation direction with no distortion at f = 10 kHz (not shown), but a drastic orthogonal
bent line is demonstrated when the actuation frequency increases near the Dirac-like
frequency for DRA (f ~= 12.46 kHz) and DRB (f ~= 18.38 kHz), as shown in Figure 5c.
Minimal acoustic energy transmits in the actuation direction, forming an apparent bandgap.
Keeping the phase shift at near zero, the plane wave travels along the PnCs orthogonally
with respect to the actuation direction (Figure 5c). This establishes a prominent energy
shift, producing a 45◦ bifurcation pattern. The wave-front bends another 90◦ toward the
original actuation direction (ΓX), keeping the plane wave-front relatively intact. Due to its
antisymmetry, the deaf band exhibits strong spatial localization and allows the wave-front
to propagate orthogonally.

To further demonstrate the reason for the Dirac phenomena, the acoustic pressure
mode shapes of the T, deaf and B bands for wave propagation along the ΓX and MΓ
directions at DRA and DRB frequencies are shown in Figure 5d. In both the DRA and
DRB cases, the T and B band mode shapes are symmetric quadrupolar mode shapes
with opposite pressure distributions. When the mode shapes are superposed at the Dirac
frequencies, the T and B mode shapes cancel each other, causing the deaf band mode shape
to dominate. The local dispersion behavior of the T and B bands with degenerated acoustic
pressure mode shapes is quadrupolar and mutually orthogonal; in contrast, the deaf band
mode is dipolar (for ΓX) (Figure 5d). Hence, at the Dirac frequency, both the T and B
bands nullify each other, maintaining the dipolar deaf band mode dominance. A 45◦ bent
line helps the dipolar deaf mode carry the wave energy orthogonally like origami. The T
and B bands’ quadrupolar local dispersion modes rotate by 90◦ between the MΓ and ΓX
directions of propagation at both DRA and DRB (Figure 5d) frequencies. To summarize,
there are other scenarios where flat bands are achieved. They are due to the local resonance
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of the PnCs and yield zero-group velocity. Although the deaf band is almost flat, the
phenomenon inside the material is not due to the local resonance but due to antisymmetric
mode shape at the triple degenerated state, as depicted in Figure 5.

The transmissibility study in Figure 6 at DRA with θ = 9.7◦ shows the drop-in transmis-
sion approximately to zero along ΓX direction, while the transmission remains maximum
along the orthogonal (XM) direction.
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the phenomenon realized in Figure 5.

Spatial phase reconstruction due to excitation of an accidentally degenerated Bloch
mode at the high symmetry Γ point is reported and discussed in photonics. Utilizing such
property, an acoustic cloaking phenomenon can also be demonstrated in phononics with
a near-flat band (deaf band) around Γ point of the Brillouin zone. Acoustic cloaking has
already drawn some attention over the past few years [44–47]. As shown in Figure 7, a
75 mm × 75 mm square steel (AISI 4340) block is embedded in the middle of the PnCs
ribbon having 20 × 15 array of PnCs in air media. This square steel block is chosen as
an object to be cloaked. The plane wave source is placed approximately 127 mm away
from the left interface of the air–PVC PnCs ribbon. Three different combinations are used
to demonstrate the acoustic cloaking. The first one is without any square steel block
(Figure 7(a1,a2)) and the second one is with a square steel block. Both configurations
experience plane wave incidence. The third combination is with a square steel block
experiencing a tightly focused Gaussian beam incidence. Next, the configurations are
excited at two different frequencies: one at 10 kHz and the other at Dirac frequency of
DRA which is ~12.458 kHz. From Figure 7(a1,a2), the orthogonal wave transportation is
observed without any cloaking object inside the PnCs. From Figure 7(b2), it is evident that
the acoustic wave could transmit through the PnCs as if the square steel block were absent,
as the planar wave-front of the transmitted acoustic wave remains undistorted inside the
PnCs, whereas the plane-wave distorts significantly when excited at the frequency (10 kHz)
(Figure 7(b1)). Similarly, when a focused Gaussian beam is excited at Dirac frequency, the
cloaking phenomena persist (Figure 7(c2)). However, if the PnCs are removed, then the
planar wave-front of the incident acoustic wave gets severely distorted by the steel block,
indicating the absence of the cloaking effect.
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Figure 7. Simulation results showing the absolute pressure field distribution where waves can pass
through a waveguide with an embedded obstacle, (a1,a2) The case where no square steel rod is
inserted into the middle of the PnCs slab, and the incident plane wave frequencies are 10 kHz and
12.458 kHz, respectively, (b1,b2) The same case as that shown in (a1,a2), except that we inserted a
square steel block to be cloaked, (c1,c2) a similar case here, except that a Gaussian incident beams
were used here instead of plane wave for similar frequencies. The steel block has been perfectly
cloaked at Dirac frequency for DRA keeping the planar wave-front intact, while the wave-front
distorts severely for actuation frequency below Dirac frequency, f = 10 kHz.

Apart from the acoustic cloaking effect, a spatial phase reconstruction along with
wave-front reshaping, pseudo-diffusion and acoustic collimation have been studied in the
past few years [48–50]. Absolute acoustic pressure field distributions are demonstrated
for both incident circular waves, Gaussian waves and plane waves, respectively. First,
the normalized pressure field distributions are shown at different frequencies, including
Dirac frequency, from a circular-crested wave source. Studies were conducted when the
PnCs were absent. Similarly, when a block of (28 × 13 grid) rotated PnCs rotated at an
angle 9.7◦ arranged along the Γ-K direction, the circular wave was again excited at the
Dirac frequency. Figure 8(a1) shows that in the absence of any periodic square PnCs at
the Dirac frequency (12.458 kHz), the circular wave-front maintains the phases and the
wave shape without any distortion. However, once the rotated PnCs are placed inside the
air media, the propagation of the circular wave-front at that Dirac frequency (12.458 kHz)
exhibits ballistic wave transmission with a collimated plane wave traveling mostly along
Γ-X direction (Figure 8(a2)). This ballistic feature is identical to the one that is observed in
a beam of fixed-width propagates without changing the beam width. Next, the acoustic
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wave transmission inside a 20 × 15 PnCs arranged with Dirac rotation of 9.7◦ is studied
when a Gaussian wave (µ = 0 and σ = 2.5× 103) is excited along the Γ-X direction at
a frequency of 10 kHz. The incident wave amplitude across the actuator’s width varies
using a Gaussian function. The Gaussian wave input transforms into a planar wave
output with equal amplitudes along the planar wave-front due to the presence of the
PnCs (Figure 8(b1)). However, when the actuation frequency increases to 12.458 kHz,
wave diffusion occurs, creating planar wave-fronts through all three outlets, as shown
in Figure 8(b2). Surprisingly, when the smaller number of PnCs are used in the guide,
wave diffusion not only happens along the orthogonal direction, but wave diffuses with
planar wave-front in the incident direction. Orthogonal wave transport prevails even
above ~12.46 kHz up to ~13 kHz. This is in contrast to Figure 6 obtained from a matrix of
40 × 7 elements. Hence, the presence of the number of PnCs along the orthogonal to the
incident wave plays a vital role in reconstructing the phase to form collimated plane waves
and wave diffusion. This may have practical applications in engineering and biomedical
science when waves are required to predictively guide in fluid and solid media. Similar
scenario with planar wave incident is shown in Figure 8(c1,c2) on a comparatively smaller
setup with 10 × 10 PnCs, suitable for performing a laboratory experiment (not presented
in this article).
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4. Conclusions 
This study proposed deaf band-based angular tuning to generate multiple triple de-

generacies (Dirac cones) at the center of the BZ. The predictive optimization process dis-
cussed in this article demonstrated the possibility of creating DDC. Dirac cones were 
achieved near the region where near zero-group velocity flat or deaf bands existed. By 
maintaining the same filling fraction and without replacing the crystal, deaf band-based 

Figure 8. (a1) Pressure field distribution for cylindrical wave excited by a pseudo-point source at
Dirac frequency, without any PnCs ribbon, (a2) a prominent ballistic transmission along ΓX when the
square rod PnCs were introduced, at f = 12.458 kHz, A PnCs ribbon with a 28 × 13 matrix acting as
a perfect acoustic collimator, diffuser, and a wave-front reshaping media excited around the Dirac
frequency, while excited by a pseudo-point source inside the PnCs, (b1) Pressure field distribution
when a Gaussian beam is incident on PnCs slab at f = 11 kHz, depicting perfect ballistic transmission,
(b2) A Gaussian wave source is excited at the Dirac frequency. Wave diffusion due to orthogonal
transport is eminent and wave-front transformation from Gaussian beam to plane wave-front is
observed at f = 12.458 kHz (c1) A planar wave source is excited at frequencies below the Dirac
frequency, output wave transmission is planar wave, (c2) A planar wave source is excited at the Dirac
frequency. Wave diffusion due to orthogonal transport is eminent.

4. Conclusions

This study proposed deaf band-based angular tuning to generate multiple triple
degeneracies (Dirac cones) at the center of the BZ. The predictive optimization process
discussed in this article demonstrated the possibility of creating DDC. Dirac cones were
achieved near the region where near zero-group velocity flat or deaf bands existed. By
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maintaining the same filling fraction and without replacing the crystal, deaf band-based
angular tuning was accomplished, yielding multiple degenerated regions. The widening
of the dispersion bands was maximized or minimized, modulating the deaf band and
demonstrating the Dual-Dirac-like phenomenon.

Section 2:

• An analytical approach to solve the eigenvalue problem of a square rod in a fluid
media is presented.

Section 3:

• Wave transmission behavior through wave guides made of square PnCs was studied
numerically by calculating the absolute acoustic pressure field using finite element
analysis software.

• Different acoustic application-based phenomena that occurred at Dirac-like points,
such as acoustic orthogonal transportation, acoustic phase reconstruction and acoustic
collimation, including ballistic transmission and pseudo-diffusion, were studied and
realized using the proposed numerical model.

• Acoustic cloaking and effects on wave-front reshaping were demonstrated. PnCs
provide an intriguing platform to explore acoustic condensed matter physics regarding
Dirac-like cones at Γ point in acoustic wave systems.

In conclusion, the achievement of DDC proposed herein increases the possibility
of exploiting numerous Dirac point behaviors at different frequencies in a single lattice
structure. A specific band structure is responsible for demonstrating such phenomena.
While deaf band-based tuning is designed, it must look for a top band degenerated with a
deaf band when a bottom band if lifted, leaving a small bandgap. Such scenario will help
track the deaf band frequency to form a Dirac-like cone. This may provide greater design
flexibility for practical wave manipulation. It is anticipated that this study will encourage
further numerical and experimental investigations into band degeneracies for extensive
acoustic device applications.
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Nomenclature

PnC Phononic Crystals
BZ Brillouin Zone
QVHE Quantum Valley Hall Effect
PWE Plane Wave Expansion
PVC Polyvinyl Chloride
DRA Dirac Region A
DRB Dirac Region B
DDC Dual-Dirac-like Cones
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