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Abstract: Acoustic tunneling is an essential property for phononic crystals in a Dirac-cone state.
By analyzing the linear dispersion relations for the accidental degeneracy of Bloch eigenstates,
the influence of geometric parameters on opening the Dirac-cone state and the directional band
gaps’ widths are investigated. For two-dimensional hexachiral phononic crystals, for example, the
four-fold accidental degenerate Dirac point emerges at the center of the irreducible Brillouin zone
(IBZ). The Dirac cone properties and the band structure inversion problem are discussed. Finally, to
verify acoustic transmission properties near the double-Dirac-cone frequency region, the numerical
calculation of the finite-width phononic crystal structure is carried out, and the acoustic transmission
tunneling effect is proved. The results enrich and expand the manipulating method in the topological
insulator problem for hexachiral phononic crystals.

Keywords: phononic crystal; band structure; Dirac-cone dispersions; acoustic tunneling

1. Introduction

Acoustic/elastic wave control and acoustic transmission suppression by using phononic
crystals has become a research hotspot in recent years [1–3]. Theoretical analysis, numerical
calculation, and experiments were conducted to analyze acoustic waveguiding, acoustic
collimating, acoustic focusing, acoustic negative refraction, unidirectional transmission,
seismic prevention, acoustic wave filtering, localization, and so on [4–7]. The band structure
properties, named band gaps, are the key index to evaluate the mechanical performance of
phononic crystals. The width and position of the band gaps are highly dependent on the
geometric parameters and material parameters of the phononic crystal cell [8].

In the band structure, two or more energy bands intersect linearly at one point,
named a Dirac point, on the boundary of the irreducible Brillouin zone of the phononic
crystal [9–11]. Dirac points have three forms, namely, the double Dirac cone, single
Dirac cone, and Dirac-like cone [12,13]. Among them, the double Dirac cone is formed
by an inverted pair of two identical Dirac cones [14,15]. Strange physical phenomena
that exist at the Dirac point include pseudodiffusion transmission, edge states, quavers,
acoustic topological insulators, acoustic tunneling, and so on [16,17]. By adjusting the
geometric parameters, the Dirac cones are broken and new directional band gaps are
formed [18,19]. Some special acoustic properties appeared at the double Dirac cone, which
have an important influence on the application of phononic crystals [20,21]. Recently, the
massless relativistic dispersion problem in Dirac cones has become the focus in acoustic
metamaterials, including the acoustic wave tunneling problem [22,23].

In the hexachiral phononic crystal, the scatterers are connected by six adjacent lig-
aments [24]. The mechanical performance of the hexachiral phononic crystal is mainly
determined by ligament thickness, scatterer diameter, and so on [25,26]. Due to the chirality,
the hexachiral phononic crystals do not have complete mirror symmetry, which gives a
great influence on acoustic transmission and the acoustic topological insulator [27,28].
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However, only a few studies have been conducted on the band structure properties of
hexachiral phononic crystals at present; analyses of the Dirac cone problem for hexachiral
phononic crystals are still in the exploratory stage.

Based on the reasons mentioned above, the acoustic tunneling problem is studied
based on double-Dirac-cone dispersion analysis and band structure inversion analysis for
hexachiral phononic crystals. The remainder of the present article is organized as follows:
some theories of hexachiral phononic crystals are introduced in Section 2; A four-fold
accidental degenerate Dirac point is formed corresponding to special geometric parameters
in Section 3; the band structure inversion problem is investigated in Section 4; Acoustic
transmission tunneling analysis is implemented numerically in Section 5; finally, some
conclusions are summarized in Section 6.

2. Two-Dimensional Hexachiral Phononic Crystal Theory
2.1. Hexachiral Phononic Crystals

Hexachiral phononic crystals are composed of cylindrical scatterers, connection lig-
aments, and filler matrix. The scatterer is a cylindrical metal body, and six ligaments
are attached tangentially onto each scatterer; it is assumed that the ligaments and the
cylindrical metal bodies are perfectly bonded, as shown in Figure 1a.
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Figure 1. Diagram of the hexachiral phononic crystal schematic: (a) Lattice vector, (b) Unite cell
parameter, and (c) Irreducible Brillouin zone.

In Figure 1a, the lattice vectors e1 and e2 are used to define the periodicity of the
hexachiral phononic crystal. In Figure 1b, the basic design parameters of the hexachiral
phononic crystal are as follows: the lattice constant is a, the scatterer radius is r0, the coating
thickness is tc, and the ligament’s thickness is tl .

2.2. Band Structure of Phononic Crystals

The band structure properties of phononic crystals are the key index to evaluate
the insulation performance of the acoustic metamaterials. Defining the wave vector and
eigenvalue as horizontal coordinates and longitudinal coordinates, respectively, the band
structure curves of a hexachiral phononic crystal are graphed. In the band structure curves,
more than one band gap exists within the calculated frequency range. If the complete band
gaps are located between the nth and (n + 1)th bands, the complete band gap width can be
written as:

∆ωn = min
k

: ωn+1(k)−max
k

: ωn(k), (1)
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where ωn+1(k) is the frequency value of the (n + 1)th band, and ωn(k) is the frequency
value of the nth band. min

k
: ωn+1(k) and max

k
: ωn(k) are the upper and lower bound

frequencies, respectively.

3. Dirac Cone of a Hexachiral Phononic Crystals
3.1. Model Description

The band structure problems of 2-D hexachiral phononic crystals are investigated. In
the band structure analysis, all finite-element model (FEM) predictions are calculated by
using COMSOL Multiphysics software. The FE model of hexachiral phononic crystals is
shown in Figure 2.
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Figure 2. FE model of the 2D hexachiral phononic crystal.

The hexachiral phononic crystal consists of three kinds of materials, namely water,
epoxy resin, and steel. The coating of the scatterer and ligament have the same materials.
The ligament and coating material are epoxy resin, the matrix material is water, and the
scatterer material is steel. The mechanical properties of steel, epoxy resin, and water are
shown in Table 1.

Table 1. Material parameters of hexachiral phononic crystal.

Component Materials Type Longitudinal Wave
Velocities (m/s) Density (kg/m3)

Scatterer steel 5760 7850

Ligament epoxy resin 2830 1300

Coating epoxy resin 2830 1300

Matrix water 1480 1000

3.2. Dirac Cone Point Calculation

In the band structure calculation, the positions of the three high-symmetry points are
as follows: K( 2π

3a , 2
√

3π
3a ), Γ(0, 0) and M(0, 2

√
3π

3a ), as shown in Figure 1c.
The band structure of a phononic crystal can be calculated by sweeping the wave

vector k = (kx, ky) in the irreducible Brillouin zone (IBZ); the sweeping direction is
K → Γ→ M→ K , and the band structure curves of the hexachiral phononic crystal are
graphed, as shown in Figure 3.
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Figure 3. Diagram of band structure for two-dimensional hexachiral phononic crystal (Four-fold
degeneracy is appeared at high-symmetry point Г, the enlarged view around point D is shown in
the inset).

There exists an 8-band structure, which contains two complete band gaps shaded with
gray. The first band gap is located between the first band and the second band structure,
and the second band gap is located between the sixth band and the seventh band structure.

By adjusting the geometric parameters of the hexachiral phononic crystal, a four-fold
accidental degenerate double Dirac cone are formed, namely a double-Dirac-cone state. In
a double-Dirac-cone state, the geometric parameters of the phononic crystal are as follows:
lattice constant a = 8 mm, scatterer diameter r0 = 1.30 mm, coating thickness tc = 0.45 mm,
and ligament thickness tl = 0.35 mm.

According to the band-folding theory, the third, fourth, fifth, and sixth bands of the
phononic crystal are closed at the frequency of 218,796.6 Hz, forming four accidental
degenerate Dirac points (marked as “D”), as shown in Figure 3. The enlarged view at the
top right-hand corner shows the double Dirac cones in the center of the Brillouin zone.
The dispersion curve near the Dirac cones point is linear, and the four energy bands are
approximately merged into two linear energy bands.

4. Breaking of Double Dirac Cone and Band Inversion
4.1. Band Structure Analysis

Three geometric parameters of the phononic crystal are defined as design-variable
(including coating thickness, ligament thickness, and scatterer diameter). If the lattice
constants and sweep direction are unchanged, by increasing or decreasing the geometric
parameters of the phononic crystal, the dispersion curves between the frequency and the
wave vector can be obtained, as shown in Figure 4.

In comparison with Figure 3, the band structure curves of the phononic crystal are
altered, and the complete band gaps’ width, lower bound frequency and upper bound
frequency are varied. In the center of the Brillouin zone, the double-Dirac-cone state is
destroyed, the double Dirac-cone state is split into two single Dirac-cone states, marked
as “Upper” and “Lower”, respectively. In addition, a new directional band gap appears
between the fourth and fifth band structures, as shown in the enlarged view at the top
right-hand corner. The directional band gap widths for hexachiral phononic crystals are
shown in Table 2.
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Figure 4. Dispersion curves of hexachiral phononic crystal with different parameters (the inset shows an enlarged view):
(a) Case A (r0 = 1.25 mm, tc = 0.45 mm, and tl = 0.35 mm); (b) Case B (r0 = 1.35 mm, tc = 0.45 mm, and tl = 0.35 mm); (c) Case
C ( r0 = 1.30 mm, tc = 0.40 mm, and tl = 0.35 mm); (d) Case D (r0 = 1.30 mm, tc = 0.50 mm, and tl = 0.35 mm); (e) Case E
(r0 = 1.30 mm, tc = 0.45 mm, and tl = 0.30 mm) and (f) Case F (r0 = 1.30 mm, tc = 0.45 mm, and tl = 0.40 mm).
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Table 2. Directional band gap width comparison of hexachiral phononic crystals.

Geometric Parameters
Lower

Bounds
Frequency/Hz

Upper
Bounds

Frequency/Hz

Directional
Band Gap
Width/Hz

Band Gap
Center

Frequency/Hz

Double-Dirac-cone state 218,796.6 218,796.6 0 218,796.6

Scatterer
diameter

Case A 217,613.1 219,341.7 1728.6 218,477.4

Case B 218,317.1 219,969.3 1652.2 219,143.2

Coating
thickness

Case C 216,950.9 218,509.7 1558.8 217,730.3

Case D 219,107.9 220,732.6 1624.7 219,920.2

Ligament
thickness

Case E 217,146.3 217,193.8 47.5 217,170.0

Case F 220,402.3 220,481.7 79.4 220,442

4.2. Band Gap Width Analysis

The influence of geometric parameters on the directional band gap width and the
opening of the double Dirac cone are investigated. The relationships among the geometric
parameters’ deviation of scatterer diameter, ligament thickness, coating thickness, and
the directional band gaps’ width problem are investigated, as shown in Figure 5. In the
numerical analysis, the variation step size of the design variable is 0.01 mm.
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In Figure 5, in the double-Dirac-cone state, the directional band gap width is 0. By in-
creasing or decreasing the scatterer diameter, ligament thickness, and coating thickness, the
band gap width changes approximately linearly, and the ligament thickness is insensitive
in contrast to scatterer diameter and coating thickness.

4.3. Band Inversion Analysis

By adjusting the geometric parameters of the hexachiral phononic crystal, the four-fold
accidental degenerate Dirac state of the phononic crystal will be destroyed, and the band
inversion properties are evaluated. There exist two double-degenerate states in the center
of the Brillouin zone. The acoustic pressure distributions of two double-degenerate states
in the center of the Brillouin zone are obtained; there are a pair of quadrupolar modes and
a pair of dipolar modes, as shown in Figure 6.
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Figure 6 shows acoustic pressure distributions corresponding to the parametric varia-
tions of the scatterer diameter, coating thickness, and ligament thickness, respectively. The
dark red and dark blue are used to define the positive and negative maxima value. The
acoustic pressure field distributions are symmetrical, owing to the properties of the C6ν
approximate symmetry for the hexachiral phononic crystal cell. The dipole modes are de-
noted as px and py, and the quadrupole modes are denoted as dxy and dx2−y2 , respectively.
Since the hexachiral phononic crystal is not a perfectly C6v-symmetrical lattice, therefore,
they are not perfectly symmetrical to the axes x and y for both dipole modes (px and py)
and quadrupole modes (dxy and dx2−y2 ).

In Figure 6a,b, the p-state is in the low-frequency band and the d-state is in the high-
frequency band; by increasing the scatterer diameter and coating thickness, the band
inversion can transform from a trivial state to a nontrivial state, accompanied by phase
transition. In Figure 6c, the d-state is in the low-frequency band and the p-state is in the
high-frequency band; by increasing ligament thickness, the band inversion can transform
from a trivial state to a nontrivial state accompanied by phase transition.

5. Acoustic Transmission Tunneling Analysis

To demonstrate the band structure properties of phononic crystals, the acoustic trans-
mission calculation for the hexachiral phononic crystal’s structure with finite width is nec-
essary. The acoustic transmission phase change and acoustic transmission loss coefficient
are compared to analyze the influence of geometric parameters on acoustic transmission
performance in the double-Dirac-cone frequency region.

In the acoustic transmission calculation model, the phononic crystal structure consists
of hexachiral phononic crystal layers, wave excitation domains, wave evaluation domain,
and perfectly matched domains. At the top and bottom edges of the phononic crystal
structure, the periodic boundary conditions are implemented. The lengths of the phononic
crystal’s layer, wave excitation domain, wave evaluation domain, and perfectly matched
domain, are 0.10, 0.020, 0.020, and 0.020 m, respectively. The total width of the hexachiral
phononic crystal structure is 0.0404 m.

In the numerical calculation, the direction of the incident acoustic wave is perpendicu-
lar to the interface between the phononic crystal’s layer and the wave excitation domain,
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and the amplitude value of the incident acoustic wave is 1. The incident acoustic wave
frequency is 218796.6 Hz, which corresponds to the double-Dirac-cone frequency.

The loss coefficients for acoustic transmission of the hexachiral phononic crystal
structure are shown in Figure 7. The symbol “Scatterer diameter” denotes the geometric
parameters corresponding to Case A for Table 2; the symbol “Coating thickness” denotes
the geometric parameters corresponding to Case C for Table 2; the symbol “Ligaments
thickness” denotes the geometric parameters corresponding to Case E for Table 2; The
symbol “Double Dirac cones” denotes the parameter corresponding to the four-fold acci-
dental degenerate Dirac-cone state. The calculated frequency range is 20 to 220 000 Hz, the
frequency step size is 2 Hz.
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In Figure 7, in the lower frequency band (less than 89,250 Hz), the acoustic transmission
loss coefficients are very small. On the other hand, in the double-Dirac-cone frequency
region, the acoustic transmission loss coefficients are nearly zero. The results show that
the tunneling effect of acoustic transmission appears obviously in the double-Dirac cone-
frequency region.

The comparison of acoustic pressure distributions for different geometric parameters
of the phononic crystal structure are shown in Figure 8.
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Figure 8. Total acoustic pressure distribution comparison of hexachiral phononic crystals with different geometric parame-
ters: (a) (r0 = 1.25 mm, tc = 0.45 mm, and tl = 0.35 mm, corresponds to Case A in Table 2); (b) (r0 = 1.30 mm, tc = 0.40 mm,
and tl = 0.35 mm, corresponds to Case C in Table 2); (c) (r0 = 1.30 mm, tc = 0.44 mm, and tl = 0.30 mm, corresponds to Case
E in Table 2); (d) (r0 = 1.30 mm, tc = 0.45 mm, and tl = 0.35 mm, corresponds to the four-fold accidental degenerate Dirac
cone state).
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As shown in Figure 8a–c, substantial phase change occurs inside the phononic crystal
structure. On the contrary, the transmission acoustic wave and the incident acoustic
wave will be consistent in acoustic pressure amplitude and phase, corresponding to the
double-Dirac-point state, as shown in Figure 8d. The tunneling effect at the Dirac point is
further verified.

6. Conclusions

The Dirac-cone dispersion properties are systematically investigated for hexachiral
phononic crystals in the present article. The influences of design parameters, such as
coating thickness, ligament thickness, and cylindrical scatterer diameter on the acoustic
topological phase transition are taken into account. The four-fold accidental degenerate
Dirac cones of phononic crystals are emerged and disappeared by change the geometric
parameters, while the lattice constant is kept unchanged. The band inversion processes
occur at the Dirac point. Finally, the Dirac cone properties of hexachiral phononic crystals
are unambiguously demonstrated by acoustic transmission calculation, and the tunneling
effect is verified. The following conclusions are obtained by numerical analysis: (1) By
the introduction of chirality properties, the acoustic transmission manipulation abilities of
hexachiral phononic crystals are significantly strengthened; (2) in the double-Dirac-cone
frequency region, the relationship between the design parameters and the directional band
gaps’ width is approximately linear, and the frequency linear dispersion properties are
verified; (3) according to the acoustic transmission calculation, an acoustic transmission
tunneling effect exists in the double-Dirac-cone frequency; (4) the transmission acoustic
wave and the incident acoustic wave will be consistent in acoustic pressure amplitude and
phase, corresponding to the double-Dirac-point state, the tunneling effect at the Dirac point
is further verified. Some conclusions in this work can provide technical support for the
design and application of innovative acoustic metamaterials.

Author Contributions: L.C. put forward the ideas and theoretical model; Y.L. implemented the
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the outline and the whole contents. All authors have read and agreed to the published version of
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