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Abstract: The design of an optically transparent and flexible metamaterial absorber was presented
and fabricated. For this purpose, we use two different patterned silver nanowire films separated
by the space layer, forming a transparent sandwiched structure with an ultrathin thickness. By
analyzing the equivalent circuit model and distribution of electric field and current, the absorption
physical mechanism has been theoretically investigated. The results show that the structure can
achieve above 0.8 absorptions from 6 GHz to 18 GHz, and at the same time, this absorber also can
obtain wide-angle property. The optical transmittance of the fabricated absorber exceeds 82% in the
visible band. The results demonstrate that transparency and flexibility are the additional benefits
that make the proposed absorber suitable for various potential applications.

Keywords: metamaterial absorber; optically transparent; flexible; silver nanowire; ultrathin

1. Introduction

Over the past decades, microwave absorbers (MAs) have turned into one of the most
thriving research topics in electromagnetic (EM) wave absorption technology [1,2], which
is mainly due to EM radiation pollution. The conventional absorbers, such as the Salisbury
screen [3], the Jaumann screen [4], and the pyramidal absorbers [5,6], cannot satisfy some
application requirements because of the narrow absorption band or bulky structures.
With the rapid development of metamaterials, the metamaterials microwave absorbers
(MMAs) can achieve broadband, ultrathin, and perfect EM absorption [7] using a multi-
resonant pattern [8,9], multi-layered [10,11] or lossy-component-loaded structures [12–14].
Generally, most of those MMAs are not optically transparent and cannot be applied in
practical window applications.

Recently, broadband transparent metamaterials microwave absorbers (TMMAs) have
been designed with different methods. A transparent EM wave absorption is usually
achieved using transparent materials, such as oxide semiconductors [15,16], transparent
metal coatings [17,18], and metal grid structures [19,20]. A broadband TMMA using Al
wire-grid has been designed as a sandwich structure [21], and its optical transmittance is
less than 80%, which is affected by metal grid structures and thicker substrate. Indium
tin oxide (ITO), chosen as the transparent material, has been designed to implement high
transparency and broadband absorption at microwave frequencies by using different unit
resonant patterns [22–28]. However, the TMMAs based on ITO have the disadvantages
of high cost and limited mechanical flexibility. Moreover, graphene, as a new material
with potential, has been envisaged as more suitable transparent material for TMMAs
applications. However, for graphene-based TMMAs [29–34], it is difficult to fabricate
for large areas and mass production. Therefore, there still are more efforts required to
improve the absorption performances with thinner thickness, better light transmittance,
and higher flexibility.
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In this paper, we propose a flexible TMMA with ultrathin and broadband characteris-
tics. The absorbing layer of patterned films is realized using silver nanowires (AgNWs)
at a low cost. The model of absorber has been numerically simulated and experimentally
verified, which attains broadband absorption with 80% absorptivity over 12 GHz, and
thickness of less than 0.05λ0 (corresponding to a lower frequency). Meanwhile, the ab-
sorber is flexible and exhibits a wide-angle absorption performance for TE and TM waves.
Compared with the reported absorbers, this design achieves optical transparency, high
flexibility, broadband absorption, and ultrathin thickness at the same time.

2. Design and Methods

A schematic of the proposed optically transparent MA based on AgNWs is depicted
in Figure 1. The unit cell has a sandwiched structure consisting of three layers: the top
patterned AgNWs film, the space layer, and the bottom patterned AgNWs film. Both of
the AgNWs films used in the structure are fabricated through the commercial standard
process and enable the materials to have high optical transparency, and all the patterns
are formed by laser etching [35–38]. The top pattern has a square-shaped split-ring slot.
The four different-sized square patch slots are patterned on the bottom film, which is
centrosymmetric in the unit cell. There is a space layer between the top and bottom films.
The AgNWs coating thickness is about 0.24 µm (values for different surface resistance). The
silver nanowires ink is uniformly coated on the polyethylene terephthalate (PET). In the
design process, these factors of optical transparency, thickness, and broadband absorption
need to be considered simultaneously. In order to have a good impedance matching with
free space, the top layer film needs to have high impedance characteristics (close to 377 Ω).
However, different from traditional high impedance surfaces (like mushroom, square
patch), the square-shaped split-ring slot based on silver nanowires has the characteristics
of ultra-thin and broadband resonance. In addition, to reduce the EM wave transmittance
and increase the resonance intensity, the bottom layer adopts this pattern of four square
patch slots with low resistance. Since silver nanowires and PET film will weaken the
light transmittance of the absorber, the patterns of the top and bottom layers are both slot
structures. The geometrical dimensions labelled in Figure 1 are as follows: p = 13 mm,
n = 0.5 mm, d = 2.15 mm, m = 8 mm, a = 2 mm, b = 2.5 mm, l = 2.5 mm.
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Figure 1. Schematic of the proposed absorber. (a) The top patterned silver nanowires (AgNWs) film.
(b) The bottom patterned AgNWs film. (c) Cross-sectional view of the AgNWs film. (d) 3D view of
the absorber.
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To give physical insight into the absorption characteristics, we establish an equivalent
circuit model (ECM) for the proposed absorber based on transmission line theory, as shown
in Figure 2. The free-space impedance is Z0, and the permittivity of the air space is ε0. It
can be assumed that the top and bottom pattern film are approximate to the RLC series
circuits, and the corresponding impedances are denoted by Zt and Zb, respectively. The Zs
represents the space layer impedance, and the ε0 and βs are permittivity and propagation
constants of the space layer, respectively.
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where t2 is the thickness of the space layer, t t tZ R X= + , and b b bZ R X= + . Then, the re-
flection coefficient |S11| and transmission coefficient |S21| can also be expressed by matrix 
ABCD: 
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where t2 is the thickness of the space layer, Zt = Rt + Xt, and Zb = Rb + Xb. Then, the
reflection coefficient |S11| and transmission coefficient |S21| can also be expressed by
matrix ABCD:

R = |S11| =
∣∣∣∣A + B/Z0 − CZ0 − D
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∣∣∣∣, (2)
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where A = cos βst2 + j Zs
Zb

sin βst2, B = jZs sin βst2, C = Zt+Zb
ZtZb

cos βst2 + j
(

1
Zs

+ Zs
ZtZb

)
sin βst2, and D = cos βst2 + j Zs

Zt
sin βst2. The absorption coefficient can be calculated as

A = 1 − R2 − T2, where A is the coefficient of absorption power, R2 is the coefficient
of reflection power, and T2 is the coefficient of transmission power. We consider that
air is adopted as the spacer layer so that Zs equals to Z0. Thus, it can be seen that the
absorption performance depends on impedance Zt and Zb which is mainly related to the
sheet resistance (Rt, Rb) and the equivalent reactance (Xt, Xb).

3. Results and Discussions

The proposed TMMA was performed in commercial software CST based on the
finite integration method. During the numerical simulation, the mesh number of the
designed model is 13635, and four processor cores (CPU, Core i7-6700) and 16,800 MB of
memory (RAM) have been used, which results in the total calculation time of 1 min. In
order to simulate the periodic array structure, the unit-cell boundary condition was set
in the software. The space layer is regarded as air spacer with the thickness of t2 = 2 mm,
and the PET sheet (εr = 3.6, tanδ = 0.003) has a thickness (t1) of 0.125 mm. The sheet
resistance of the top film is Rt = 320 Ω/square, 180 Ω/square, 140 Ω/square, 100 Ω/square.
Additionally, the bottom films Rb keep constant and equal to 28 Ω/square. The other
parameters are the same as previously mentioned. The simulation result is shown in
Figure 3 for normal incidence. It is observed that with increasing top film resistance, the
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absorption performance in the frequency range of 6 GHz–18 GHz is gradually enhanced.
The absorption coefficient curve gradually moves higher as the frequency increases, as
same as the reflection coefficient. When Rt = 320 Ω/square, the absorption coefficient is
greater than 0.9, which can achieve near-perfect absorbance in a wide frequency range.
It can be concluded that the impedance of the absorber is perfectly matched with the
free-space impedance Z0 over the whole band. Besides, regardless of the value of top film
impedance, EM waves are barely transmitted.
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The absorption spectra under the incident EM wave with different angles θ are also
investigated, as shown in Figure 4. In transverse electric (TE) mode, when the incident
angle varies from 0◦ to 50◦, the absorbing strength weakens slightly, but the absorption
bandwidth (A > 0.8) remains almost the same. Note that the higher the frequency, the less
affected by the incident angle. In the case of transverse magnetic (TM) mode, although
the absorbing band has a slight decrease with increasing incident angle, the absorption is
moderately affected by the different incident angles, which invariably keeps high efficiency.
This could be due to the fact that the magnetic field component parallel to the top film
decreases as the angle of incidence tends to be parallel. Therefore, it can be noted that
the proposed TMMA reveals a wide-angle absorption performance for both the TE and
TM modes.
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To further excavate the physical mechanism of broadband absorption character-
istics, the distributions of electric field and surface current have been investigated in
Figures 5 and 6. At the frequency of 6 GHz, the electric field is mainly concentrated on
both edges and corners of the square split-ring, resulting in a capacitive effect between
adjacent units. At the higher frequency, most electric fields are focused on both the inner
and gap of the square split-ring, which leads to stronger localization of the electric field. In
Figure 6, we can observe that the top surface current is gathered at the edge of the square
split-ring at a lower frequency, whereas the current densities in the central region gradually
rise with increasing frequency. The current flow on the top and bottom layers are parallel
in the same direction, which indicates that there is a strong electric resonance. Compared
with the bottom layer, the electric field and surface current are mainly distributed in the
top layer. This means that the power of the incident wave is mainly dissipated on the top
layer due to the ohmic loss caused by electric resonance.
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4. Experiments

To validate the absorption performance, the proposed absorber composed of 22 × 22 unit
cells is fabricated with the overall size of 286 mm × 286 mm. For the top and bottom layer,
AgNWs films are coated on the 0.125 mm PET films, and the sheet resistances of the top
and bottom film are about 320 Ω/square and 28 Ω/square, respectively. Both PET and
silver nanowires are etched into the designed pattern by laser etching. The concentration
of AgNWs ink (viscosity: 7.34 cP, tension: 41.522 mN/m) used is 0.392%. The diameter and
length of silver nanowires are 20~25 nm and 30~35µm. The ink coating is carried out with
a Slot Die Coater (SHINING, Shenzhen, PR China). The whole coating process consists of
loading material, coating, ultraviolet curing, and laminating. The drying process adopts
staged drying, and the drying temperatures are 75 ◦C, 95 ◦C, 120 ◦C, 100 ◦C, and 60 ◦C.
The laser etching is implemented by a CO2 laser (50W, one pulse). The spot size of the laser
is 100 µm. For the whole sample, the total laser etching time is 25–40 min.
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The photograph of the sample shown in Figure 7 has good optical transparency. The
average optical transmittance (380 nm–760 nm) is more than 82% through testing the
different positions of the whole structure. The top film and bottom film are inserted into
a double layer of square ring paperboard (a single layer of square ring paperboard has a
thickness of 1.007 mm), meeting the requirements of a 2 mm-thick air spacer. The measured
total thickness of the clamp and absorber is 4.555 mm. After subtracting the thickness of
the front and back cardboard clamp (the thickness of the clamp is the same as square ring
paperboard), the thickness of the absorber is 2.541 mm.
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The absorption experiment is carried out in an anechoic chamber using the free
space method. Two standard wideband horn antennas (1 GHz~18 GHz) connected to
the vector network analyzer (VNA, Advantest R3770) are regarded as the transmitter
and receiver, and both the antennas should aim at the center of the sample, as shown
in Figure 8. In the case of reflection measurement, a flat metallic board is used as the
reference reflection plane. Two horn antennas are placed on the same side of the sample. In
the case of transmission measurement, the air window is used as the reference transmission
plane, and the horn antennas are respectively placed on both sides of the sample and in
the same line. The measured absorption spectrum is depicted in Figure 9. Compared
with the simulation results, the measured absorption exhibits good coincidence from
9 GHz–15 GHz. The slight difference observed from the comparison is mainly due to the
following reasons: (1) the fabrication error of the AgNWs films; (2) the slight bending of
the sample in the measurement; (3) the mutual coupling effect of two horn antenna in the
low-frequency band.
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5. Conclusions

In summary, a flexible and transparent microwave absorber with an ultrathin thickness
has been proposed, using AgNWs film. The absorption principle based on the effective-
medium method and the transmission line theory has been illustrated. The proposed
absorber exhibits an excellent absorption bandwidth (6 GHz~18 GHz) with high absorption
coefficients above 0.8, and the experimental results basically agree with that of the simulated
result. The fabricated absorber has a measured optical transmittance of 82% in the visible
band (380 nm–760 nm). Meanwhile, this structure has a good angular stability with the
oblique incidence angle (up to 50◦) for both TE and TM modes. The designed absorber is
particularly promising for applications in the area of intelligent wearable devices, window
EM protection, and stealth technology.
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