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Abstract: Halogen bonding is one of the most interesting noncovalent attractions capable of self-
assembly and recognition processes in both solution and solid phase. In this contribution, we report on
the formation of two solvates of tetrabromoterephthalic acid (H2Br4tp) with acetonitrile (MeCN) and
methanol (MeOH) viz. H2Br4tp·2MeCN (1MeCN) and H2Br4tp·2MeOH (2MeOH). The host structures
of both 1MeCN and 2MeOH are assembled via the occurrence of simultaneous Br···Br, Br···O, and Br···π
halogen bonding interactions, existing between the H2Br4tp molecular tectons. Among them, the
cooperative effect of the dominant halogen bond in combination with hydrogen bonding interactions
gave rise to different supramolecular assemblies, whereas the strength of the halogen bond depends
on the type of hydrogen bond between the molecules of H2Br4tp and the solvents. These materials
show a reversible release/resorption of solvent molecules accompanied by evident crystallographic
phase transitions.

Keywords: halogen bonds; hydrogen bonds; solvate; structural phase transition; Hirschfeld surface;
tetrabromoterephthalic acid

1. Introduction

Supramolecular interactions have been extensively investigated due to their impor-
tance in governing various interesting physical properties as well as chemical and biological
assemblies [1–3]. Halogen bonding (XB) is emerging as one of the prominent intermolecular
interactions that takes place between the sigma (σ)-hole of the polarizable halogen atom
(Lewis acid, XB donor) and the electron-rich atom or π-electron system (Lewis base, XB
acceptor) [4,5]. Generally, the XB interaction is presented as D−Y···A, where D−Y and A
are the XB donor and XB acceptor, respectively. This type of interaction is highly directional
and exhibits highly predictable bond geometries in the solid state. Theoretical calculations
have suggested that the strength of the halogen bonding interaction energies is comparable
to that of the ubiquitous hydrogen bond [6] and that the strength of the XB donor increases
in the following order as the XB donor ability increases: F < Cl < Br < I [7]. These features
suggest that the halogen bonding interactions could be used as a crystal engineering tool
for designing and developing novel functional materials in the crystalline state [8].

Recently, halogen bond-based supramolecular synthons have been used to construct
an exciting class of porous organic materials named halogen-bonded organic frameworks
(XBOFs), which are self-assembled from pure organic building blocks (tectons) [9–11].
Compared with analogous materials such as covalent organic frameworks (COFs) and
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metal-organic frameworks (MOFs), where the frameworks are built using strong covalent
bonds [12], the extended supramolecular frameworks of XBOFs are even more flexible,
allowing the inclusion of guests with specific intermolecular interactions. In this regard,
the combination of suitable molecular tectons and specific halogen bond synthons is
important for the creation of new functional XBOF materials with specific applications.
Among the various organic tectons, iodobenzene derivatives and pyridine moieties are
the most widely studied in directing the formation of XBOF structures through strong and
directional I···N synthons [13–15]. For instance, the group of B. Ji and D. Deng recently
used the molecular tectons of 1,4-difluoro-2,3,5,6-tetraiodobenzene and 1,2,4,5-tetra(4-
pyridyl)benzene to construct a series of XBOFs [16]. The crystal structure determination
revealed that the strong and directional I···N interactions (3.002 and 3.096 Å) between
the respective components is mainly responsible for the formation of flexible frameworks,
possessing large flexible breathing 1D channels. Notably, the flexible frameworks of these
materials show selective recognition for aromatic guest molecules.

In this work, the tetrabromoterephthalic acid (H2Br4tp) was employed as a molecular
building block to synthesize new solvate crystals. This molecule contains two carboxyl and
four bromo groups with versatile tectons in self-complementary XB modules bearing both
XB donor and XB acceptor sites. Crystallization of H2Br4tp from acetonitrile (MeCN) and
methanol (MeOH) yielded two solvates with a 1:2 molar ratio viz. H2Br4tp·2MeCN (1MeCN)
and H2Br4tp·2MeOH (2MeOH). As expected, the functional groups of the H2Br4tp tectons can
be involved in self-complementary Br···Br, Br···O, and Br···π halogen bonding interactions,
resulting in the formation of 2D XBOFs. Moreover, the 2D assemblies can form the inclusion
of solvents MeCN and MeOH assembled through both strong and weak hydrogen bonding
interactions. These materials can undergo many cycles of release/resorption of solvent
molecules, exhibiting crystallographic phase changes between the solvated (P-1 for 1MeCN
and P21/c for 2MeOH) and unsolvated (C2/m for H2Br4tp [17]) crystals.

2. Experimental Setup
2.1. Materials and Methods

All chemicals and solvents, i.e., H2Br4tp, MeCN, and MeOH, were reagent grade and
were used without further purification. Elemental (C, H, and N) analysis was determined
with a LECO CHNS 932 elemental analyzer. Powder X-ray diffraction (PXRD) measurements
were carried out on a Bruker D8 ADVANCE X-ray powder diffractometer using Cu Kα

(λ = 1.5418 Å). FT-IR spectra were recorded on a Perkin-Elmer model Spectrum GX FT-IR
spectrometer using attenuated total reflection (ATR) mode in the range of 650–4000 cm−1.
Thermogravimetric analyses (TGA) were carried out using a Metter Toledo TGA/DSC3+
from 30–500 ◦C with a heating rate of 10 ◦C min−1, under nitrogen atmosphere.

2.2. Synthesis and Crystallization of H2Br4tp·2MeCN (1MeCN)

A mixture of H2Br4tp (5 mg) and MeCN (2 ml) was added into a 25 mL Teflon-lined
reactor, sealed in a stainless-steel autoclave, and placed in an oven. The mixture was heated
from room temperature to 110 ◦C under autogenous pressure for 1 h and then cooled down
to room temperature. Colorless block-shaped crystals of 1MeCN were obtained. Anal. calc.
for C12H8Br4N2O4: C, 25.56; H, 1.43; N, 4.97%. Found: C, 25.60; H, 1.43; N, 4.82%. FT-IR
(ATR, ν/cm-1, s for strong, m medium, w weak): 3514w, 3421w, 3149w, 1571s, 1415s, 1324s,
1570s, 1182w, 1069m, 919w.

2.3. Synthesis and Crystallization of H2Br4tp·2MeOH (2MeOH)

Colorless block-shaped crystals of 2MeOH were synthesized by a similar procedure as
1MeCN above except that MeCN was replaced with MeOH. Anal. calc. for C10H10Br4O6: C,
22.01; H, 1.85%. Found: C, 22.26; H, 1.91%. FT-IR (ATR, ν/cm−1): 3514w, 3421w, 3149w,
1571s, 1415s, 1324s, 1570s, 1182w, 1069m, 919w.
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2.4. X-ray Crystallography

Suitable crystals of 1MeCN and 2MeOH were carefully selected and mounted on MiTeGen
micromounts using paratone-N oil. X-ray diffraction data were collected using a Bruker
D8 QUEST CMOS PHOTON II with graphite monochromated Mo-Kα (λ = 0.71073 Å)
radiation at 296(2) K. Data reduction was performed using SAINT, and the SADABS scaling
algorithm [18] was used for absorption correction. The structure was solved with the ShelXT
structure solution program using combined Patterson and dual-space recycling methods [19].
The structure was refined by least squares using ShelXL [20]. All non-H atoms were refined
anisotropically. The H atoms of solvent molecules were positioned geometrically with
C–H = 0.96 Å and refined using a riding model (AFIX137 for methyl H atom in ShelXL
program) with fixed displacement parameters Uiso(H) = 1.5Ueq(C). The O–H hydrogen
atoms were located on difference Fourier maps but refined with O–H = 0.82 ± 0.01 Å with
Uiso(H) = 1.5Ueq(O). A summary of crystal data and structural refinement parameters for
1MeCN and 2MeOH is given in Table 1.

Table 1. Crystal data and structure refinement for 1MeCN and 2MeOH.

Compound H2Br4tp·2MeCN (1MeCN) H2Br4tp·2MeOH (2MeOH)

Empirical formula C12H8Br4N2O4 C10H10Br4O6
Formula weight 563.84 545.82
Temperature (K) 296(2) 296(2)
Crystal system Triclinic Monoclinic

Space group P-1 P21/c
a (Å) 6.1577(6) 11.8461(11)
b (Å) 8.3463(8) 9.2213(8)
c (Å) 9.2327(9) 15.1000(14)
α (◦) 68.241(3) 90
β (◦) 78.863(4) 107.840(3)
γ (◦) 84.436(4) 90

V (Å3) 432.23(7) 1570.2(2)
Z 1 4

ρcalc (g/cm3) 2.166 2.309
µ (mm−1) 9.327 10.271

F(000) 266 1032
λ (Å) 0.71073 (Mo-Kα) 0.71073 (Mo-Kα)

θ range (◦) 3.4–32.1 2.8–32.1
Reflections collected 17952 50246

Independent reflections 3149 5490
Rint, Rsigma 0.0566, 0.0429 0.0968, 0.0650

Data/restraints/parameters 3149/1/106 5490/4/200
Goodness-of-fit on F2 1.028 1.025

R1, wR2 [I > 2σ(I)] 0.0427, 0.0731 0.0519, 0.0944
R1, wR2 [all data] 0.0909, 0.0871 0.1189, 0.1167

∆ρmax, ∆ρmin (e Å−3) 0.57, −0.69 0.93, −1.14
CCDC number 2005667 2005668

3. Results and Discussion
3.1. Structural Description

Colorless block-shaped crystals of 1MeCN and 2MeOH were obtained upon the crys-
tallization of H2Br4tp from the solvents MeCN and MeOH at 110 ◦C for 1 h in a 25 mL
Teflon-lined stainless-steel container. Alternatively, single crystals of these two solvates can
also easily be grown by dissolving H2Br4tp in each respective solvent and by allowing them
to crystallize by slow evaporation at room temperature for 24 h. The single-crystal X-ray
diffraction analysis revealed that the solvates crystallize in the centrosymmetric system
with space groups P-1 and P21/c for 1MeCN and 2MeOH, respectively. These solvates have
a similar 1:2 stoichiometric ratio of H2Br4tp and solvent molecules. Figure 1 shows the
molecular structure with the atomic numbering schemes of the solvates. The asymmetric
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unit of 1MeCN contains half a molecule of H2Br4tp located at a center of inversion and one
MeCN molecule. In contrast, there are one H2Br4tp molecule and two MeOH molecules in
the asymmetric unit of 2MeOH.
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Figure 1. The molecular structures with 30% probability displacement ellipsoids and atom numbering
schemes of (a) 1MeCN and (b) 2MeOH.

In the crystal of 1MeCN, the H2Br4tp molecules are linked by Br···O halogen bond and
weak van der Waals (vdW) O···O interactions to generate a two-dimensional (2D) sheet
structure along the a axis (Figure 2a). The observed Br···O halogen bonding interaction
(3.270(3) Å) between bromine atom and the oxygen carbonyl atom in 1MeCN is ≈3% shorter
than the sum of the vdW radii of the Br and O atoms (3.37 Å) [21], and the C–Br···O bond
angle (155.3◦) is slightly bent. In contrast, the non-bonded O···O distance (3.038(6) Å)
between the oxygen atoms of the carboxyl groups is almost the same as the sum of the
vdW radii of the two oxygen atoms (3.04 Å). Apparently, the solvent MeCN molecules are
located between the 2D layered sheets and participate in O–H···N and C–H···O hydrogen
bonding interactions (Table S1) in the tetrameric motif with graph set notation R4

4(16) [22]
(Figure 2b). Such interactions along with additional weak type I Br···Br halogen bonds and
Br···π contacts (Br···C≈3.5 Å) [23] link the 2D sheets into a 3D supramolecular architecture.
Further investigation of the packing structure found that the centroid–centroid distances
between the stacked C≡N group of the MeCN molecule and the aromatic ring of the
H2Br4tp molecule is 3.997(5) Å, which indicates a weak π−π interaction [24]. This also
contributes to the packing stabilization of the solvate 1MeCN. The geometric parameters
for the halogen bonds and the hydrogen bonds of the solvates are provided in Table 2 and
Table S1 (Supplementary Materials), respectively.

For 2MeOH, the H2Br4tp molecules are assembled together by Br···O halogen bonding
(3.043(3) and 3.087(3) Å) and O···O (3.022(3) Å) interactions similar to that of 1MeCN above,
giving rise to a 2D sheet structure approximately along the a axis, as illustrated in Figure 3a.
However, unlike 1MeCN, several Br···Br interactions (3.7233(7)−3.8871(8) Å) of types I and
II exist in the crystal structure of 2MeOH (Figure 3b), and these values are slightly longer
than the sum of the vdW radii, indicative of weak interactions. It should also be noted
that the Br···O distances in 2MeOH (Table 2) are much shorter than those observed for
1MeCN. This is possibly due to the influence of the geometry of the MeOH molecules on
packing. H2Br4tp and the MeOH molecules can behave as either hydrogen bond donor
or acceptor sites similar to that of 1MeCN and interact with each other via the O–H···O
and C–H···O hydrogen bonding interactions (Table S1), leading to the formation of the
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tetrameric hydrogen bonding motif with an R4
4(12) graph set (Figure 3c). These interactions

serve to connect the sheets into a 3D architecture.

Table 2. Parameters of the C−Br···X halogen bonds for 1MeCN and 2MeOH.

C−Br···X d(Br···X) (Å) ∠(C−Br···X) (◦) Symmetry Code

1MeCN
C3–Br1···Br2 3.9434(7) 85.26(10) −x, −y, 1 − z
C4–Br2···O2 3.270(3) 155.24(11) x, y, z − 1

2MeOH
C3–Br1···O4 3.087(4) 173.41(14) 1 − x, 1/2 + y, 3/2 − z
C4–Br2···O1 3.043(3) 177.69(15) 1 − x, 1/2 + y, 3/2 − z
C4–Br2···Br3 3.7233(7) 89.77(13) x, 1/2 − y, z + 1/2
C4–Br2···Br4 3.8507(8) 119.49(13) x, 1/2 − y, z + 1/2
C8–Br3···Br1 3.7989(7) 176.35(13) x, 1/2 − y, z − 1/2
C8–Br3···Br3 3.7994(11) 77.52(13) 1 − x, −y, 1 − z
C8–Br3···Br4 3.8871(8) 103.15(13) 1 − x, −y, 1 − z
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Figure 4 depicts the packing diagrams and the contact surface of the channels viewed
along the a and b axes for 1MeCN and 2MeOH, respectively. Although both solvates have
the same composition and stoichiometry, it can clearly be seen that different solvents lead
to differences in molecular orientation within the crystal packing. This can be attributed
to the nature (size, shape, and intermolecular interaction capabilities) and the different
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roles of solvent molecules during supramolecular framework assembly. It appears that
the space accommodating the MeCN molecule in 1MeCN has a cylinder-like geometry
(1D channel along the a axis) with discontinuous voids (Figure 4a). For 2MeOH, the space
occupied by the MeOH molecules shows continuous in-void volume maps (Figure 4b) that
propagate in two directions (the ac plane). Despite the different packing arrangements,
either solvent MeCN or MeOH molecules are involved in the hydrogen bonding with
similar tetrameric hydrogen-bonding motifs as described above. A comparison of the
packing efficiency (Ck) using PLATON [25] revealed that 1MeCN (Ck = 46.9%) possesses a
lower packing efficiency than that of 2MeOH (Ck = 52.1%). This result demonstrates that
the components in the solvate 2MeOH pack more tightly, which may be attributed to the
presence of numerous Br···O, Br···Br, and Br···π halogen bonding and classical O–H···O
hydrogen bonding interactions. Furthermore, the potential solvent-accessible void space
after the removal of solvent molecules, also calculated using PLATON, was estimated to be
≈34.8% and 30.4% for 1MeCN and 2MeOH, respectively. In this regard, the 2D supramolecular
frameworks with visualized surfaces of void structures of these solvates may potentially
serve as a stable soft host framework for polar organic molecules.
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Additionally, given the abundance of bromine atoms in the H2Br4tp molecular tectons,
perhaps it is not surprising that Br···O, Br···Br, and Br···π synthons were the most frequently
found halogen bonding motifs in 1MeCN and 2MeOH. Our previous studies also indicated
that this type of interaction was common in H2Br4tp solvates with acetone, ethanol, dimethyl
sulfoxide, and ethylene glycol solvents [23] and is mainly responsible for the formation of
their layered sheets. Despite this, each solvate exhibits subtle differences in overall packing
due to different hydrogen bonding and the orientation of the solvent molecules. Notably,
H2Br4tp can selectively accommodate MeOH molecules relative to other solvents. This is
probably related to the molecular shape and size, the acidity scale, as well as some specific
intermolecular interactions.
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3.2. Hirshfeld Surface Analysis

The nature of the intermolecular interactions between the molecules within the crystal
structure of the solvates 1MeCN and 2MeOH was further quantified and visualized by
Hirschfeld surfaces [26] and their associated 2D fingerprint plots [27] performed with
CrystalExplorer [28]. The shorter and longer contacts on the Hirschfeld surfaces are indicated
as red and blue spots, respectively, while white spots indicate contacts with distances
approximately equal to the sum of the vdW radii. The function dnorm (normalized distance)
is a ratio enclosing the distances of any surface point to the nearest interior (di) and exterior
(de) atom and the vdW radii of the atoms. As can be seen from the structural analysis
above, the bromine atoms of the host H2Br4tp molecules are involved in Br· · ·Br, Br· · ·O,
and Br· · ·π halogen bonding interactions. The contributions of such interatomic contacts
to the dnorm surface in these solvates are compared and shown in Figure 5.
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It is evident that the 2D fingerprint plots of all contacts among these solvates differ sig-
nificantly due to the differences in packing arrangements and intermolecular interactions in
the solid state. Specifically, there is major significant difference in the Br···Br contact, which
comprises 4.4% and 12.1% of the dnorm surface for 1MeCN and 2MeOH, respectively, while
the Br···O contacts show quite similar contributions to the surface (9.3% for 1MeCN and
8.5% for 2MeOH). Apparently, both solvates feature Br···C/C···Br contacts (9.9% for 1MeCN
and 10.8% for 2MeOH), which are manifested as weak Br···π contacts. The Br···H/H···Br
contacts also have a significant contribution towards the crystal stabilization of these sol-
vates (22.3% for 1MeCN and 20.3% for 2MeOH). It should be noted that O···O contacts for
these solvates contribute a negligible percentages (1.8% for 1MeCN and 1.1% for 2MeOH)
towards the total surface area. Furthermore, the dominant interactions between H and O
or N atoms, corresponding to the discussed hydrogen bonding interactions have also been
visualized by selecting the host H2Br4tp molecules as the object. As can be clearly seen from
Figure 6, these solvates exhibit red spots on the dnorm surface, signifying close contacts,
which originate from O–H···O or O–H···N interactions, comprising 5.0% and 20.4% of
the total surface area for 1MeCN and 2MeOH, respectively. It is of interest to note that the
contributions to the dnorm surface due to H···H contacts are 5.7% in 1MeCN and 18.5% in
2MeOH, implying vdW interactions being dominant for the supramolecular organization
in 2MeOH. In addition, the small contributions of the other weak intermolecular C···C
(3.2% for 1MeCN and 1.6% for 2MeOH), C···H/H···C (3.9% for 1MeCN and 0.4% for 2MeOH),
C···O/O···C (3.8% 2MeOH), and H···N/N···H (8.3% for 1MeCN) contacts have negligible
effects on the packing (Figure 7).
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3.3. Thermal Analysis and Structural Transformation

To evaluate the thermal behaviors of the solvates of H2Br4tp, TGA was performed on
crystalline samples in the temperature range of 30 to 500 ◦C under nitrogen atmosphere.
The TGA profiles of 1MeCN, 2MeOH, and H2Br4tp are compared in Figure 8a. It was found
that no weight loss was observed before 280 ◦C in the TGA curve of H2Br4tp, suggesting the
absence of solvent molecules in its crystal structure. Meanwhile, the TGA curves of 1MeCN
and 2MeOH show that the solvent (MeCN or MeOH) molecules are gradually lost from
room temperature to ≈80−95 ◦C, and then decomposition is observed beyond ≈250 ◦C.
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According to the TGA profiles, it is interesting that the structures of the host molecules
remained intact after desolvation. Notably, PXRD patterns of the desolvated samples in
Figure 8b,c also clearly reveal the formation of a new phase-pure material, in which the
peak positions correspond well with H2Br4tp in the monoclinic C2/m space group [17].
Furthermore, the recyclability of the solvent release and resorption experiments was also
examined. The crystalline samples of each solvate (≈10 mg) were placed in a crucible
and heated at 110 ◦C under vacuum (≈10 mbar pressure) for 1 h. Indeed, the solvate
form changes to the unsolvated phase, which can be confirmed by the disappearance of
PXRD peaks at 2θ = 10.40 and 11.35◦ for 1MeCN and at 2θ = 7.83◦ for 2MeOH. Additionally,
the absence of the solvent molecules was also evidenced by the disappearance of the
C≡N stretching vibration band of a nitrile group of MeCN (νC≡N = 2218 cm−1) in the IR
spectrum of 1MeCN (Figure 8d) while only negligible changes could be observed in the IR
spectrum of 2MeOH. Both of the desolvated samples could be recovered to their original
phase upon resolvation with the corresponding solvent (MeCN or MeOH) and heating
(110 ◦C, 1 h) in a Teflon-lined stainless autoclave. Alternatively, crystals of the original
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phase can be obtained by simply immersing the desolvated samples in MeCN and MeOH
solutions for 24 h. This reversible behavior can be repeated a number of times, which was
confirmed by PXRD and IR spectroscopic techniques.

For a better understanding of the dynamic structural phase transition, detailed crystal
structural information as well as intermolecular interactions of the desolvated crystals are
very important. Although the desolvated crystals were found to possess similar morpholo-
gies to those of the original solvate forms and maintained their crystallinity, as confirmed
by the PXRD experiments, they were found to diffract very poorly even at a medium
resolution shell. Thus, single crystal structure determinations of these desolvated forms
in this work were not possible. Despite several recrystallization attempts, regrettably, all
failed to yield crystals of H2Br4tp alone. Fortunately, the solid-state structure of H2Br4tp
determined from PXRD data was reported by Kumar et al. [17]. In packing, intermolecular
O–H···Br hydrogen bonds are mainly responsible for the formation of a 2D sheet. Based on
this evidence as well as our findings, we note that halogen bonding can be cooperative or
competitive with hydrogen bonding during the desolvation–resolvation process.

4. Conclusions

In summary, H2Br4tp, a bromine and carboxyl-containing molecule, showed significant
potential as a building block in the assembly of a 2D halogen-bonded sheet in crystalline
state through a range of different halogen bonding synthons. These 2D assemblies can
form 1:2 cocrystal solvates with MeCN and MeOH, in which the formation relies on very
similar hydrogen bonding motifs between the respective components. Each solvate crystal
showed distinct packing arrangements, which result from permutations of different halogen
bonds. PXRD analysis and IR spectroscopy showed that the structural phase transitions
between the solvated and the unsolvated crystals are reversible upon the release/resorption
of solvent molecules. This study assessed the importance of the cooperative effect of halogen
bonding in combination with hydrogen bonding interactions for engineering solvate crystals,
permitting reversible release and resorption of solvent molecules.
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