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Abstract: The nanorods of [Pb(L)Br2]n (1) (L = 1,2-bis (pyridin-3-ylmethylene)hydrazine) underwent
ultrasound irradiation and were synthesized as a novel three-dimensional fishbone-like Pb(II)–
organic coordination supramolecular compound. The morphology and nanostructure of the synthe-
sized compound were determined through SEM, FTIR, elemental analyses, and XRD. Compound
1 was structurally characterized by single-crystal X-ray diffraction and revealed six-coordinated
Pb (II) ions bonded to two N atoms from two L ligands and four bromine anions, forming a one-
dimensional fishbone-like coordination polymer, which extended into a 3D supramolecular structure
through weak intermolecular interactions. The bulk thermal stability of compound 1 was examined
using thermogravimetric analysis (TGA). Moreover, PbO nanoparticles with sizes of 40–80 nm were
obtained through the thermolysis of 1 at 180 ◦C using oleic acid as a surfactant.

Keywords: nanorods; Pb(II); ultrasonic irradiation; nano metal oxide; crystal structure

1. Introduction

Coordination compounds or metal–organic hybrid materials have remarkably at-
tracted huge attention during the past twenty years. Inorganic–organic hybrid supramolec-
ular materials include the self-assembly of an organic ligand with proper metal ions and
functional groups with special directionality and functionality [1–5]. Structural blocks are
created based on coordinating interactions and other poor non-covalent inter-molecular
forces, including hydrogen bonds and pi stacking, which have key roles in their stability.
The attraction to these compounds comes from the effects of basic structural chemistry, and
their probable applications in areas including luminescence, catalysis, nonlinear optics,
magnetism and molecular sensing and adsorption, which do not exist for mononuclear com-
pounds [6–8]. Lowering the size of nano-scaled coordination supramolecular compounds
increases the surface area. Preparing any types of nano-scaled coordination supramolecular
compounds is therefore the main path toward the technological application of these novel
materials [9].

Pb(II) frameworks have attracted interest because of their large ion radius, variable
coordination number, and possible occurrence of a stereochemically active lone pair of
6s2 outer electrons with a novel network of topologies and interesting properties [10–12].
According to the hard–soft acid–base theory, the intermediate coordination ability of Pb(II)
means that it can flexibly coordinate small nitrogen or oxygen atoms as well as large sulfur
atoms [13]. Investigation of the stereo-chemical activity of valence shell lone electron
pairs in the polymeric and supramolecular compounds may be more interesting. The
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spontaneous aggregation of several bridging ligands causes the gap to disappear, and the
coordination of Pb (II) assumes a less common holodirected arrangement [14].

The present study introduces an eco-friendly and simple nanocrystal synthesis of
a three-dimensional coordination supramolecular compound via ultrasonic irradiation.
Organic synthesis was performed, and nanomaterials prepared using sonochemical tech-
niques [15]. Further studies are still required for clarifying the application of the Ultra-
sound technique (UST) to constructing coordination supramolecular compounds. The
present study investigated the fast synthesis of [Pb(L)Br2]n (1) [L = 1,2-bis (pyridin-3-
ylmethylene)hydrazine] as the nanocrystals of a one-dimensional fishbone-like Pb(II) coor-
dination polymer. According to the findings obtained, Ultrasound technique (UST) synthe-
sis is an efficient, low cost, simple and eco-friendly method for coordination supramolecular
nanocompounds compared to conventional synthetic methods such as the solvent diffusion
method and solvothermal and hydrothermal approaches [16].

Ultrasound technique (UST) leads to high-energy chemistry by processing acoustic
cavitation, including bubbles, expansion, and their implosive collapse within a liquid
intermediate [17]. UST results in alternative compressive and expansive acoustic waves to
make and oscillate bubbles by irradiating liquids. Bubble can invade and consequently
collapse fast, i.e., with cooling and heating rates of over 1010 Ks−1. The huge energy
concentration obtained over the collapse leads to a pressure of about one thousand bar and
a local temperature of approximately 5000 K. The energy distribution to the surroundings
during collapse and after bounce causes the hot spot gas temperature to swiftly reach
the temperature of the surrounding area [18,19]. Ultrasonic irradiation can therefore be
used to assist various chemical reactions progress at room temperature, and even certain
reactions formerly difficult to actualize using conventional approaches [20–23]. The present
study employed oleic acid as a surfactant and performed thermolysis of 1 at 180 ◦C to syn-
thesize and structurally characterize a novel nano lead(II) metal–organic supramolecular
compound with 1,2-bis (pyridine-3-ylmethylene)hydrazine ligand (Scheme 1) and simply
synthesize PbO nanoparticles.
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2. Experiments
2.1. Measurements and Materials

Chemicals were obtained from Sigma-Aldrich (Seoul, South Korea) and used as
received without further purification. Elemental analyses of the samples were carried out
using a Vario Microanalyzer. FTIR was carried out by employing Bruker Vector 22 and
KBr disks at 4000–400 cm−1. Thermogravimetric analysis (TGA) was conducted under
argon flow at 20–600 degrees Celsius and a heating rate of 3 ◦C/min using LABSYS evo
(SETARAM).

X-ray powder diffraction (XRD) measurements were carried out using an X’pert
diffractometer (Panalytical) with monochromatized Cu-Kα radiation. In addition, XRD
patterns were simulated in Mercury to acquire single-crystal information [24]. The morphol-
ogy of the nanostructured compound was determined by scanning electron microscopy
(SEM) (S-4200, Hitachi, Japan) and TEM (JEM-2200FS, JEOL). A 40 kHz Sonicator_3000
multiwave ultrasonic generator made by Misonix Inc. in the UST equipped with a titanium
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oscillator (horn) and a converter/transducer 12.5 mm in diameter was utilized to perform
ultrasound. The minimum power output of the generator was 600 W for one hour at
ambient temperature. The chemical composition and status of the product were evaluated
by X-ray photoelectron spectroscopy (XPS) (K-ALPHA, UK).

2.2. Preparation of 1,2-bis (pyridine-3-ylmethylene)hydrazine (L)

A mixture of 5 mmol (0.45 mL, 0.45 g) of hydrazine hydrate (35 wt.% in water) and a
solution of 10 mmol (1.07 g) of nicotinaldehyde in 100 mL of methanol was refluxed for
one day. Afterwards, the obtained yellow solids were filtered and then rinsed in methanol
and dried in a vacuum (yield: 65%, 0.98 g), m.p. 140 ◦C, FTIR (KBr) = νmax (698, 706, 817,
863, 1021, 1089, 1185, 1225, 1304, 1417, 1482, 1586, 1625, 2929) cm−1. H NMR (CDCl3, ppm):
8.66 (s, 2H), 8.70 (d, 2H), 8.97 (s, 2H), 7.41 (d, 2H), 8.22 (d, 2H).

2.3. Preparation of Nanostructure and Single Crystal [Pb(L)Br2 ]n (1)

A total of 30 mL of a 0.1 M solution of PbBr2 was added to 30 mL of a 0.1 M solution of
the (L) ligand, and sonication performed with a high-density 40 kHz, 600 W UST probe to
make the nanostructured [Pb(L)Br2]n (1). The obtained precipitate was filtered and rinsed
in water and then dried in the air at the decomposition point: 330 ◦C. According to the
analyses, C: 25.0%, H: 2.0% and N: 10.0% and C: 24.9%, H: 1.5% and N: 9.7% were obtained
for C12H10Br2N4Pb. The selected FTIR bands (cm−1) were as follows: 635s, 750s, 864m,
1045m, 1418s, 1482m, 1590s, 1620s, 3020w.

An appropriate single crystal of [Pb(L)Br2]n (1) determining the X-ray structure was
made and isolated by inserting 1 mmol of L into an arm of a tube with branches and
1 mmol of PbBr2 to the other arm [25]. Having filled both the arms with methanol and
sealing the tube, the arm containing the ligand was submerged in a 60 ◦C oil bath. Yellow
crystals (decomposition point of 333 ◦C) were precipitated for 9 days on the other arm that
was placed at room temperature. Afterwards, the crystals were filtered, rinsed in water,
and dried in air with a yield of 70% (0.402 g). The results obtained were as follows: H:
2.0%, C: 25.5% and N: 10.0%. Moreover, C: 24.9%, H: 1.5% and N: 9.7% were obtained for
C12H10Br2N4Pb. The selected FTIR bands (cm−1) were as follows: 634s, 750s, 864m, 1045m,
1418s, 1482m, 1590s, 1620s, 3024w.

2.4. Preparation of Nanoparticles of Pb(II) Oxide

After dissolving 0.1 mmol of [Pb(L)Br2]n (1) in 10 mL of oleic acid, the light-yellow
solution obtained was degassed for forty-five minutes (with stirring and slow heating) and
then heated for one hour at 180 ◦C, ultimately yielding a black precipitate. After adding a
great amount of ethanol and a little toluene to the solution, lead(II) oxide nanoparticles
were centrifuged and thereby isolated. The final solid was rinsed in ethanol and dried at
room temperature (yield: 43%, 0.01 g).

2.5. X-ray Crystallography

A 0.65 × 0.15 × 0.09 mm3 yellow compound crystal was placed over glass fiber using
epoxy adhesives. An X-ray diffractometer (50 kV, 30 mA) with graphite monochromated
Mo Kα radiation (λ = 0.71073 Å) was used over 2θ = 4.56–50.08◦ to collect data. No signif-
icant data were missing from the data collected. The data were processed in the crystal
structure analysis module of the Bruker AXS [26]. The modules of AXS utilized included
SADABS (Bruker) for absorption correction, SHELXS-97 (Sheldrick) and XPREP (Bruker)
for structure solution, SHELXTL (Sheldrick) for molecular graphics and publication materi-
als, SHELXL-97 (Sheldrick) for structure refinement, APEX2 (Bruker) for data collection,
and SAINT (Bruker) for cell refinement and data reduction. Furthermore, the method
proposed by Waber and Cromer was used to obtain scattering factors for neutral atoms [27].
The crystal was of the monoclinic space group P21/c given the systematic deficiency, E statis-
tic, and effective structure refining. Furthermore, the structure was solved by utilizing
direct techniques. For the data obtained from the compound, full-matrix least squares
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refinement was performed by minimizing the function of ∑ w
(

F2
c − F2

0
)2. Moreover, non-

hydrogen atoms were anisotropically refined. The location of the hydrogen atoms was
geometrically determined with 0.98Å (CH3) and C–H = 0.95 (aromatic) and refined with
Uiso(H) = −1.2 UeqC as riding atoms. Tables 1 and 2 present the crystallographic data, the
bond lengths, and the angles.

Table 1. Crystal data and structure refinement for [Pb(L)Br2]n (1).

Empirical Formula C12H10Br2N4Pb

Formula weight 555.23
Temperature/K 293(2)
Crystal system monoclinic

Space group P21/c
a/Å 4.005(7)
b/Å 9.169(13)
c/Å 34.27(4)
α/◦ 90.00
β/◦ 92.08(4)
γ/◦ 90.00

Volume/Å3 1258(3)
Z 4

ρcalcmg/mm3 2.922
µ/mm−1 19.751

F(000) 1000.0
Crystal size/mm3 0.65 × 0.15 × 0.09

2Θ range for data collection 4.76 to 50.08◦

Index ranges −4 ≤ h ≤ 3, −10 ≤ k ≤ 10, −37 ≤ l ≤ 40
Reflections collected 6637

Independent reflections 1789[R(int) = 0.0834]
Data/restraints/parameters 1789/0/160

Goodness-of-fit on F2 1.101
Final R indexes [I > = 2σ (I)] R1 = 0.1166, wR2 = 0.2949

Final R indexes (all data) R1 = 0.1255, wR2 = 0.3013
Largest diff. peak/hole/e Å−3 5.58/−3.65

Table 2. Selected bond lengths (Å) and angles (◦) for [Pb(L)Br2]n (1).

Pb1—N2 2.67 (2) Pb1—Br1 2.992 (4)
Pb1—N2 i 2.67 (2) Pb1—Br1 iii 2.975 (4)
Pb1—Br1 ii 2.975 (4) Pb1—Br1 i 2.992 (4)

N2—Pb1—N2 i 180.000 (12) N2—Pb1—Br1 ii 91.2 (6)
N2—Pb1—Br1 84.4 (5) Br1 iii—Pb1—Br1 i 84.32 (13)
N2i—Pb1—Br1 95.6 (5) Br1 ii—Pb1—Br1 i 95.68 (13)

N2i—Pb1—Br1 iii 91.2 (6) Br1 iii—Pb1—Br1 95.68 (13)
N2—Pb1—Br1 iii 88.8 (6) Br1 ii—Pb1—Br1 84.32 (13)
N2—Pb1—Br1 i 95.6 (5) Br1 i—Pb1—Br1 180.00 (9)
N2i—Pb1—Br1 i 84.4 (5) Br1 iii—Pb1—Br1 ii 180.00 (9)
N2i—Pb1—Br1 ii 88.8 (6)

Symmetry code(s): (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) x + 1, y, z.

3. Results and Discussion

[Pb(L)Br2]n (1) was obtained as a novel one-dimensional fishbone coordination poly-
mer from the reaction of lead(II) bromide with 1,2-bis (pyridine-3-ylmethylene)hydrazine
(L). The nanostructure of the compound was determined in an aqueous solution through
UST irradiation. The suitable single crystals of compound I for X-ray crystallography
were obtained using the heat gradient of an aqueous solution based on the branched-tube
method [28].
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According to Figure 1, the bulk material developed using the branched-tube approach
could not be differentiated from the nanostructured material obtained using the sonochem-
ical approach in terms of FTIR spectrum and the results of elemental analysis. The FTIR
spectrum of the single crystal materials and nanostructured material showed the represen-
tative absorption bands of the “L” ligand. Furthermore, the aromatic C–H absorption of
hydrogen atoms caused a relatively weak band at approximately 3021 cm−1. The aromatic
ring vibration of the “L” ligand was also observed at frequencies of 1418–1590 cm−1.
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Figure 1. FT-IR spectrum of crystal and nano structure of 1.

Tables 1 and 2 show the results of single-crystal XRD for the structure of compound I.
According to the single-crystal XRD in Figure 2, the structure of [Pb(L)Br2]n crystallized in
a monoclinic system with the space group of P21/c resembled that of solid 1D fishbone
metal–organic coordination polymers. Figure 2a shows the structure of the asymmetrical
unit of 1 and an atom numbering arrangement selected. A Pb atom is coordinated by
two N atoms of the L ligand with the same Pb–N distance of 2.670 Å and four bridged
bromine anions with a Pb–Br distance of 2.992 (2.972, 2.992 and 2.972 Å). Figure 2b shows a
coordination number of six for lead(II) atom in two modes with a PbN2Br4 donor set. The
adjusted Pb····Pb distances belonging to the chain were 4.001 Å. This order demonstrates a
symmetry in the coordination geometry surrounding metal ions in a holodirected fashion.
Given the labile interactions, the architecture of one-dimensional chains was allowed
to interact with neighboring chains, and the structure was also allowed to be extended
into three-dimensional supramolecular metal-organic coordination polymers, as shown in
Figure 2d.
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Figure 3a shows the XRD pattern of compound 1 simulated from the single-crystal
X-ray data, and Figure 3b shows the experimental XRD pattern of compound 1 prepared
by using the sonochemical process. Except for slight changes in 2θ, the experimental
data were consistent with the simulated XRD patterns, suggesting that the compound
obtained as a nano-structure using the sonochemical method was the same as that derived
through single-crystal XRD. The major peak enlargmenet showed the nano-dimension of
the particles. According to D = 0.891λ/βcosθ as the Scherrer equation, the mean size of the
grain was estimated at 39 nm, with D representing the mean grain size, λ = 0.15405 nm as
the X-ray wavelength, and θ and β as the diffraction and full-width angles, respectively, at
50% of a peak.
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The crystalline substance was provided with [Pb(L)Br2]n (1) through the reaction of
1,2-bis (pyridin-3-ylmethylene)hydrazine (L) with lead(II) bromide. In addition, the size
and morphology of compound I prepared by the UST technique were analyzed with SEM.
Figure 4 shows the SEM of compound I acquired by using a 600 W ultrasonic generator
at a [Pb2+] = [L−] = 0.1 M concentration of primary reagents. Figure 4 also shows the
nanorod morphology with a diameter of 45–140 nm for compound I. Further assessments
are required for clarifying the formation of these structures. Packing the system at molec-
ular levels, however, morphologically affects the nanostructured compound, suggesting
coordination-encouraged creation over the morphology of the nanostructure [29–32].
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Figure 4. SEM photographs of [Pb(L)Br2]n (1) nanorods.

Figure 5 shows the results of the TGA of the single crystals and nanostructures per-
formed at 25–600 ◦C in argon to investigate the thermal stability of compound 1. For single
crystals of [Pb(L)Br2]n, after removing water molecules from the coordinated molecules
and moisture at 80–110 ◦C, compound 1 was stable at up to 160 ◦C. Decomposition at
160–425 ◦C resulted in a mass loss of about 47.8%. In the case of nanostructured [Pb(L)Br2]n,
the decomposition started at a lower temperature, around 145 ◦C, with the similar weight
loss. This may be attributed to different crystallographic surfaces of both samples exposed
to a thermal gradient [33]. The thermal stability of [Pb(L)Br2]n is much lower than our
previous reports on lead (II) coordination polymer, which may be attributable to differences
in the structures of ligands coordinated to lead [34,35]. XPS findings showed that the solid
residue at about 600 ◦C was PbO.
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as PbO in shape. The O1 s spectrum showed a peak at 531.1 eV, which was estimated at 
530.9 eV of O1 s in PbO in the literature. Figure 7 shows the SEM and TEM results of the 
residue obtained from the thermolysis of 1 at 180 °C by employing oleic acid as a surfac-
tant, suggesting the regular shape of Pb(II) oxide nanoparticles. The significant broaden-
ing of the peaks indicates that the particles have nanometer dimensions. The average grain 
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Figure 5. TGA plot of [Pb(L)Br2]n (1) in single crystal shape and nanostructured mode.

The final products of the decomposition of compound 1 based on their XRD arrange-
ments as per Figure 6a matched the standard design of tetragonal PbO with S.G = P4/nmm,
a = 3.947 Å, Z = 2, c = 4.988 Å and JCPDS (Joint Committee on Powder Diffraction Stan-
dards) card file No: 85-0711. Figure 6b displays the XPS results of nano PbO. The two
asymmetric peaks at 142.28 eV and 137.48 eV were attributed to the transitions of 4f5/2 and
4f7/2 from Pb2+ ions in PbO, respectively, indicating that Pb2+ in the product was the same
as PbO in shape. The O1 s spectrum showed a peak at 531.1 eV, which was estimated at
530.9 eV of O1 s in PbO in the literature. Figure 7 shows the SEM and TEM results of the
residue obtained from the thermolysis of 1 at 180 ◦C by employing oleic acid as a surfactant,
suggesting the regular shape of Pb(II) oxide nanoparticles. The significant broadening of
the peaks indicates that the particles have nanometer dimensions. The average grain size
D was estimated as 58 nm using the Scherrer formula, D = 0.891λ/βcosθ, where λ is the
X-ray wavelength (0.15405 nm) and θ and β are the diffraction angle and full-width at half
maximum of an observed peak, respectively [36].
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4. Conclusions

In this study, a sonochemical method was used to synthesize nano-structures of a new
1D fishbone coordination polymer of divalent lead with 1,2-bis (pyridin-3-ylmethylene)-
hydrazine (L). Single-crystal XRD was performed to structurally determine compound
1. A three-dimensional supramolecular compound included in the crystal structure of
compound I demonstrated a coordination number of six in lead (II) ions. The complex takes
the form of a 1D metal–organic system in solid state. As a result of several labile interactions
with neighboring chains, the 1D chain extended into a 3D supramolecular coordination
polymer. The sonochemically made compound 1 had nanorod morphology with diameter
of 38–43 nm. Moreover, the calcination of compound I through the thermolysis of 1 at
180 ◦C by using oleic acid as a surfactant yielded a uniform PbO nanoparticle.
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