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Abstract: A solid-state electrolyte with an ionic conductivity comparable to that of a liquid electrolyte
is demanded of all-solid-state lithium-ion batteries. Li7La3Zr2O12 (LLZO) is considered to be a
promising candidate due to its good thermal stability, high ionic conductivity, and wide electro-
chemical window. However, the synthesis of a stable cubic-phase LLZO thin film with enhanced
densification at a relatively low thermal treatment temperature is yet to be developed. Indium is
predicted to be a possible dopant to stabilize the cubic-phase LLZO (c-LLZO). Herein, via a nanolayer
stacking process, a LLZO–Li2CO3–In2O3 multilayer solid electrolyte precursor was obtained. After
thermal annealing at different temperatures, the effects of indium doping on the formation of c-LLZO
and the ionic conductivities of the prepared LLZO–LZO thin film were systematically investigated.
The highest ionic conductivity of 9.6 × 10−6 S·cm–1 was obtained at an annealing temperature of
800 ◦C because the incorporation of indium promoted the formation of c-LLZO and the highly
conductive LLZO–LZO interfaces. At the end, a model of LLZO–LZO interface-enhancing ionic con-
ductivity was proposed. This work provides a new approach for the development of low-temperature
LLZO-based, solid-state thin-film batteries.

Keywords: LLZO; indium doping; solid electrolytes thin film

1. Introduction

Recent developments in the field of electrical vehicles and wearable devices have
generated great interest in all-solid-state lithium-ion batteries because of their promising
high-energy density and safety. A critical component of this type of battery is a solid
electrolyte with an ionic conductivity comparable to that of a liquid, but finding one is still
challenging [1].

Among the various solid electrolytes, cubic-phase garnet-type Li7La3Zr2O12 (LLZO) is
considered to be a potential candidate for its good thermal stability, high ionic conductivity
(10−3–10−4 S·cm−1), and wide electrochemical window [2–4]. Previous studies have
shown that the cubic-phase LLZO is easily transformed into a tetragonal phase at room
temperature, leading to a decrease in ionic conductivity by two orders of magnitude [5].
It has been demonstrated that high-valent cation doping can stabilize the cubic phase
at room temperature while creating additional Li+ vacancies and therefore improving
ionic conductivity [6,7]. Based on this principle, Al3+, Ga3+, Cr3+, Fe3+, Sc3+, Ta5+, and
Nb5+, have been introduced to substitute for the cations at the Li or Zr site [8–14] with
significantly improved conductivities. Lincoln et al. calculated the defect energy and site
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preference of all possible dopants into LLZO by the density functional theory (DFT), which
indicated that indium would be a possible dopant [15]. However, systematic investigations
of indium doping into LLZO are still rare [16].

Moreover, generating a LLZO electrolyte with a dense structure and high Li concen-
tration can also effectively improve ionic conductivity. For bulk pellets, the high density
and high Li concentration are typically obtained by a rigorous fabrication process and
excess Li supplement during thermal treatment, respectively [17,18]. However, unlike its
bulk counterpart, the ionic conductivity in LLZO thin film is generally reported below
10−5 S cm−1 [19]. This is usually caused by serious Li evaporation during the physical
vapor deposition (PVD) preparation and post-annealing process, which may result in the
formation of the La2Zr2O7 (LZO) phase and not a dense grain boundary with lower ionic
conductivities [20,21]. Thus, improving the crystallization and densification in LLZO thin
film at a relatively low thermal treatment temperature has received considerable attention.

Several attempts have been made to eliminate the loss of lithium, so as to improve
the ionic conductivities in the grains and grain boundary during deposition. Lithium
compounds are reported to have been recently introduced into LLZO by a co-deposition
process to produce a Li-stuffed thin film. Rawlence et al. used the RF magnetron sputtering
approach to prepare Ga3+ doped LLZO films by the simultaneous sputtering of Ga2O3
and Li2O to give rise to a thin film with an ionic conductivity of 1.6 × 10−5 S cm−1 [22].
Pfenninger et al. proposed a physical vapor deposition (PLD) method using Li3N as Li
source to prepare a Li3N–LLZO multilayer precursor film [23]. After the post-annealing
process, a garnet-type LLZO thin film with an ion conductivity of 2.9 × 10−5 S cm−1 was
obtained. Considering that Li2CO3 is less affected by water and oxygen than Li2O is and
that no additional elements were introduced during the preparation process, Zhu et al.
designed a synthesis strategy of preparation and annealing the LLZO–Li2CO3–Ga2O3
multilayered precursor [24]. In their proposed process, an amorphous domain between
LLZO grains was constructed as the grain boundary, thus reducing the space-charge layer
and releasing the trapped Li+ in the grain boundary. The origin of the pores in the grain
boundaries may limit the electrochemical stability of the LLZO thin film, but this is yet
to be investigated. As the above research shows, Ga3+ doping or an excessive lithium
supplement could promote the formation of the highly conductive cubic-LLZO phase.
However, the Li-deficient LZO phase still inevitably exists in the proposed LLZO–LZO
thin films prepared by the multilayer precursor preparation process [23,24], which could
be attributed to the relatively low annealing temperature and adopted in the present study
as well.

In this work, the indium-doped LLZO–LZO thin film was prepared via a nanolayer-
stacking process followed by annealing at various temperatures. In order to facilitate the
interdiffusion between the layers, the thickness of the films should be controlled to the
nanometer level according to Johnson et al. [25]. Therefore, the precursors were obtained by
repeatedly depositing the LLZO–Li2CO3–In2O3 multilayer on the substrate. By comparing
the morphology and phase structure of the indium-doped LLZO–LZO thin film under dif-
ferent annealing temperatures, the effects of indium doping on the formation and stability
of cubic-phase LLZO were investigated. In addition, there was discussion of the origin of
the pores between the grain boundaries, which could be attributed to the decomposition of
Li2CO3. Finally, the effect of annealing temperature on ionic conductivity for the In-doped
LLZO–LZO thin film was explored by impedance spectroscopy measurement, while the
highest ionic conductivity of 9.6 × 10−6 S·cm–1 was obtained. This work also provided a
preferred preparation and heat treatment process for future development of LLZO-based
thin-film batteries.

2. Materials and Methods
2.1. Preparation of the In-Doped LLZO Thin Film

A combinatorial RF magnetron sputter system [26] was used for the growth of the
indium-doped LLZO–LZO thin film. As shown in Figure 1, the In-doped LLZO–LZO
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thin film precursor was prepared by the sequential and repeated deposition of the LLZO,
Li2CO3, and In2O3 thin film on a 650 µm-thick 24 × 14 mm2 conductive p-type silicon
substrate (100) with a native 400 nm amorphous Si3N4 insulating layer on the surface. From
the viewpoint of the solid-state batteries, one of its important applications is to serve as
the capacity storage unit of a micro-electronic system, which is mostly prepared on silicon
wafers. In this work, the wafers were chosen for the substrate instead of the expensive
MgO that was used in the previous work [24]. The LLZO, Li2CO3, and In2O3 thin film was
deposited from the Li7La3Zr2O12 (99.9%, JiangYin DianYu New Materials Technology Co.,
China.), Li2CO3 (99.9%, JiangYin DianYu New Materials Technology Co., Jiangyin, China),
and In2O3 (99.99%, Zhongnuo New Materials Manufacturing Co., Beijing, China) targets,
respectively. The working pressure for the deposition is 1 Pa, while the power density for
LLZO was 2.38 W cm−2, and 1.90 W cm−2 for the others. Each thickness of the thin film was
controlled to be 7 nm, 0.8 nm, and 6 nm for LLZO, Li2CO3, and In2O3 respectively, while
the whole thickness was 1550 nm because the stacked LLZO–Li2CO3–In2O3 multilayer
structure was repeated 80 times. After annealing at 600 ◦C, 700 ◦C, 800 ◦C for 2 h with a
heating rate of 5 ◦C/min from room temperature to 500 ◦C and 1 ◦C/min above 500 ◦C, the
indium doped LLZO–LZO thin films with different annealing temperatures were prepared.
The detailed preparation parameters of the LLZO–LZO thin films are listed in the Table 1.
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Figure 1. The preparation process of the In-doped LLZO–LZO thin film, which contains sequential and repeated deposition
of the LLZO, Li2CO3, and In2O3 thin film and heat-treatment at various temperatures.

Table 1. Samples of LLZO–LZO thin film solid electrolyte and their preparation parameters

Samples Precursor Structure Annealing
Temperature (◦C) In Doping Extra Lithium

#800-IL LLZO–Li2CO3–In2O3 800 Y Y
#800-L LLZO–Li2CO3 800 N Y
#700-IL LLZO–Li2CO3–In2O3 700 Y Y
#700-I LLZO–In2O3 700 Y N

#600-IL LLZO–Li2CO3–In2O3 600 Y Y

2.2. Characterization

The thickness of the In2O3, LLZO, and Li2CO3 thin film was measured by a surface
profiler (Dektak, XT) as shown in Tables S1–S3, respectively. The crystallization of the
indium doped LLZO–LZO thin film was examined via an X-ray diffraction (XRD, Bruker
D8 advance) using a Cu-Kα wavelength with 2θ in the range from 20 to 70◦. A time-
of-flight secondary ion mass spectrometry (TOF-SIMS) is used to measure the chemical
composition of the LLZO–LZO thin film in-depth after the multilayer interdiffusion process.
The microstructure of the prepared thin films was performed by a scanning electron
microscope (SEM, JSM-7600F). After depositing the two 4 × 8 mm2, 200 nm-thick square
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Au top contacts with 3 mm electrode spacing (the same pattern as shown in the previous
work [24]) on the surface of the thin films by the sputter technique, in-plane electrochemical
impedance spectroscopy (EIS) was obtained using an electrochemical workstation (Ametek
VersaSTAT 3F) with a frequency range from 1 × 106 and 1 Hz at room temperature (25 ◦C).
Zview software was used to process the data of EIS so that the ionic conductivity could
be calculated.

3. Results and Discussion
3.1. Synthesis of the Indium Doped LLZO–LZO Thin Film

In this work, the nanolayer stacking process was used to prepare the indium-doped
LLZO–LZO thin film precursor [26]. It revealed a repeated LLZO–Li2CO3–In2O3 multi-
layer structure and that the thickness of the Li2CO3 layers could be adjusted to ensure the
introduction of extra Li according to the extent of Li-loss. To obtain a uniform composition
along the stacking direction of the sample, the precursor was annealed at different temper-
atures from 600 to 800 ◦C for 2 h to facilitate the interdiffusion between the different layers.
A TOF-SIMS characterization was performed to reveal the compositional depth profiles of
the In-doped LLZO–LZO thin film until the silicon substrate was reached. As shown in
Figure 2a, the compositional depth profile of #600-IL indicated that a uniform distribution
of Li, La, Zr, and In elements as a function of the sputter time was obtained for about
1500 nm below the surface. It confirmed that the interdiffusion had successfully created a
uniform element distribution during the annealing process. The Si+ signal intensity started
to increase when the etching time was more than the 1500 s, while the intensities of the
Li+, La+, Zr+, and In+ signals first decreased and then increased. The result was also in
good accordance with the cross-section microstructure of the prepared sample as depicted
in Figure 2b, which showed a LLZO–LZO thin film with a thickness of 1550 nm, while
two interlayers could be observed between the substrate and the homogenous LLZO–LZO
layer [27]. Combined with the compositional depth profiles, the two interlayers might be
ascribed to the formation of La–In–Si–O and Li–In–Si–O, while the detailed compositions
need further analysis.
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3.2. The Effect of Indium Doping on the Formation of Cubic-Phase LLZO

The XRD patterns for the LLZO–LZO thin films with and without indium doping
that were annealed at 800 ◦C are displayed in Figure 3a. Significant differences were
observed between the two diffraction patterns. Both LLZO–LZO thin films exhibited main
diffraction peaks at 28.6◦, 33.1◦, 36.2◦, 47.5◦, 56.4◦, and 59.2◦, which can be attributed to the
La2Zr2O7 phase (PDF#73-0444). In addition, the In-doped sample also showed diffraction
peaks at 27.7◦, 31◦, 32.5◦, 38.2◦, 43.2◦, 48.9◦, and 51.1◦, which fit well with the cubic-phase
LLZO (c-LLZO; PDF#80-0457) and was not observed in the LLZO thin film without indium
doping. Moreover, the peaks at 21.5◦ and 23.4◦ in both samples could be assigned to
the Li12Si7 phase (PDF#89-0008), which was consistent with the SEM results mentioned
above and most likely appeared near the substrate. A comparison between the two XRD
patterns showed that the main constituent of the film was a pyrochlore La2Zr2O7 phase,
and the In-doped LLZO–LZO thin film demonstrated much higher cubic-phase LLZO peak
intensities, implying that indium doping promoted the formation of the cubic phase at
800 ◦C.
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3.3. The Microstructure and Preferred Crystal Phases under Various Annealing Temperatures

As shown in Figure 3b, all In-doped samples annealed at different temperatures
contained the La2Zr2O7 phase, while the characteristic peak of c-LLZO could also be
observed at 31◦ for all samples. It was also apparent that with the increasing annealing
temperature, the intensity of the characteristic peak at 2θ = 31◦ corresponding to the c-
LLZO phase was gradually enhanced. It was consistent with the former literature reported
by Joong et al. [28] that a higher temperature promotes the formation of LLZO phase
starting at about 600 ◦C. However, all peaks corresponding to La2Zr2O7 follow the same
trend as LLZO, indicating the grain growth of the La2Zr2O7 crystal structure.

The microstructures of the In-doped LLZO–LZO thin films annealed at different
temperatures are shown in Figure 4. For all the samples, the porous and uniformly
distributed surfaces were clearly observed with an average grain size of 50 nm. However,
the porosity gradually increased as the annealing temperature increased. The relatively
dense thin film was obtained at the annealing temperature of 600 ◦C. The possible reason
for the pore generation could be attributed to the decomposition of Li2CO3 during the
annealing process, which was confirmed by the comparation between the morphologies
of the lithium-supplemented and unsupplemented LLZO–LZO thin film under a thermal
treatment at 700 ◦C. As shown in Figure 5a,b, no obvious porous microstructure was
observed on the surface of the film prepared without the Li2CO3 layer, while large pores
appeared in the Li-supplemented sample. In addition, as shown in Figure 5c, the cross-
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section of sample #700-IL showed that a large number of pores was also generated inside
the film. This may have been attributed to the decomposition of Li2CO3 during the thermal
treatment of which the decomposition temperature was near 700 ◦C, and therefore caused
the evaporation of CO2 gas from the film. This led to the generation of the pores that
interfered with the formation of the local dense structure. Such a process is aggravated at
higher temperatures, thus giving rise to a more porous structure. Considering that dense
structure plays an important role in providing the high ionic conductivity of LLZO–LZO
thin films, the sample that was annealed at 600 ◦C would probably be a better candidate
for film densification compared to the other two if they had the same content of the
conductive c-LLZO.
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3.4. Electrochemical Impedance Spectroscopy Analysis of In-Doped LLZO–LZO Thin Films

Figure 6 shows the Nyquist plots of the In-doped LLZO samples annealing at 600 ◦C,
700 ◦C and 800 ◦C, measured with an in-plane (Au–LLZO–Au) technique at room tempera-
ture [24], while the contact structure was prepared by the sputter technique with the same
pattern as shown in the previous work [24]. In addition, the inset in Figure 6 illustrated the
equivalent circuit for data fitting, which contains the bulk conductance (Rbulk), grain bound-
ary conductance (Rg.b. and Cg.b.), and charge polarization at the electrode–electrolyte
interface (Qint). The calculated σb, σg.b., and σtotal at room temperature of the samples
are summarized in Table 2 and were calculated using the same method as in the litera-
ture [27]. However, the LLZO–Li2CO3–In2O3 thin film annealed at 800 ◦C gave the lowest
grain boundary impendence resulting in the highest ionic conductivity of 9.6×10−6 S·cm–1,
which produced a higher ionic conductivity than that of the LLZO thin film as shown in
Table 3 [29,30]. This may be mainly attributable to the indium incorporation, which pro-
moted the formation of c-LLZO and therefore lowered the total resistance. The sample that
was annealed at 600 ◦C had a higher ionic conductivity than that of the sample annealed at
700 ◦C as a result of the higher density of the thin film. In summary, this work provides a
preferred heat treatment with an annealing temperature of 800 ◦C, which gives the highest
ionic conductivity.
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Table 2. Bulk ionic conductivities (σbulk), grain boundary conductivities (σgb), and total ionic
conductivities (σtotal) of the In-doped LLZO–LZO thin film with different annealing temperature at
room temperature

Samples σb (S·cm–1) σg.b. (S·cm–1) σtotal (S·cm–1)

#800-IL 4.20 × 10−3 9.62 × 10−6 9.60 × 10−6

#700-IL 2.56 × 10−3 7.68 × 10−7 7.68 × 10−7

#600-IL 3.83 × 10−3 5.36 × 10−6 5.35 × 10−6

Table 3. The comparation of the ionic conductivity between this result with others.

Samples σtotal (S·cm–1) Prepared Method Reference

In-doped LLZO–LZO 9.60 × 10−6 RF Sputter This work (#800-IL)
Li7La3Zr2O12 6.18 × 10−7 RF Sputter Reference [29]
Li7La3Zr2O12 2.47 × 10−6 RF Sputter Reference [30]

In summary, there are two major factors that contributed to the high conductivity
of the film in this work: a densified film structure and a high content of the conductive
c-LLZO; therefore, a model of the LLZO–LZO interface to enhance ionic conductivity was
proposed as shown in Figure 7. In the model, the orange, blue and gray spheres represent
the LLZO grain, and the LZO grain and pore, respectively. More pores were observed in
the sample that was annealed at 700 ◦C and 800 ◦C, while the dense film was prepared by
annealing at 600 ◦C. The formation of the c-LLZO phase was promoted at a higher annealing
temperature, thus giving rise to the LLZO–LZO interface. In addition, the formation of
the c-LLZO resulted in the relatively higher grain ionic conductivity. According to the
grain boundary ionic conductivities extracted from the equivalent circuit of the impedance
spectra, the highest σg.b. of 9.62 × 10−6 S·cm–1 was obtained at the annealing temperature
of 800 ◦C. It could be attributed to the presence of the LLZO–LZO interface, which may
have a lower interface impedance. Overall, the annealing temperature of 800 ◦C promoted
the crystallization of c-LLZO and the formation of the highly conductive LLZO–LZO
interface, resulting in the highest ionic conductivity.
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Herein, a LLZO–Li2CO3–In2O3 nanolayer stacking process followed by thermal an-
nealing was proposed to synthesize the indium-doped LLZO–LZO thin film solid elec-
trolytes. In addition, a new approach to depositing Li2CO3 as the lithium supplement
source was explored to overcome the issue of lithium loss during the deposition and heat-
treatment process. Importantly, the incorporation of indium promoted the crystallization of
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cubic LLZO, and such a phase became more stable as the annealing temperature increased.
However, the decomposition of Li2CO3 was also intensified at higher temperatures, which
led to the generation of more pores at the grain boundary and more severe structural
damage that caused the densification of the LLZO–LZO thin film to deteriorate. Finally, the
effect of the annealing temperature on ionic conductivity for the In-doped LLZO–LZO thin
film was explored by impedance spectroscopy. Thus, by considering both the formation of
c-LLZO and the integrity of the thin-film structure, the highest ionic conductivity of 9.6
× 10−6 S·cm–1 was obtained at the annealing temperature of 800 ◦C. The result could be
attributable to the indium incorporation, which promoted the formation of c-LLZO and of
the highly conductive LLZO–LZO interface, which lowered the total resistance. This work
provides a preferred preparation and heat-treatment process for future LLZO-based solid
electrolytes, which may facilitate the development of solid-state batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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