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Abstract: As-cast irons and aluminum alloys are used in various industrial fields and their phase
and microstructure properties are strongly affected by the undercooling degree. However, existing
studies regarding the undercooling degree are mostly limited to qualitative analyses. In this paper,
a quantitative analysis of the undercooling degree is performed by collecting experimental data
and employing machine learning. Nine machining learning models including Random Forest
(RF), eXtreme Gradient Boosting (XGBOOST), Ridge Regression (RIDGE) and Gradient Boosting
Regressor (GBDT) methods are used to predict the undercooling degree via six features, which
include the cooling rate (CR), mean atomic covalence radius (MAR) and mismatch (MM). Four
additional effective models of machine learning algorithms are then selected for a further analysis
and cross-validation. Finally, the optimal machine learning model is selected for the dataset and the
best combination of features is found by comparing the prediction accuracy of all possible feature
combinations. It is found that RF model with CR and MAR features has the optimal performance
results for predicting the undercooling degree.

Keywords: undercooling degree; machine learning; as-cast irons; aluminum alloys; cooling rate;
mean covalent atomic radius

1. Introduction

In terms of production volumes and application scales, iron and aluminum are two of
the mostly utilized metals in the world. They have found applications in various industries
such as mechanical engineering and shipping [1,2]. Due to its advantages of relatively
low cost and wide processing adaptability, casting is one of the main methods of iron
and aluminum material preparation. The casting process is always accompanied by the
nucleation process, which plays an important role in metal solidification. The undercooling
degree strongly affects the nucleation and additionally controls the phase composition,
microstructure, properties and quality of as-cast materials [3–5].

There are many factors affecting the undercooling degree such as the metal nature,
the cooling rate, the mismatch magnitude, the interfacial energy of the molten metals and
the nucleated solid phase [6–9]. Generally, the undercooling degree increases with the
cooling rate, which consequently increases both the nucleation and growth rates. Due
to the limitation of the heat transfer process, rapid solidification technology, which is
widely used in the industry, can only prepare alloys with extremely small dimensions.
With the outstanding advances in deep undercooling technology, many metals and alloys
have achieved relatively large undercooling degrees, which have greatly exceeded the
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critical undercooling degree for the homogeneous nucleation of liquid metals [10]. Deep
undercooling techniques primarily include melt immersion floatation [11], suspension
without vessel treatment [12] and free fall methods [13]. These methods can ensure a liquid
metal state hundreds of degrees Celsius below the liquid phase line and then suddenly
achieve a fast-solidification microstructure via nucleation. The development of deep
undercooling technology via rapid solidification can contribute to grain refinement, the
elimination of segregation, the expansion of the solid solution limit and the formation
of sub-stable phases. Thus, material properties are improved. Battersby et al. [14] used
a melt encasement (fluxing) technique to achieve high undercooling and systematically
studied the velocity-undercooling relationship in samples of pure Ge and Ge doped with
0.01 at % Fe at undercooling up to 300 K. Jian et al. [15] studied the effect of undercooling
on crystal-liquid interface energy in the growth mode of undercooled semiconductors.
Li et al. [16] utilized containerless electromagnetic levitation processing to obtain the
undercooling of 420 K using a two-step heating method in elemental semiconductor silicon.
Li et al. [17] investigated Fe alloy melts containing 7.5, 15, 22.5 and 30 at% Ni and found
that the undercooled degree had a strong influence on the structure evolution especially for
grain refinement and recrystallization. Previously conducted investigations have mainly
focused on the mechanism and qualitative analysis of deep undercooling. A model that
could accurately predict the undercooling degree and thus increase the experimental and
industrial cost-effectiveness as well as improve the processing accuracy is required but is
not yet established.

With the rapid development of material informatics, machine learning (ML) has
emerged as a new method to quantitatively predict material parameters based on a specific
dataset. Various useful predictions have been performed by ML to obtain a quantitative
analysis. Agrawal et al. [18] established ML models to predict the fatigue strength of steel,
quantitatively analyze its relationship with the composition and processing parameters
and eventually develop steels with a high fatigue strength. By employing support vector
regression, sequenced minimum optimization regression and a multi-layer perceptron
algorithm, Jiang et al. [19] proposed a model that accounted for the chemical composition,
dendrite crystal parameters and measured temperature to predict the interface mismatch.
Its accuracy was verified by the empirical formula and validated by the experimental
results. Based on a database of density functional theory calculations, an ML model
was developed by Meredig et al. [20] to predict the thermodynamic stability of arbitrary
components without any additional inputs. Javed et al. [21] proposed a lattice constant
prediction model based on the support vector machine. This model could optimize the
lattice constants of perovskites with predetermined structures. The model was proven to
be more efficient, faster and robust than the models based on the artificial neural network.
In addition, ML has proven effective in material data mining collected from experiments
or simulations as well as in the accurate prediction of material behavior. However, as
different ML algorithms result in a variation of the prediction accuracy, the ML algorithm
that should be employed for a specific material still requires further discussion.

In this paper, nine popular ML algorithms are considered to build a model for the un-
dercooling degree prediction by mining the data from previously conducted experimental
results. In Figure 1, the workflow diagram of this paper is presented. First, data samples are
collected and filtered based on the literature survey. Following standardization, the data
are then divided into training and testing sets according to a certain ratio. Subsequently,
after nine ML models are used to mine data samples, four ML models are chosen based on
their superior performance. Next, to achieve the accurate prediction of the material under-
cooling degree, the optimal model is obtained by comparing its evaluation indexes with the
ones from the remaining models. Finally, the influence of different feature combinations on
the prediction accuracy is investigated using the selected optimal model. Compared with
previous qualitative understandings, we establish a model that can accurately predict the
undercooling degree and thus increase the experimental and industrial cost-effectiveness
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as well as improve the processing accuracy. A quantitative analysis of the undercooling
degree for the sake of an accurate industrial and experimental control is of great interest.
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Figure 1. Strategy and machine learning (ML) model workflow for a given material ML predic-
tion model.

2. Data Collection and Computation Method
2.1. Data Collection and Features Selection

In this paper, based on the conducted literature survey on undercooling [6–9,22],
63 datasets of undercooling are collected and screened with different substrate phases under
nucleation phases such as β-Sn, BCC-Fe and FCC-Al (Table A1). The data are then divided
into 50 training datasets and 13 testing datasets (the former for model construction and the
latter for model validation). As features have a different effect on the target properties, the
beneficial performance of the ML model heavily relies on the feature selection. Therefore,
the reasonable selection of features is very important for establishing the model.

When selecting the features, substrate phases and nucleation phases are initially
selected as two feature parameters involved in the establishment of the model. As substrate
phases and nucleation phases are non-numerical data types that cannot be involved in the
calculation, datasets have to be One-Hot encoded prior to establishing the model. In other
words, the data are converted into zeroes and ones, i.e., the existing value is represented as
a one while the non-existent value is represented as a zero. Following One-Hot encoding,
the dimensionality of the features is changed. By considering the current data volume
as a small sample of data, a change in the feature dimensionality is disadvantageous to
the establishment of the ML model. During the model validation, the ML model did not
perform well in choosing the former two features. Hence, other features are considered.

According to the literature survey, six feature variables that affect the undercooling
are selected from a total of nine features (such as the substrate phase, nucleation phase,
mismatch and lattice number) including the cooling rate (CR), the mean covalent atomic ra-
dius (MAR) [23], the number of lattices (NL), the mismatch (MM) [6], the mean Mendeleev
number (MMN) and the nucleation and substrate plane (NSP). Here, the predicted target
value is the undercooling. The MAR mean value is the average value of the mean atomic
covalent nucleation radius and a substrate plane, which is used to express the properties of
nucleation and the substrate phase. The NL mean value is the product of a substrate and
the nucleation phase lattice constants. For a dense hexagonal structure, the NL is the value
of a/c. The MMN mean value is the Mendeleev number mean value of nucleation and the
substrate phase, which indicates the chemical properties of the nucleus phase and the base
phase. The NSP mean value is the crystallographic representation of the mismatch between
the nucleation and the substrate phase, which reveals the effect of different orientations
of the crystallographic plane on the undercooling. For example, if the selected crystallo-
graphic surface of the nucleation phase is 111 and the selected crystallographic surface of
the base phase is 100, then the NSP value is equal to 11,100. Furthermore, if the selected
crystallographic surface of the nucleation phase is 100 and the crystallographic surface
of the base phase is 110, then the NSP value is equal to −1,100,110. Here, the negative
sign indicates that 1 is present and the first digit indicates that several different types of
numbers are present while the following digit indicates the position of those numbers. An
information summary of the dataset for a simple statistical analysis is presented in Table 1.
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Table 1. Statistical analysis of the dataset.

Quantity Mean Minimum Maximum Standard Deviation

MM 10.32 6.94 33.20 1.11
CR 119.75 313.84 1000.00 0.25
NL 13.22 12.59 54.44 1.07

MAR 110.92 6.19 138.70 103.50
MMN 21.18 15.25 65.25 11.20
NSP - - - -
UR 33.77 38.96 144.00 1.70

2.2. Computational Methods
2.2.1. Normalization Processing

When predicting material undercooling, if a large difference in magnitude between
features is encountered, the ML model is affected. Therefore, the feature data have to be
normalized, i.e., feature scaling has to be conducted. In this paper, z-score normalization is
employed where datasets are modified by a mean of zero and a variance of one, as shown
in Equation (1). This not only eliminates the impact of inconsistent data magnitude on ML
but also ensures that data maintain the original distribution compared with the magnitudes
of different features. It is worth noting that this treatment causes the loss of the meaning of
the original data. However, it is beneficial for the establishment of ML models.

yi =
xi − x

σ
(1)

where xi is the original data, x is the mean of the original data and σ is the standard
deviation of the original data.

2.2.2. Correlation Analysis and Machine Learning

In the ML algorithm, a low correlation between features should be ensured. In this
paper, the Pearson correlation coefficient r is used to observe the correlation between
features [24], as shown in Equation (2). Here we use the original data for the correlation
analysis; the correlation coefficient ranges between the values of –1 and 1. The closer
the absolute value of the coefficient is to 1, the stronger the correlation between the two
variables is. When the coefficient is equal to 0, the two variables are not correlated. In this
paper, when the absolute value of the coefficient between features is greater than 0.95 [25],
its correlation is considered to be high. Consequently, the feature should be removed.

r =
∑n

i=1(Xi − X)
(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(2)

where Xi and Yi are the values of the two undercooling degree factors and X and Y are the
average values of these two factors.

For these datasets, nine ML models are used for the undercooling prediction. These
models are the RF model [26], the gradient boosting regressor (GBDT) [27], TREE [28],
XGBOOST [29], RIDGE [30], the Bayesian Ridge (BR) [31], k-nearest-neighbor (KNN) [32],
the least absolute shrinkage and selection operator (LASSO) [33] and the support vector
machine (SVM (kernel = linear)) [34] model. The variations between different ML models
in the predicted results are compared to select the most suitable models for datasets and
further analysis. Top-ranked ML models are selected and validated using the k-fold
(with k = 5) cross-validation [35]. This method randomly divides the input datasets into
k groups of equal size. These datasets are used for the ML model training while the
remaining groups are denoted as the testing data. When evaluating different ML models,
certain parameters are employed to indicate the strengths and weaknesses of the ML
models. Model adjustment based on the feedback from the evaluation metrics is a key
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parameter in model evaluation. In this paper, the mean absolute error (MAE) is employed,
which demonstrates improved reflections of the actual prediction error. The root mean
squared error (RMSE) is also employed, which is used to measure the deviation between
the predicted and the actual value. Furthermore, the RMSE can eliminate the effect of
different magnitudes between features. The average square of the Pearson product-moment
correlation coefficient (R2) is used as a generalized performance evaluation parameter
controlling the goodness of fit of the ML model, as shown in Equations (3)–(5). The
optimal combination of features is considered after selecting the best model by comparing
the evaluation metrics. In this paper, the scikit-learn package [36] is used to process the
datasets and establish the ML models.

EMAE =
1
n

n

∑
j=1

∣∣yj − ŷi
∣∣ (3)

ERMSE =

√√√√ 1
n

n

∑
j=1

(
ŷi − yj

)2 (4)

R2 = 1 −
∑n−1

j=0

(
yj − ŷi

)2

∑n−1
j=0

(
yj − yj

)2 (5)

where yi are the actual values and ŷi are the predicted values.

3. Results and Discussion
3.1. Correlation Analysis and Algorithm Selection

All of the features as well as the predicted values are briefly described in Table 1. In
Figure 2, the correlation values between the features are shown. The color between the
CR and the target feature undercooling (UR) is yellow to indicate that the CR had a high
influence on the target feature. The remaining features demonstrated a low correlation.
Therefore, they were retained.
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Different ML models have different predictive capabilities. Due to the complexity
of the datasets and material properties, researchers usually do not specify which ML
algorithm is the most suitable. In addition, while the predicted values for specific attributes
heavily depend on the ML algorithm selection, it is necessary to evaluate the performance
and output of the chosen algorithm to assess the degree of uncertainty arising from its
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choice. An R2 comparison of nine ML models is presented in Figure 3. It can be seen that
three of the top four ML models were integrated models. The RF model showed the best
performance with a value of 0.831. There was a minor difference between the other three
ML models. RIDGE was the next model performing relatively well while the worst model
was the SVM (kernel = linear) with a value of 0.34. In summary, the prediction results
varied significantly with respect to different ML models. Thus, it was necessary to carefully
select ML models. In order to further analyze the models, the top four ML models were
selected. In addition, the RIDGE model was substituted in place of the TREE model due to
its overfitting problem. To summarize, the RF, XGBOOST, GBDT and RIDGE models were
used to analyze the material undercooling. The results showed that when ML models were
employed to predict the material properties, various ML models performed inconsistently
for the same datasets, which was in accordance with [37–39].
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Figure 3. The R2 prediction results of nine different machine learning algorithms.

In Figure 3, the results of a single training are displayed. In Figure 4, a comparison of
R2 values under four different ML algorithms trained for 10 times is shown. It displays that
each algorithm fluctuated with different training times. In the second model training, the
four algorithms showed relatively low R2 values compared with other training times. More
specifically, the R2 value of the RIDGE algorithm was equal to 0.672. This was due to the
random selection of training and testing datasets. When the selected training dataset was
good, its R2 value increased and vice-versa. This is further explained below. In addition,
the prediction results of four ML models were almost equal and the R2 of the remaining
training results was close to 0.8. This was a relatively good result especially considering
the R2 value of the GBDT algorithm, which had the maximum value of 0.971 at the 9th
training. This indicated that the selection of this training dataset was very representative.
In conclusion, when studying the predictive ability of the ML model, the dataset selection
should be considered because different training and testing sets lead to model differences.
By considering the dataset selection, model differences were reduced and the generalization
ability of the datasets was improved.
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To further illustrate the performance capability of different algorithms for the same
datasets, the strengths and weaknesses of each model were evaluated from the MAE and
the RMSE. In Table 2, the average training and testing set evaluation results of different
ML models according to Figure 4 are listed; each model was tuned up to 10 iterations.
The R2 values of four ML models were similar with all of them being above 0.85. The
RF model had the highest R2 value of 0.902 and its RMSE was also the lowest among
the four ML models. However, the MAE was not the lowest of the four algorithms. This
indicated that the gap between the predicted and the true values of the remaining models
was greater, thus leading to a greater value of the RMSE. This meant that the gap between
the predicted and the true values of 10 training RF results was smaller. In the training data,
the performance of the GBDT and XGBOOST were better than the RF and R2 was close to 1
so there might have been overfitting, making the evaluation standard of the testing data
lower than the RF. In summary, the R2, the MAE and the RMSE values of the RIDGE model
were relatively poor performers among the four ML models, which also indicated that the
integrated algorithm had an improved prediction ability when dealing with the datasets.

Table 2. Comparison of train and test sample results in ten runs.

Model
MAE RMSE R2

Train Test Train Test Train Test

RIDGE 9.824 12.635 12.735 15.434 0.882 0.852
RF 3.457 10.137 4.962 12.926 0.982 0.902

GBDT 1.388 10.723 2.286 14.632 0.996 0.871
XGBOOST 0.328 9.23 1.577 13.551 0.997 0.891

3.2. Cross-Validation

Different algorithms resulted in different prediction results due to statistical dataset
features being evaluated from the sub-datasets. This sometimes might not be representative
of the entire datasets and it might lead to sampling uncertainly. In this paper, a five-fold
cross-validation was employed, which randomly selected both the training and the testing
set. However, unlike the previous selection methods, the selection of the training and
testing set ensured that all samples could serve as either the training set or the testing set.
In order to reduce the sampling uncertainty, various training models were iterated several
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times to broaden the distribution of the validation subsets for a given set of parameters. In
Table 3, the R2 results for the cross-validation of four ML models are listed. It divides the
data into five pieces, i.e., fold 1–fold 5. Each fold from fold 1 to fold 5 was then successively
used as validation data while others were used as training data. As the selected data are
different each time, the R2 of the different ML models fluctuated with training. The cross-
validation R2 values of the four algorithms fluctuated widely from 0.28 to 0.98. Among
them, the R2 prediction of the RF in the five-fold cross-validation fluctuated from 0.61 to
0.98. Its fluctuation range was relatively small, which indicated that the RF algorithm was
more stable in coping with the datasets.

Table 3. Cross-validation of test sample results.

Five-Fold Cross-Validation

Model Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

RIDGE 1 0.545 0.255 0.831 0.885 0.868
2 0.864 0.536 0.402 0.891 0.435

RF 1 0.917 0.976 0.611 0.935 0.765
2 0.729 0.828 0.922 0.913 0.933

GBDT 1 0.894 0.967 0.786 0.419 0.924
2 0.830 0.849 0.856 0.308 0.861

XGBOOST 1 0.893 0.914 0.942 0.329 0.865
2 0.800 0.831 0.634 0.885 0.880

The mean R2 value for two five-fold cross-validations of four ML algorithms is shown
in Figure 5. Through cross-validation, it could be concluded that the RF algorithm had
the best prediction result for the datasets, which also verified the previous conclusion and
further showed that the generalization ability of the RF was relatively strong. The RF
had the highest R2 value in four cross-validated models (0.865). This was a better result
compared with the previously obtained R2 mean value of 0.848. This was because the
dataset selection was improved and could better represent the entire dataset features. To
summarize, the cross-validation results indicated that different algorithms responded to
different attributes of datasets with various stability effects. Furthermore, the RF had a
relatively high stability for the dataset selection.
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In order to more intuitively illustrate the advantages and disadvantages of ML models,
RF and XGBOOST were selected from the four ML models for further analysis. The
prediction results of both models were compared. In Figure 6, the prediction results of R2

and the MAE under the RF and XGBOOST are shown. Interestingly, many data points
were perfectly organized in the diagonal for the training data (Figure 6a) in the XGBOOST
model. This meant that, for these data, the XGBOOST was much better (almost 100% fit)
than the RF. However, an ML model with 100% fit for a large fraction of the data may
be caused purely by overlearning, which was confirmed by testing data (Figure 6b). In
addition, we noted that most data via XGBOOST fitted well in the training set but others
did not. The reason was that XGBOOST might have misjudged them because several
pieces of data were so similar with several similar features after checking the raw data
corresponding with the deviation points. In conclusion, this indicated that their prediction
results were not significantly different when compared with the actual values while the
results of XGBOOST were somewhat worse. This indicated that the RF had a stronger
performance capability.
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3.3. Combination of Features

The selection of different features had a significant effect on the ML model. In this
paper, the performance capability of different ML models for the same datasets is discussed.
In order to further discuss the influence of different features on establishing the ML model,
the RF model with the optimal performance was used to analyze feature combinations with
the purpose of obtaining the feature with the greatest influence on the model establishment.
In Figure 7, the importance of six different features is shown. The ranking was done via
the RF based on the Gini coefficient approach. It was known that the CR had the greatest
influence on undercooling, which was consistent with materials science knowledge. This
was followed by the MAR and the MM while the least influential one was the NSP.
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In Figure 8, the degree to which the selection of features affected the RF model is
shown. It demonstrated that 2–6 combinations of features from high to low (according to
Figure 4) were required to predict the undercooling by taking the average value after 100
training sessions. With an increase in the number of features, R2 demonstrated a slight
decline while the MAE increased. In other words, the selection of the top two features could
improve the representation of the dataset features. Furthermore, the increased feature
values did not significantly affect the accuracy of the model. To summarize, the selection
of features had a significant impact on the establishment of the model. However, this
was based on the selection of beneficial features while inferior features only increased the
workload. The improvement of the model was smaller, which decreased the predictive
power of the model. This, in turn, showed that the number of features should not be
selected randomly but rather appropriately.
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The above presented feature combinations were only sequential superimposed combi-
nations of the feature importance ranking. It was not possible to discern how the remaining
feature combinations affected the prediction results. Thus, a further analysis was required.
In Figure 9a, R2 > 0 results for 100 runs under 2–6 feature combinations in the RF algorithm
are shown. Under multiple combinations of 2–6 major factors, the optimal R2 value for
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each of its feature combinations fluctuated between 0.7 and 0.85 with the highest R2 being
0.82 under two feature combinations represented by the CR and the MAR. This was similar
to the importance ranking results provided in Figure 7. It could be seen that the R2 of the
testing set decreased with an increase in the number of features, which might produce
overfitting and a loss of the generalization ability of the model. The results indicated that
the number of features should favor quality over quantity. In Figure 9b, the results of the
MAE run for 100 times under 2–6 combinations of features in the RF algorithm are shown.
Point I indicates that under the combination of the CR and the MAR features, the MAE
was equal to 8.813. Point II indicates that the value of the MAE under the combination
of the MM, CR, MAR, NSP and MAE features was 8.397. Its value was lower than the
value of point I. However, R2 was equal to 0.792. The features of the CR and the MAR had
favorable performances regarding R2 values. Thus, they had a significant influence on the
undercooling and could be considered as the key factors.

Crystals 2021, 11, x FOR PEER REVIEW 12 of 15 

 

 

  

(a) (b) 

Figure 9. (a) R2 > 0 results of different RF algorithm feature combinations with 100 trainings and 
(b) the MAE results of different RF algorithm feature combinations with 100 trainings. 

Based on the RF model, the CR and the MAR were the most important factors for the 
undercooling degree related to processing and the properties of both nucleation and the 
substrate phase, respectively. Obviously, the higher the CR, the larger the undercooling 
degree because the melt metal cannot nucleate on time and thus keeps liquid far below 
the solidification temperature when following the rapid change of temperature. The MAR 
was used to describe the atomic information of both the nucleation and the substrate 
phase. It expressed lattice distortion in a solid solution and consequently electron means 
free path [23], which is supposed to affect nucleation and thus the undercooling degree. 

In summary, after comparing the evaluation indexes under different ML models, it 
could be concluded that the RF had the best performance ability in the material under-
cooling prediction. The CR had the greatest influence on the prediction results when the 
correlation analysis was performed on the features. The importance of the CR and the 
MAR was also demonstrated in the features ranking using the RF models, which further 
increased the reliability of its feature selection. The results obtained in this study can serve 
as a beneficial reference for obtaining key undercooling factors. 

4. Conclusions 
This study developed ML models for the prediction of the undercooling degree of as-

cast irons and aluminum alloys. Here, 63 datasets with six features were collected and 
standardized from the experimental results. Furthermore, nine ML algorithms were used 
to mine the datasets. Four models were selected for a detailed analysis of nine ML models. 
It was found that differences in algorithm, features and data have a significant influence 
on the performance of the ML models. After comparing the evaluation indexes, the RF 
model was considered to be the optimal model for the accurate prediction of the under-
cooling degree with the corresponding R2 value of 0.85 and an MAE of 8.43. Various fac-
tors affected the undercooling degree differently according to their importance in the fol-
lowing sequence: cooling rate (CR), mean covalent atomic radius (MAR), mismatch (MM), 
mean Mendeleev number (MMN), number of lattices (NLs) and the nucleation and sub-
strate plane (NSP). Two key features, the cooling rate (CR) and the mean covalent atomic 
radius (MAR), were selected as an optimal combination after comparing all possible com-
binations among six features and were enough to build the ML model for the prediction 
of the undercooling degree. In this study, the ML model based on the RF algorithm could 
accurately predict the undercooling degree for as-cast iron materials and aluminum al-
loys, which has a potential application in both industrial and experimental areas.  

Figure 9. (a) R2 > 0 results of different RF algorithm feature combinations with 100 trainings and (b)
the MAE results of different RF algorithm feature combinations with 100 trainings.

Based on the RF model, the CR and the MAR were the most important factors for the
undercooling degree related to processing and the properties of both nucleation and the
substrate phase, respectively. Obviously, the higher the CR, the larger the undercooling
degree because the melt metal cannot nucleate on time and thus keeps liquid far below
the solidification temperature when following the rapid change of temperature. The MAR
was used to describe the atomic information of both the nucleation and the substrate phase.
It expressed lattice distortion in a solid solution and consequently electron means free
path [23], which is supposed to affect nucleation and thus the undercooling degree.

In summary, after comparing the evaluation indexes under different ML models, it
could be concluded that the RF had the best performance ability in the material under-
cooling prediction. The CR had the greatest influence on the prediction results when the
correlation analysis was performed on the features. The importance of the CR and the
MAR was also demonstrated in the features ranking using the RF models, which further
increased the reliability of its feature selection. The results obtained in this study can serve
as a beneficial reference for obtaining key undercooling factors.

4. Conclusions

This study developed ML models for the prediction of the undercooling degree of
as-cast irons and aluminum alloys. Here, 63 datasets with six features were collected
and standardized from the experimental results. Furthermore, nine ML algorithms were
used to mine the datasets. Four models were selected for a detailed analysis of nine ML
models. It was found that differences in algorithm, features and data have a significant
influence on the performance of the ML models. After comparing the evaluation indexes,
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the RF model was considered to be the optimal model for the accurate prediction of the
undercooling degree with the corresponding R2 value of 0.85 and an MAE of 8.43. Various
factors affected the undercooling degree differently according to their importance in the
following sequence: cooling rate (CR), mean covalent atomic radius (MAR), mismatch
(MM), mean Mendeleev number (MMN), number of lattices (NLs) and the nucleation
and substrate plane (NSP). Two key features, the cooling rate (CR) and the mean covalent
atomic radius (MAR), were selected as an optimal combination after comparing all possible
combinations among six features and were enough to build the ML model for the prediction
of the undercooling degree. In this study, the ML model based on the RF algorithm could
accurately predict the undercooling degree for as-cast iron materials and aluminum alloys,
which has a potential application in both industrial and experimental areas.
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Appendix A

The original data used in this study.

Table A1. The original data used in this study.

MM CR NL MAR MMN NSP UR

3.57 1.32 12.62 109.75 20.25 100,100 1.7
5.32 1.32 12.83 115.75 20 100,100 1.8
1.2 0.25 33.38 108.95 11.5 100,100 2.97
4.49 0.5 1.88 109.5 27 111,001 3

5 0.33 1.88 109.5 27 111,001 3
3.9 1.32 12.63 109.75 20.25 100,100 3.1
5.9 1.32 12.87 115.75 20 100,100 3.3
7.77 20 1.50 107.1 11.2 100,223 3.5
1.2 0.25 33.38 108.95 11.5 110,110 4.4
1.21 0.25 33.38 108.95 11.5 111,111 5.03
9.45 20 1.50 107.1 11.2 100,100 5.8

11.42 1.32 13.58 114.25 49.5 100,100 7
6 1.32 12.89 105.75 22.35 100,100 7.5

11.2 1.32 13.51 114.25 49.5 100,100 12.6
3.9 0.33 12.63 109.75 20.25 100,100 13

14.25 1.32 13.92 115.25 24.5 100,100 13.6
8.04 0.33 1.07 107.1 11.2 111,001 13.9
16.1 0.33 1.07 107.1 11.2 111,001 13.9
3.57 0.33 12.63 109.75 20.25 100,100 15.2

12.49 20 1.50 107.1 11.2 −1,511,112 16
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Table A1. Cont.

MM CR NL MAR MMN NSP UR

3.46 0.25 1.50 107.1 11.2 100,110 16.2
8.4 0.25 1.50 107.1 11.2 −15,110,112 16.6

16.01 20 33.38 108.95 11.5 311,110 18
20.67 20 1.50 107.1 11.2 111,100 18.5
8.02 0.25 1.50 113.5 11.5 110,001 18.5

25.03 20 1.50 107.1 11.2 311,110 19
4.49 0.33 1.88 109.5 27 111,001 19.4
1.11 20 33.38 108.95 11.5 100,100 20.5
1.11 20 33.38 108.95 11.5 110,110 20.5
1.11 20 33.38 108.95 11.5 111,111 20.5
10 20 17.09 108.95 11.5 111,110 21
6.2 20 33.38 113.5 11.5 311,111 21

23.88 20 1.50 113.5 11.5 111,110 21.7
21.42 20 1.50 107.1 11.2 100,312 22.4
3.14 20 1.50 113.5 11.5 111,111 23.2

14.49 20 17.09 113.5 11.5 311,110 24
14.4 1.32 13.91 115.25 24.5 100,100 24.5

10.83 20 17.09 108.95 11.5 111,100 25
12.49 20 33.38 113.5 11.5 111,100 25
17.1 20 1.50 107.1 11.2 111,113 25.1

16.36 20 1.50 107.1 11.2 100,001 25.2
3.12 20 17.09 113.5 11.5 111,111 26

13.87 20 17.09 113.5 11.5 110,111 28
6.61 15 15.41 104.1 19.8 111,003 28.7
12.7 1.32 8.59 111 33 110,001 29

14.02 0.33 20.96 138.7 15 111,111 29.5
22 0.33 20.97 138.7 15 111,111 29.5

12.77 20 1.50 107.1 11.2 100,101 32.7
8.04 0.33 1.07 109.75 17.7 111,001 35
16.1 0.33 1.07 107.1 11.2 111,001 36
12.9 20 1.50 107.1 11.2 111,104 39.6
8.04 15 1.07 107.1 11.2 111,004 51.6
3.58 15 12.35 108.5 18 100,100 51.8
9.49 20 13.34 103.5 21 111,111 52.7
6.61 0.33 15.41 104.1 19.8 111,002 56.6
26 0.33 1.11 104.1 19.8 111,001 57

References
1. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy

powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
2. Flower, H.M. Light alloys: Metallurgy of the light metals. Int. Mater. Rev. 1992, 37, 196. [CrossRef]
3. Xu, C.L.; Jiang, Q.C. Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and

cooling rate. Mater. Sci. Eng. A 2006, 437, 451–455. [CrossRef]
4. Vijeesh, V.; Prabhu, K.N. Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties.

Trans. Indian Inst. Met. 2014, 67, 1–18.
5. Xu, Y.; Deng, Y.; Casari, D.; Mathiesen, R.; Liu, X.; Li, Y. Growth kinetics of primary Si particles in hypereutectic Al-Si alloys

under the influence of P inoculation: Experiments and modelling. J. Alloys Compd. 2021, 854, 155323. [CrossRef]
6. Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans.

1970, 1, 1987–1995. [CrossRef]
7. Wang, L.; Yang, L.; Zhang, D.; Xia, M.; Wang, Y.; Li, J.G. The Role of Lattice Misfit on Heterogeneous Nucleation of Pure

Aluminum. Metall. Mater. Trans. A 2016, 47, 5012–5022. [CrossRef]
8. Perepezko, J.; Uttormark, M. Undercooling and Nucleation during Solidification. ISIJ Int. 1995, 35, 580–588. [CrossRef]
9. Ohashi, T.; Hiromoto, T.; Fujii, H.; Nuri, Y.; Asano, K. Effect of Oxides on Nucleation Behaviour in Supercooled Iron. Tetsu Hagane

1976, 62, 614–623. [CrossRef]
10. Mueller, B.A.; Perepezko, J.H. The undercooling of aluminum. Metall. Mater. Trans. A 1987, 18, 1143–1150. [CrossRef]

http://doi.org/10.1016/j.pmatsci.2015.03.002
http://doi.org/10.1179/095066092790150876
http://doi.org/10.1016/j.msea.2006.07.088
http://doi.org/10.1016/j.jallcom.2020.155323
http://doi.org/10.1007/BF02642799
http://doi.org/10.1007/s11661-016-3691-4
http://doi.org/10.2355/isijinternational.35.580
http://doi.org/10.2355/tetsutohagane1955.62.6_614
http://doi.org/10.1007/BF02668565


Crystals 2021, 11, 432 14 of 14

11. Kalb, J.A.; Spaepen, F.; Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase
change recording. J. Appl. Phys. 2005, 98, 054910. [CrossRef]

12. Kelton, K.F.; Lee, G.W.; Gangopadhyay, A.K. First X-Ray Scattering Studies on Electrostatically Levitated Metallic Liquids:
Demonstrated Influence of Local Icosahedral Order on the Nucleation Barrier. Phys. Rev. Lett. 2003, 90, 195504. [CrossRef]
[PubMed]

13. Sang, U.; Yang, M. Nucleation modes of the drop tube processed Nd70Fe20Al10 droplets. Mater. Lett. 2004, 58, 975–979.
14. Battersby, S.E.; Cochrane, R.F.; Mullis, A.M. Growth velocity-undercooling relationships and microstructural evolution in

undercooled Ge and dilute Ge-Fe alloys. J. Mater. Sci. 1999, 34, 2049–2056. [CrossRef]
15. Jian, Z.; Kuribayashi, K.; Jie, W. Critical undercoolings for the transition from the lateral to continuous growth in undercooled

silicon and germanium. Acta Mater. 2004, 52, 3323–3333. [CrossRef]
16. Li, D.; Herlach, D.M. High undercooling of bulk molten silicon by containerless processing. EPL 2007, 34, 423. [CrossRef]
17. Li, J.F.; Jie, W.Q.; Yang, G.C. Solidification structure formation in undercooled Fe–Ni alloy. Acta Mater. 2002, 50, 1797–1807.

[CrossRef]
18. Ankit Agrawal, P.; Ahmet Cecen. Exploration of data science techniques to predict fatigue strength of steel from composition and

processing parameters. Integr. Mater. Manuf. Innov. 2014, 3, 1–19. [CrossRef]
19. Jiang, X.; Yin, H.-Q.; Zhang, C. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction.

Comput. Mater. Sci. 2018, 143, 295–300. [CrossRef]
20. Meredig, B.; Agrawal, A.; Kirklin, S.; Saal, J.E.; Doak, J.W.; Thompson, A.; Zhang, K.; Choudhary, A.; Wolverton, C. Combinatorial

screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 2014, 89, 094104. [CrossRef]
21. Javed, S.G.; Khan, A.; Majid, A. Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines.

Comput. Mater. Sci. 2007, 39, 627–634. [CrossRef]
22. Nakajima, K.; Hasegawa, H.; Khumkoa, S. Effect of a catalyst on heterogeneous nucleation in pure and Fe-Ni alloys. Metall. Mater.

Trans. B 2003, 34, 539–547. [CrossRef]
23. Hong, Z.; Hua, F.; Xing, H.; Chang, W.; Lei, J.; Long, C.; Jian, X. Dramatically Enhanced Combination of Ultimate Tensile Strength

and Electric Conductivity of Alloys via Machine Learning Screening. Acta Mater. 2020, 200, 803–810.
24. Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242.
25. Yuan, R.; Liu, Z.; Balachandran, P.V. Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezoelectrics Using Active

Learning. Adv. Mater. 2018, 30, 1702884. [CrossRef]
26. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
27. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
28. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
29. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, San Francisco, CA, USA, 13–17
August 2016; pp. 785–794.

30. Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun. Stat. 1975, 4, 105–123. [CrossRef]
31. Tipping, M.E. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
32. Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185.
33. Tibshirani, R.J. Regression Shrinkage and Selection via the LASSO. J. R. Stat. Soc. Ser. B Methodol. 1996, 73, 273–282. [CrossRef]
34. Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
35. An, S.; Liu, W.; Venkatesh, S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression.

Pattern Recognit. 2007, 40, 2154–2162. [CrossRef]
36. Pedregosa, F.; Varoquaux, G.l.; Gramfort, A. Scikit-learn: Machine Learning in Python. Comput. Sci. 2012, 12, 2825–2830.
37. Kauwe, S.K.; Graser, J.; Vazquez, A. Machine Learning Prediction of Heat Capacity for Solid Inorganics. Integr. Mater. Manuf.

Innov. 2018, 7, 43–51. [CrossRef]
38. Peng, J.; Yamamoto, Y.; Brady, M.P. Uncertainty Quantification of Machine Learning Predicted Creep Property of Alumina-

Forming Austenitic Alloys. JOM 2021, 73, 164–173. [CrossRef]
39. Sun, W.; Zheng, Y.; Yang, K. Machine learning-assisted molecular design and efficiency prediction for high-performance organic

photovoltaic materials. Sci. Adv. 2019, 5, 4275. [CrossRef] [PubMed]

http://doi.org/10.1063/1.2037870
http://doi.org/10.1103/PhysRevLett.90.195504
http://www.ncbi.nlm.nih.gov/pubmed/12785956
http://doi.org/10.1023/A:1004547423857
http://doi.org/10.1016/j.actamat.2004.03.027
http://doi.org/10.1209/epl/i1996-00473-7
http://doi.org/10.1016/S1359-6454(02)00032-0
http://doi.org/10.1186/2193-9772-3-8
http://doi.org/10.1016/j.commatsci.2017.09.061
http://doi.org/10.1103/PhysRevB.89.094104
http://doi.org/10.1016/j.commatsci.2006.08.015
http://doi.org/10.1007/s11663-003-0022-0
http://doi.org/10.1002/adma.201702884
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1007/BF00116251
http://doi.org/10.1080/03610927508827232
http://doi.org/10.1111/j.1467-9868.2011.00771.x
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.patcog.2006.12.015
http://doi.org/10.1007/s40192-018-0108-9
http://doi.org/10.1007/s11837-020-04423-x
http://doi.org/10.1126/sciadv.aay4275
http://www.ncbi.nlm.nih.gov/pubmed/31723607

	Introduction 
	Data Collection and Computation Method 
	Data Collection and Features Selection 
	Computational Methods 
	Normalization Processing 
	Correlation Analysis and Machine Learning 


	Results and Discussion 
	Correlation Analysis and Algorithm Selection 
	Cross-Validation 
	Combination of Features 

	Conclusions 
	
	References

