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Abstract: Developing a technology for introducing alloy addition to liquid steel during the course of
continuous casting process seems to be an interesting approach to enhancing the steelmaking process,
especially as the effective introduction of micro-additives or non-metallic inclusion modifiers to the
liquid steel is the key to the production of the highest-quality steel. This paper presents the results of
investigation describing the process of liquid steel chemical homogenisation in the two-strand slab
tundish. The alloy was fed to liquid steel by pulse-step method. Five tundish equipment variants
with different flow control devices and alloy addition feeding positions were considered. The paper
includes fields of liquid steel flow, alloy concentration vs. time curves, dimensionless mixing time,
minimum time values and alloy concentration deviations at tundish outlets. The results pointed much
more effectively with liquid steel mixing nickel than aluminium. For aluminium obtaining a 95%
chemical homogenisation level requires three-fold more time. Moreover, it is definitely beneficial for
chemical homogenisation to initiate the alloying process simultaneously in two sites. This procedure
generates, among others, the least alloy deviation of concentration at tundish outlets.

Keywords: tundish; liquid steel microalloying; pulse-step method; time mixing; numerical modelling

1. Introduction

The continuous steel casting (CSC) process is based on the flow of liquid steel between
the ladle, the tundish, the mould and the secondary cooling zone. Before the liquid
steel begins to solidify, it is poured from the ladle into the tundish, where it stays for a
certain time. The primary function of the tundish is to protect the liquid steel against
secondary oxidation and to maintain the required temperature of the cast steel grade. In
addition, the tundish may support liquid steel refining processes through non-metallic
inclusions flotation or Ca treatment [1]. Moreover, the tundish can be used for liquid
steel alloying [2,3]. The basic and additional functions can be assisted by modifying the
hydrodynamic conditions using flow control devices (FCDs). FCDs are mounted in the
internal working volume of the tundish. FCDs contain dams, weirs, dams with holes,
gas-permeable barriers, subflux turbulence controllers and electromagnetic stirrers [4–13].
However, the majority of these devices, like the tundish working space, are made of
refractory materials that gradually erode during the casting sequence and from contact
with liquid steel or slag. Nonetheless, in the case of tundishes with a capacity over 60 Mg,
casting in tundishes without FCDs is recommended [14]. The feed stream flowing into the
tundish is an energy carrier that can be successfully used to mix the alloy additions with
the liquid steel. The proposed pulse-step method (PSM) allows a 95% level of chemical
homogenisation to be obtained in a satisfactory time during the continuous steel casting
process [15]. Nevertheless, the tundish as a flow reactor has certain limitations, compared
to the ladle furnace used for standard alloying of liquid steel. The main factors limiting the
alloying process in the tundish are the permanent drop in the temperature of the liquid
steel entering the tundish and the significantly shorter residence time of the liquid steel in
the tundish than in the ladle furnace. Therefore, the process of feeding the alloy addition
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to liquid steel can only be used to correct the chemical composition of the cast grade or
modify non-metallic inclusions. Selection of the site to feed the alloy addition to the tundish
filled with liquid steel is extremely important, due to the significant differentiation of the
hydrodynamics of steel flow in its individual working zones, especially when tundish
working volume is modified by FCDs [15–18]. The previous works were performed for
one strand wedge-shaped tundish; therefore, it was essential to check the usefulness of the
PSM method during steel casting using a multi-strand tundish. This paper presents the
results of computer simulations of feeding the slight alloy addition to liquid steel by pulse-
step method (microalloying) during casting of slabs through two-strand, trough-shaped
tundish.

2. Tundish Description

The nominal capacity of the considered tundish is 75 Mg. The two-strand tundish
is equipped with a stopper rod system to regulate the flow of liquid steel to the moulds.
The liquid steel entering the tundish is protected by a ceramic ladle shroud with an inner
diameter of 0.11 m. Combinations of considered tundish equipment and alloy addition
feeding positions give 11 computer simulation cases (Table 1). Five variants of the tundish
equipment were tested in computer simulations. In the first variant, the tundish was not
equipped with flow control devices. Figure 1 shows the sites where the alloy addition was
introduced to the liquid steel during the CSC process. In alloy addition feeding position
No. 1, the additive was fed in one place. However, in the remaining simulation cases, the
alloy addition was fed in parallel at two selected locations located parallel or transversely
to the longitudinal axis of the tundish. The alloy addition feed sites are mainly located in
the tundish pouring zone where the feed stream most intensely affects the liquid steel. The
AAFP No. 4 was located outside the tundish pouring zone, halfway between the tundish
pouring zone and the tundish outlet.

Table 1. Considered cases of computer simulations.

Simulation
Case No.

Tundish Equipment Variant, TEV Alloy Addition Feeding Position

1 2 3 4 5 1 2 3 4

1
√ √

2
√ √

3
√ √

4
√ √

5
√ √

6
√ √

7
√ √

8
√ √

9
√ √

10
√ √

11
√ √

In the second tundish equipment variant (TEV), the tundish was fitted with two 1 m
high weirs and two 0.26 m high dams. Both types of flow control devices were mounted in
the immediate vicinity of the tundish pouring zone. The task of the weirs is to stabilize
the free surface of liquid steel, while the dams stimulate liquid steel rising movement in
the direction of the free surface. In the third to fifth tundish designs, flow reactor was
equipped additionally with a combination of two weirs and two dams. Weirs and dams
were installed near the stopper rod system. The height of both FCDs were 0.52 m. In the
fifth variant, FCDs from the tundish pouring zone were removed.
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Figure 1. Two-strand slab tundish: (a) alloy addition feeding position, (b) tundish with flow control devices, (c) tundish
with additional dams/weirs, (d) tundish with additional weirs, and (e) tundish with dams/weirs only in the zones of
stopper rod system.

3. Research Methodology

Numerical simulation of the liquid steel flow and alloy addition behaviour in tur-
bulent motion conditions was done using the Ansys-Fluent® (version 12.1, Ansys Inc.,
Canonsburg, PA, USA) computer program. To build the virtual tundish model with an
appropriate computational grid, Gambit software was used. Tet/hybrid elements were
used to generate the computational grid. To assure independence of computational mesh
on results, high and even number of elements on the particular edges of tundish model
were matched. The virtual tundish models built, on average, 1,300,000 elements generated.
This computational mesh insured proper numerical results. The Navier–Stokes equation
was solved for liquid steel and alloy. All numerical simulations were done by employing
a double-precision solver (3ddp) using discretisation of the second order for momentum,
turbulent motion, species, energy and transient formulation. Numerical simulations were
performed for the sequence of casting 1.5 m × 0.22 m slabs at a speed of 1.4 m/min and
with the initial steel temperature of 1833 K. The level of chemical homogenisation was
determined using the following relationship:

CPSM =
(Ct − C0)(
C f − C0

)100% (1)

where Cf is the final effective concentration of alloy at tundish outlets (wt%), CPSM is the
dimensionless concentration of alloy for PSM, Ct is the temporary concentration of alloy
(wt%), and C0 is the initial concentration of alloy (wt%).
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In numerical simulations, the alloy addition in the form of nickel or aluminium was
fed. The purpose of alloying was to adjust the chemical composition of the liquid steel
by 0.055 wt%. The liquid steel enters the tundish at the velocity of 1.61 m/s. Turbulence
intensity of liquid steel inflow to tundish was assumed with a turbulence kinetic energy of
0.025921 m2/s2 and dissipation rate of 0.075878 m2/s3. Properties of liquid steel, nickel
and aluminium were presented in the Table 2.

Table 2. Properties of fluids. Adapted from ref. [18].

Alloy Density,
kg/m3

Viscosity,
Pa·s

Heat
Capacity,

J/kg·K

Thermal
Conductivity,

W/m·K

Diffusivity,
m2/s

Steel 7010 0.007 750 41 -

Nickel 7790 0.00159 556 50 5.3 × 10−9

Aluminium 2100 0.00052 1180 91 8.6 × 10−9

The numerical simulations include diffusivity of nickel or aluminium in the liquid steel.
Melting process and shell rising were not considered during numerical simulations. This
simplification was verified by continuous slab casting tundish experiments and confirmed
quite good consistency between computing and industrial results [19]. All boundary and
initial model conditions were described in the author’s previous works [15–20]. Based on
the concentration vs. time curves, the dimensionless mixing time (DMT) was calculated.
The DMT is defined as the period after which the minimum required liquid steel chemical
homogenisation level is maintained, which should amount to at least 95%. The time
interval was expressed by dimensionless time, defined by the ratio of the actual time to
the average time. The average time for the tundish under examination was 700 s. The
previous numerical, physical and industrials studies have confirmed the usefulness of the
used numerical model for simulating the macro chemical homogenisation process during
steel flow through the tundish [19,20].

4. Results and Discussion
4.1. Hydrodynamic Conditions

The first stage of investigations covered tundish equipment variants No. 1 and No.
2. On the basis of computer simulations, steel flow fields were developed that reflect
the hydrodynamic conditions for the two considered tundish equipment. Figure 2a–d
show the path lines and flow fields in a tundish without FCDs (bare tundish). The global
hydrodynamic view shows some recirculation zones progressed from pouring zone to
tundish outlets. In the central part of the bare tundish, the feed stream after impact against
the bottom of the tundish is separated into two streams flowing towards the tundish outlets.
More or less in the middle of the distance between the feed zone and the outlet zones, the
flow direction of the feed stream is modified by back streams. As a result, two liquid steel
circulation zones are created at the bottom of the tundish. In the central part of the tundish,
the directions of liquid steel movement have a falling character. However, at both side
walls parallel to the longitudinal axis of the tundish, there are four steel circulation zones.
The feed streams flow towards the outlets along the bottom and then float towards the
free surface to reach the stopper rod zones. Next, the liquid steel streams fall and partially
feed the tundish outlets flowed into the moulds. The liquid steel streams remaining in
the tundish turn back at the bottom towards the feed zone. In the feed zone, liquid steel
circulation zones are created, resulting from the separation and return of some feed streams
rising at a distance of about 2 m from the feed zone. In the tundish without FCDs, the
steel movement is usually symmetrical in relation to the tundish pouring zone. The use
of dams and weirs in the tundish feed zone significantly modified the steel flow (Figure
2e–h). The full sight of fluid flow behaviour shows more ordered hydrodynamic structure
in the zones between FCDs system and both tundish outlets. The mounted FCDs caused an
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intensive mixing zone of liquid steel in which the feed streams separate into many smaller
recirculation flows between the weirs. In addition, the liquid steel movement in individual
zones of the tundish was unified. After leaving the feed zone, the dams stimulate rising
movement of the liquid steel streams towards the free surface. Upon reaching the stopper
rod zones and side walls transverse to the longitudinal axis of the tundish, some of the
streams enter the outlets. The remaining liquid steel streams along the bottom of the
tundish return to the dams. As a result, portions of the liquid steel circulate between the
feed zone and the stopper rod zones.
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the tundish with FCDs, and (h) longitudinal back plane in the tundish with FCDs.

In the tundish without FCDs, the average velocity of liquid steel in the tundish
working volume was 0.0515 m/s. Meanwhile, FCDs application resulted in a reduction
of the average velocity by 0.0137 m/s, due to braking the momentum of the feed stream
by the system of dams and weirs. Thus, the mounted FCDs definitely affected not only
the directions of liquid steel flow but also the flow velocity between the tundish pouring
zone and the outlet zones, which should also affect the kinetics of the alloy–liquid steel
mixing process.

4.2. Chemical Homogenisation Conditions

In the author’s previous work, the effect of alloy density on mixing process was
presented [18]. Therefore, two extremely different density alloys were adopted to present
investigation. A change in the concentration of the alloy addition in the liquid steel at
the tundish outlets as a function of time in the form of mixing curves enabled qualitative
analysis of the dynamics of the microalloying process during the CSC process. In the first
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stage of the study, four sites of feeding the alloy addition in the form of nickel in a tundish
without FCDs were tested. Figure 3 shows the distribution of nickel in the liquid steel
flowed into the mould for two selected characteristic cases. In the computer simulation
with the additive feeding site marked with number 2 and tundish without FCDs, a different
distribution of nickel concentration at the tundish outlets is visible. At the same time, the
nickel concentration reaches 95% level of chemical homogenisation faster at outlet number
1. In the second case from Figure 3, the 95% level of chemical homogenisation was obtained
faster. Both cases indicate strong asymmetry of the mixing process resulting from initiation
of the alloying process in the regions marked with numbers 2 and 3. The dimensionless
mixing time necessary to obtain the required 95% level of chemical homogenization was
calculated from the concentration vs. time curves. For the simulation case, where the
additive was only fed at one site, the required chemical homogenisation level during heat
casting was much smaller at outlet number 1. In the case of initiating the alloying process
in parallel at two sites (AAFP No. 2), a discrepancy in the mixing time for individual
outlets was obtained, equal to 0.3 DMT. However, in the third simulation case a significant
reduction in the mixing time was obtained for both outlets number. The best mixing
conditions regarding uniformity were obtained for the simulation case of feeding the alloy
addition outside the tundish pouring zone, where the mixing times for both outlets were
about 0.8 DMT.
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In the following stage of the research, the influence of the tundish equipment variant
No. 2 on the chemical homogenisation process initiating the alloying of liquid steel with
the nickel metal in the four analysed areas of the tundish was verified. Figure 4a shows
the mixing process in a tundish with FCDs for two AAFPs. The AAFP No. 1 shows
more hard conditions to achieve the required 95% chemical homogenization level at both
outlets of the tundish. On the other hand, in the case of alloying steel by AAFP No. 4,
the distribution of the mixing curves indicates that the planned correction of the chemical
composition of liquid steel is faster than in the tundish without FCDs. Mounting FCDs
in the tundish modified the hydrodynamic conditions of the liquid steel flow conducive
to active recirculation visible in the form of a decreasing amplitude of the mixing curve.
In addition, the use of FCDs resulted in significantly higher peak values recorded at the
tundish outlet, which indicates a greater concentration of the alloy addition in the feed
streams of the moulds. At the same time, the employed FCDs homogenised the steel
flow in individual tundish zones in relation to the longitudinal axis, which reduced the
asymmetry of the mixing process for AAFPs No. 1–3. However, the mixing time for both
outlets exceeded 1.5 DMT. Mounting FCDs did not allow a satisfactory result of chemical
homogenisation to be obtained in the case of the alloying process initiation site marked with
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numbers 1–3. A mixing time below 1 DMT, fairly aligned for both outlets, was obtained by
introducing nickel outside the feed zone of the tundish equipped with the proposed FCDs.
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In addition, in order to assess the impact of the used tundish equipment, the minimum
time required to obtain the 0.005% concentration of the alloy addition at the individual
tundish outlets was estimated. This time is the period that elapses between introducing the
alloy addition to the liquid steel and its appearance at the outlets in an amount significant
for the chemical composition of the cast slabs. This time should be long enough for the
alloy addition to reach the liquid state by melting and dissolving in liquid steel before it
enters the mould along with the liquid steel stream. The minimum time for nickel and
the tundish without FCDs and the alloying process initiation sites marked with numbers
1–3 was 0.098–0.129 DMT and 0.152–0.191 DMT for the tundishes without and with FCDs,
respectively. On the other hand, when initiation of the alloying process was transferred
to the area between the tundish pouring zone and the tundish outlets, the minimum time
increased to 0.136–0.139 DMT in the tundish without FCDs and decreased to 0.077–0.09
DMT in the tundish with FCDs. The obtained minimum times associated with the chemical
homogenisation processes reflect the hydrodynamic conditions that arose in the analysed
tundish operating areas. The obtained minimum periods were characterized by a similar
value for both outlets, as well as the second addition in the form of aluminium. The
shortest minimum time was 1 min, which is why the selection of the linear dimensions of
the additive is important in the process of alloying liquid steel in the tundish.

In the next stage of the study for the considered variants of the tundish equipment
and alloy addition feeding positions, it was checked how the aluminium would behave in
the volume of liquid steel. Figure 5a shows the concentration vs. time curves for tundish
equipment variants No. 1 and 2 and alloy addition feeding positions outside the tundish
pouring zone. As in the case of nickel, the behaviour of aluminium in liquid steel is also
correlated with the tundish equipment. In the tundish with FCDs, the characteristic wave
of the mixing curve with gradually decreasing amplitude is visible. In contrast, the mixing
of aluminium with liquid steel is definitely weaker than in the case of nickel, as evidenced
by the definitely higher concentration of aluminium in the streams flowing through the
outlets in the initial period of casting. The majority of the obtained mixing times for
aluminium exceeded the value of 2.5 DMT, which, when, casting in 4 DT is 3/5 of the time
of casting, which must pass to obtain the required chemical homogenisation level. The
obtained mixing times for aluminium at the 3 DMT level concerned only one of the two
outlets, while for the second, 95% chemical homogenization level was 2.75 DMT in the bare
tundish. Moreover, for aluminium, the shortest mixing time was obtained for AAFP No. 4
and the tundish with FCDs. However, in relation to nickel steel microalloying, introducing
the aluminium and obtaining a 95% chemical homogenisation level requires three-fold
more time.
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4.3. New Solutions for Tundish Equipment

The aim of the next investigations was to check possibility of decreasing dimensionless
mixing time in the considered tundish by using other combinations of FCDs. New designs
of tundish were performed to evoke some additional recirculation in the liquid steel volume.
The average velocity of liquid steel in the liquid steel volume was 0.0504 m/s in the tundish
equipment variant No. 5, which was a very similar to value for the bare tundish. In
contrast, for TEV Nos. 3–4, liquid steel velocity amounted to 0.0370 m/s. Therefore, the
fifth considered tundish equipment variant changed liquid steel flow but did not decrease
average velocity. Figure 6 shows concentration vs. time curves for the three following
tundish equipment. Concentration vs. time curves for nickel and aluminium characterise
symptomatic peaks, especially in the tundish with additional FCDs in the zones near
outlets. Quite different concentration vs. time curves for both alloys were obtained for the
tundish with FCDs mounted only in the stopper rod system zones. Referring to proposed
new tundish design solutions, TEV No. 5 assured the least DMT on the level of value 2.5
for Al and 1.5 for Ni, with very small concentration imbalance at both outlets (Figure 7).
A very important problem for liquid steel microalloying is actual alloy concentration
obtained at the outlets. Figure 7b presents real alloy concentration deviation in relation to
the purpose of microalloying and adjusting the chemical composition of the liquid steel
by 0.055 wt%. The highest deviations of alloy concentrations were obtained for AAFP
No. 1, while AAFP No. 4 allowed the elimination of deviations or gain value 0.001 %wt.
Therefore, for choosing the best tundish equipment and AAFP, not only should DMT be
considered but alloy deviations at both outlets, as well.
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5. Conclusions

Based on the computer simulations carried out, it has been found that:

• The proposed pulse-step method of microalloying liquid steel during the CSC process
can be successfully applied in the considered two-strand tundish during slabs casting.

• For the analysed tundish, it is definitely beneficial for chemical homogenisation to
initiate the alloying process simultaneously in two sites.

• The chemical homogenisation process can be intensified by appropriate selection of
the FCDs. The shortest mixing time for nickel with liquid steel was obtained below
0.8 DMT in the tundish with dams/weirs system in the pouring zone.

• Liquid steel alloying by aluminium requires a much longer mixing time. In the tundish
with FCDs, the shortest mixing time for aluminium was close 2.5 DMT, when the
dams/weirs system was localized only in the stopper rod zones.

• The AAFP No. 1 generated the most alloy deviation of concentration at tundish outlets
referred to assumed aim of liquid steel microalloying.
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