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Abstract: The selection of twin variants has a great influence on deformation texture and mechanical
property in hcp metals where slip systems are limited and twinning types are abundant during
deformation. Local strain accommodations among twin variants are considered to shed light on
variant selection rules in Ti and Mg alloys. Five kinds of strain accommodations are discussed in
terms of different regions that are affected by the twinning shear of primary twin. These regions
contain (I) the whole sample, (II) neighboring grain, (III) adjacent primary twin in neighboring grain,
(IV) adjoining primary twin within the same parent grain, and (V) multi-generation of twinning
inside the primary twin. For a potentially active variant, its operation needs not only relatively
higher resolved shear stress but also easily accommodated strain by immediate vicinity. Many of
the non-Schmid behaviors could be elucidated by local strain accommodations that variants with
relatively higher SFs hard to be accommodated are absent, while those with relatively lower SFs but
could be easily accommodated are present.

Keywords: strain accommodation; twin variant; titanium; magnesium

1. Introduction

Unlike cubic metals, hexagonal closed-packed (hcp) metals, such as Ti and Mg, likely
have strong contributions of twinning, in addition to that of slip, to their mechanical re-
sponse. Depending on the c/a ratio of hcp lattice, there are diverse contributions of twinning
and slip, leading to different textures and further modifications in mechanical response.

From the viewpoint of stress, deformation modes subjected to the highest or rela-
tively higher resolved shear stress would tend to activate among all the possible modes.
The relative quantity of resolved shear stress can be characterized by Schmid factor (SF)
m = cosλ·cosµ, where λ and µ are angles between loading and slip or twinning direction
and slip or twinning plane normal, respectively [1]. The m ranges from −0.5 to 0.5. Gener-
ally, deformation modes with SFs greater than 0.3 are considered as active during plastic
deformation. By multiplying SF with applied stress corresponding to the initiation of a
given deformation mode, the critical resolved shear stress (CRSS) of the specific deforma-
tion mode could be determined experimentally. For example, the CRSS for deformation
modes in Ti (with a c/a ratio of 1.587) from low to high is <a>-type prismatic slip, <a>-type
basal slip, <c+a>-type pyramidal slip and twinning [2,3]. While, in Mg (with a c/a ratio
of 1.624), the order is <a>-type basal slip, {1012}<1011> extension twin, prismatic slip,
pyramidal slip and {1011}<1012> contraction twin [4–6]. (According to Taylor law, five
deformation modes are necessary to satisfy the deformation accommodation condition;
twinning is usually involved for plastic deformation).

The abundance of twinning and twin variants makes the selected deformation mode a
complex issue. In pure α-titanium (Ti), six types of twinning modes, including three ex-
tension twins, {1012}<1011>, {1121}<1126> and {1123}<1122>, and three contraction twins,
{1122}<1123>, {1124}<2243> and {1011}<1012>, have been observed so far. They generate 36
kinds of primary twin variants as each twin mode has six equivalent variants. If those pri-
mary twins undergo further twinning, there are up to 362 kinds of possible double-twinning
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combinations. In pure magnesium, two twinning modes, {1012}<1011> and {1011}<1012>,
induce 12 kinds of primary twins and 122 kinds of second-generation twinning.

Two main forms of expressing SFs, including SF curve [7] and SF-inversed pole figure
(IPF) [8], are applied to estimate the relative activities of twinning. The latter one, also
named as the apparent SF, is more perceptive, because it plots the loading domain for
a specific twin variant with all the possible SFs into an IPF, which is associated with
a crystallographic coordinate system of parent grain. This method has advantages of
calculating the SFs of the multigeneration of twinning [9–11]. The normalized SF, defined
as the ratio of each SF to the highest SF, is also adopted in cases that the absolute values
of SFs for most twin variants are relatively low due to grain orientation [12,13]. Hence,
the normalized SFs range from −1 to 1. In most cases, the Schmid law has demonstrated
success in explaining the twin variant selections [14–18] and deformation texture [19].
However, some non-Schmid behaviors have been observed in Ti [20–22] and Mg [23–28],
where the active deformation twins exhibit relatively lower SFs while those with higher or
highest SFs are absent.

On the other hand, strain is another key factor determining the operation of various
deformation modes, especially in circumstances where the local stress is strongly different
from that of the external stress. The accumulated local stress induced by twinning shear
needs to relax through plastic strain in the vicinity of twins. The concept of strain accom-
modation, firstly proposed by Mahajan and Chin [29], characterizes the accommodation
abilities of a twinning mode. Later, a quantitative expression of strain accommodation in
terms of displacement gradient accommodation (DGA) was reported by Ando et al. [30],
Martin et al. [31] and Jonas et al. [32], independently. The DGA calculation and its gen-
eral form has been extensively used in interactions of twin–twin and twin–slip in both
experiment analyses [10,29,33] and theoretical calculations [34].

In this paper, the principle of DGA associated with twinning is elucidated in detail
by the aid of the schematic diagram, and the practical applications of DGA criterion
are reviewed.

2. Principle of DGA Criterion

Twin is formed by homogeneous shearing of a matrix on the twin plane (or habit
plane) along the twin direction; therefore, twin shear can be expressed as a strain tensor
of the second rank in the twin coordinate system and transformed linearly. Figure 1a
schematically indicates a typical kind of twin behavior inside parent grain A and adjacent
grain B. Primary twin p inside grain A adjoins another primary twin n inside a neighboring
grain B. Meanwhile, another primary twin variant v inside A interacts with p, which is
furtherly twinned into secondary twin s.

To facilitate the expression and extinguish different kinds of coordinate systems, the
crystallographic coordinate system is denoted as C, and twin reference system is presented
as T. The superscript of coordinate system notation indicates the matrix crystal. Here, the
crystallographic coordinate system of grain A (marked by the X, Y and Z axes) are denoted
as CA in Figure 1b, and the crystal frame of twin p is marked as Cp in Figure 1c. It is worth
noting that the same twin plane of primary twin p can be expressed either in parent grain
frame CA as a gray plane in Figure 1b or in the crystal framework of the twin Cp as the
orange plane in Figure 1c, but they have different indices. The X, Y and Z axes in frame
Cp are defined as: X||<1210>, Z||[0001] and Y||<1010>. The twin coordinate system
of twin p inside grain A (marked by the x, y and z axes) is denoted as TA→p, as shown
in Figure 1b, while twin frame of twin p inside the twin lattice is represented as Tp. The
definition of the twin frame is x||η1 (twinning direction), z||K1normal (K1 is twin plane),
and the y-axis is determined by the cross product of the x and z axes. For a specific twin of
type I that has rational indices for K1 and η2, twin frame TA→p coincides with twin frame
Tp by rotating 180◦ around the normal plane of K1. While, for the type II twin with rational
indices for K2 and η1, the two frames overlapped by rotating 180◦ around the η1 direction.
All the coordinate systems associated with twins in Figure 1a are listed in Table 1.
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Figure 1. (a) Illustration of twin interactions between grain A and B. Primary twin marked as p
in grain A adjacent to the primary twin marked as n in grain B. Another twin variant labeled as v
interacts with p within which secondary twin s appears; (b) coordinate systems expressed in the
crystal of grain A; (c) coordinate systems expressed in primary twin p.

Table 1. Coordinate systems and corresponding DGT.

Coordinate System Definition Coordinate System
Symbol DGT in Varied Frames

twin p in crystal frame A TA→p eTA→p

ij

crystal frame of grain A CA eCA

ij
Sample reference frame S eS

ij

crystal frame of grain B CB eCB

ij

twin n in crystal frame B TB→n eTB→n

ij

twin v in crystal frame A TA→v eTA→v

ij
twin frame of primary twin p Tp eTp

ij
crystal frame of primary twin p Cp eCp

ij
2nd twin s in crystal frame p Tp→s eTp→s

ij

It should be noted that coordinate systems are built over dislocation slip with x||slip
direction, z||slip plane normal and y is vertical to the xz plane [26,35], for cases investigat-
ing the strain accommodation between the twins and slips. The relationship between the
axes of the slip frame and various slip systems for hcp metals are listed in Table 2. Note
that slip shear is defined as the magnitude of slip Burgers vector divided by the interplane
distance of slip plane for the sake of comparison qualitatively, although dislocation slips
do not produce a specific shearing value as twinning.
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Table 2. The x, y and z axes of the slip reference frame for different slip systems in hcp metals 1.

Slip Types Indices of Slip
System x-axis y-axis z-axis

basal <a> (0001) < 1120> < 1120> < 1010> [0001]
prismatic <a>

{
1010} < 1120> < 1120> [0001] < 1010>

1st-order
pyramidal <a>

{
1011} < 1120> < 1120> < 1100> < 112 3

2r2 >

1st-order
pyramidal

<c+a>

{
1011} < 1123> < 1123> < 1100> < 112 3

2r2 >

2nd-order
pyramidal

<c+a>

{
1122} < 1123> < 1123> < 1100> < 112 1

r2 >

1 r is the c/a ratio of the hcp lattice.

With the above coordinate systems, the displacement gradient tensor (DGT) and its
components get physical meaning. Taking displacement along the x, y and z directions as
u, v and w, respectively, then the components of DGT could be written as eij, as shown in
Table 3. In the twin reference frame, only the exz component gets a value of twinning shear
s, while the other eight components are zeros. The value s is a constant for a specific twin.
The exy and eyx components correspond to single and double prismatic slips, respectively.
The exz and eyz components correlate to single and double basal slips, respectively. The ezx
and ezy components stand for <c+a> slips or twinning. All the DGTs expressed in different
systems are also listed in Table 1, where the superscript of each eij corresponds to the
coordinate system it is expressed in.

Table 3. Displacement gradient tensor expression.

DGT DGT in Twin Frame DGT in Crystallographic
Frame

eij =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 eT
ij =

 0 0 s
0 0 0
0 0 0

 eC
ij =

 exx exy exz
eyx eyy eyz
ezx ezy ezz



There is another definition of a twin coordinate system defined by Ando et al. [30],
which is the y||η1, z||K1 normal plane and x perpendicular to the yz plane. With such a
definition, the initial twinning shear tensor gets a different form shown below:

eij =

 0 0 0
0 0 s
0 s 0


This kind of definition is different from that of Jonas et al. [32] that is used more

extensively, as its twinning shear strain tensor has a much simpler form. Therefore, we
adopted the latter, simpler one in the following content.

Based on the coordinate systems defined in Table 1, DGA among different twin
variants in Figure 1a can be evaluated through DGT calculation. The flowchart in Figure 2
sorts twin-related DGA evaluations into five categories, numbered from I to V in terms
of the aim frames the transformation ended. For each case, twin shear expressed in twin
frames could be transformed into other frames to evaluate the strain accommodations that
the twin imposed on them. DGTs in black squares are connected by transform matrices with
notations shown above the dashed-line arrows. Detailed procedures of the transformation
for each category are given in the Appendix A. The application of DGA in these five cases
are discussed in Section 3.
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3. Application of DGA Criterion
3.1. DGA between Primary Twin and Sample

The contribution of twin shear resulted from primary twin to external strain can be
evaluated by transforming DGT eTA→p

ij of primary twin p expressed in the crystal frame

of grain A into eS
ij expressed in the sample frame, as case I in Figure 2 shows. The aim

of the transformation is to evaluate whether the twin shear complies with the external
strain or not. Shun et al. [36] investigated strains that {1122}-{1012} twin pairs appeared
at high-angle grain boundaries and contributed to macroscopic loading in rolled pure Ti
compressed along the normal direction (ND). The sample frame is set as x||roll direction
(RD), y||transverse direction (TD) and z||ND; therefore, the diagonal component e33 of
the transformed DGT is the key consideration. By transforming the DGTs of the active
{1122} and {1012} twin variants from their respective twin frames into the sample frame, the
results turn out that the e33 components vary from −0.1 to 0.05, suggesting that these twins
bestow little external strains. Another way to transform from crystal frame into the sample
frame is by Euler angle of twin p, which can be obtained by electron backscatter diffraction
(EBSD). Schuman et al. [37] adopted this method to calculate the twin formation energy
e33/
√

L, where L is the free path of twin lamella. It is found that in titanium channel die
compressed to 16% reduction, active twin variants have the highest absolute value of twin
formation energy, not those with the highest SFs.

The twin/detwinning behavior could also be elucidated by transforming DGT from
twin or slip frame into the sample frame. Shiying et al. [35] adopted this method to clarify
the twin/detwinning mechanism that {1012} twin with negative SF −0.16 appeared at
strain 0.1 then disappeared at strain 0.15 inside the same grain. In order to interpret the
occurrence of the SF-negative {1012} twin, DGTs of the prismatic slip and {1012} twin
are transformed into the macroscopic sample frame, which is defined as the x||tensile
direction, y||transverse direction and z||ND. In such a case, diagonal components of
the transformed tensor represent the normal strains in the three principal directions. The
results show that prismatic slips at both sides of the grain boundary have positive e11 and
negative e22 and e33, suggesting that strain induced by prismatic slips are in accordance
with external strains. As deformation develops, concentrated slip bands pile up at grain
boundaries to produce a back stress, which can be released by a twin with locally positive
SF but globally negative SF. This has been demonstrated by the negative e11 and positive
e22 and e33 of twin shear DGT expressed in the sample frame. As further strain to 0.15, the
strong tensile load forces twin to produce a strain state was consistent with the external
strain, leading to detwinning.

3.2. DGA between Primary Twin and Neighboring Grain

Accommodation strains that deformation twins imposed on neighboring grains can
be evaluated by transform twin DGT from twin frame into the crystal frame of neighboring
grains in terms of procedure II in Figure 2. In this routine, DGT of primary twin p is



Crystals 2021, 11, 453 6 of 14

presented as eTA→p

ij and transformed into a crystal frame of neighboring grain B expressed

as eCB

ij . Since the six shear components of DGT in crystal frame have specific physical

interpretations, the highest shear components in eCB

ij reveal the most required deformation
modes in neighboring grain B that largely accommodate the twin shear from twin p. On
the contrary, the lowest shear components reflect the least likely occur deformation modes
in neighboring grain.

For deformation twins in Mg and its alloys analyzed with procedure II in Figure 2, a
requirement of the prismatic slip in the neighboring grain is the main impedance for twin
activation. According to CRSS of Mg, basal slip with the lowest CRSS around 18 MPa is
the easiest to activate, followed by {1012} twin with CRSS about 23.5 MPa [5], prismatic
slip and pyramidal slip or {1011} twin. An approximation ratio of CRSS among the four
deformation modes is 1:4:9:10 [27]. Although the absolute values of CRSS for individual
deformation modes are divergence, the relative order of magnitude is consistent [4–6].
Based on the CRSS order, the twin that demands prismatic slip or pyramidal slip in the
neighboring grain is hard to be accommodated, hence it fails to operate even with the
high SF. In the extruded AM30 and AZ31 tubes extended along the extrusion direction
(ED), Jonas et al. [32] reported that the selected primary twin variants with low SFs (0.05–
0.22) require very small accommodation by exy with an average value below 0.005, while
the absent variants with relatively higher SFs (0.4–0.5) indicate larger average exy that
fell in the range 0.025–0.075. Mu et al. [27] also applied this procedure to interpret the
variant selection of multigeneration twinning in the AZ31B alloy deformed by channel
die compression. During their calculations, primary and secondary twins are considered
as the matrix of secondary and tertiary twins, respectively. The neighboring grains of the
secondary twins are those that not only surround its matrix but also adjoin tertiary twins.
The neighboring grain of tertiary twin is primary twin. Their results also demonstrate that
prismatic slip, represented by exy and/or eyx components is one of the determinant factors
in variant selection in Mg. The twin that requires little strain accommodation by a prismatic
slip in neighboring grain will operate or grow to a relatively large size; conversely, those
that require a large strain by prismatic slip will inactive or exhibit small size.

For deformation twins in Ti employed operation II in Figure 2, variants that could
be accommodated by prismatic and/or basal slips in neighboring grains that have a high
probability to activate. Conversely, variants that have relatively high SFs but need a
pyramidal slip or further twinning in neighboring grains hardly occur, since prismatic
slip has the lowest CRSS of 181 MPa amid the deformation modes in Ti, followed by
basal slip with CRSS 209 MPa and pyramidal slips or twinning with CRSS around 474
MPa [3]. The absolute CRSS values for each deformation modes usually vary greatly due
to the discrepancy in measurements [2,3,38–40], but the relative order is the same. Qin
et al. [41] investigated variant selections for the primary twin in pure Ti and evidenced
that variants with low SFs (less than 0.2) present as a result of ease accommodation by
a prismatic slip in neighboring grain. While variants with potential high SF (larger than
0.4) absent because of its requirement of deformation modes with relatively high CRSSs
such as basal, pyramidal slips or twinning. Since the ratios of absent high SF variants to all
potential high SF variants for primary, secondary and tertiary twins are 43%, 48% and 80%,
respectively, Qin et al. [42] also utilized procedure II in Figure 2 to clear the appearance of
low-SF variants and disappearance of high-SF variants in the multigeneration of twinning.
Similarly, the primary and secondary twins are taken as the matrix of secondary and tertiary
twins, respectively. Regions that connected with their matrix are considered as neighboring
grains. The results show that the second and third generation of observed twins are those
with low SF but could be easily accommodated by prismatic or basal slips of neighboring
grain. However, those with the highest SFs but require “difficult” deformation mode such
as absent pyramidal slip.
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3.3. DGA between Twin Pairs Across Grain Boundary

Twin–twin and twin–slip pairs across grain boundaries are determined by the capa-
bility of strain accommodation which can be characterized by the procedure of case III in
Figure 2. During the calculations, DGT in one side twin/slip frame is transformed into the
opposite twin/slip frame of the grain boundary. Hence, the e13 component of transformed
tensor embodies the feasibility of twin/slip accommodated through twin or slip at facing
side of the grain boundary. This procedure is also called modified DGA (m-DGA) [36].

DGA analyses based on case III have shed light on the twin–twin and twin–slip pairs
generated at both sides of grain boundaries in Ti. Xu et al. [36] used this criterion to explain
the {1122}-{1012} twin pairs presented at both sides of large-angle grain boundaries in
compressed Ti. As {1122} twins have a much larger size than {1012} twins, it is reasonable to
consider that the latter twins are stimulated by the former twins. By transforming DGT from
the {1012} twin frame into that of the {1122} frame, it turnes out that the stimulated the {1012}
twin variants are those that can maximumly accommodate the strain induced by active
{1122} twins rather than those that possess the highest resolved stress or contribute most
to external strain. Wang et al. [35] investigated twin–twin pair and twin–slip pair across
grain boundaries in extended Ti. Their results turned out that, as the strain increased, the
{1012} twin in a grain stimulated the {1122} twin in neighbor grain, which further aroused
the {1122} and {1124} twins inside another adjacent grain. Similarly, the {1122} twin in
one grain is often connected to the first order pyramidal slip in its neighbor grain. By
transforming DGT of the active twins from their twin frames into potential twin or slip
frames of those passively activated deformation modes in neighboring grain, it reveals that
all the simulated deformation modes in adjoining grain are those possessing the highest
e13 values.

By applying the procedure of case III to low-SF {1012} twins activated at the grain
boundaries in AZ31 alloy, Zhang-Zhi et al. [26] unfolded that strain accommodation
capacity of deformation modes in neighboring grain govern activation of those {1012} twins.
The DGTs of six potential {1012} twins at one side of grain boundary are transformed from
their respective twin frames into frames of five possible deformation modes in neighboring
grain, including slip reference frames of basal, prismatic and pyramidal slips and twin
reference frames of the {1012} and {1011} twins. Since both basal and prismatic slip systems
contain three equivalent variants, and the pyramidal slip and twin each has six variants,
there are 24 possible variants in neighboring grain in total. Accordingly, six {1012} twin
variants at one side of the grain boundary can produce 144 possible variants on the other
side. For ease to link the e13 components to the activation tendency, two variables γi and εi

are introduced. γi is defined as the maximum e13 of accommodation mode i divided by the
maximum e13 among the six {1012} variants. εi is defined as the minimum e13 component
of the accommodation mode i among the six {1012} variants divided by e13 of each variant.
With such a definition, the most probable accommodation mode presents a higher γi value
and the lower εi value. The results show that {1012} twins activated only at one side of the
boundary require accommodation by the most easily activated basal slip in a neighboring
grain, while the {1012} twin pair across a boundary requires a more prismatic slip and/or
{1012} twinning but less pyramidal slip and/or {1011} twin in neighboring grain.

In addition to the DGA evaluation, another criterion applied in interpreting twin–twin
pair, twin–slip pair or slip–slip pair across a grain boundary is geometric compatibility
factor m’, which is defined as cosκ·cosΦ by Lusters and Morris [43]. Here, κ is the angle
between slip/twin directions, and Φ is the angle between slip/twin plane. The geomet-
ric compatibility factor also successfully explained behaviors of twin pairs across grain
boundary and slip transmit grain boundary in both Ti and Mg [26,33,44–47].

3.4. DGA between Primary Twin Variants with the Same Grain

Twin variants of different modes activated in the same parent and contact with each
other are probably those that can easily accommodate each other and, therefore, can be
elucidated using procedure IV in Figure 2. Xu et al. [9] reported a typical example of such a
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case that the primary {1012} twin variant denoted as T I
2 occurred at the obtuse angle area of

primary {1121} twin. Local stress analysis and SF calculations predict the location and {1012}
twin series but fail to clear the active variant with the second higher SFs. By transforming
twin shear tensor of the operating primary {1121} twins into the twin frame of six potential
{1012} twin variants and into the other four potential {1121} twin variants, it clearly shows
that the variant T I

2 has the largest e13 value that could maximumly accommodate the strains
resulted from the {1121} twin. Another case is the primary {1012} variants represented
by T I

3 and T I
4 developed in the parent grain, along with the {1121} twin variants T I I

3 in Ti
shocked by a split Hopkinson pressure bar at strain rate ~103 s−1 [48]. Twin shear tensor of
the active primary {1121} twin is transferred to the twin frame of the six potential {1012}
twin variants in the same parent. The result reveals that the operative {1012} twin variants
exhibit the highest e13 components.

3.5. DGA between Primary and Second Twins

Four different ways of evaluating strain accommodation of second-generation twin-
ning in Ti and Mg have been conducted. Firstly, Ando et al. [30] proposed a method to
examine the strain accommodations induced by {1011}-{1012} double twins in AZ31 alloy.
In their operations, twinning shear tensors of the primary {1011} and secondary {1012}
twins are transformed from their respective twin frames into the crystal frame of the parent
grain named as a standard coordinate system. For the secondary twin, twinning shear
tensor in its twin frame is firstly transformed into crystal frame of primary twin, then
further transformed into crystal frame of parent grain. The transformation matrices are
derived in terms of the angle–axis pairs between twinning and their matrices. The total
accommodation of the {1011}-{1012} double twin is obtained by adding the strain tensor
induced by the primary twin and secondary twin. With this calculation, it suggests that
the {1011}-{1012} double twin with the same planes of shear between the primary and
second twins are more active compared to the {1011}-{1012} double twin with a different
plane of shear, because the former induces are much smaller strains in the parent grain.
This method considers the overall strain of the transformed tensor instead of a specific
component. However, Martin et al. [31] found that, in their investigation of {1011}-{1012}
double twin in extended AM30, the total accommodation of strains produced by primary
and secondary twins inside the parent grain cannot discriminate the prevalent twin group.
Secondly, Qin et al. [42] adopted procedure II in Figure 2 to investigate strain accommo-
dation for {1012}-{1122} and {1122}-{1012} double twins in pure Ti compressed to a large
strain of 30%. It should be very cautious to select the appropriate neighboring grains for
secondary twins when using this method. However, this way of evaluation seems to be not
very effective in explaining the prevalence of some kinds of secondary twins observed in
Ti at relatively low strain around 9% [21]. Thirdly, Xu et al. [9] tried to account for strain
accommodation of the {1122}-{1012} double twins in Ti by transforming DGT of the primary
twin from its twin reference frame into the twin frame of the secondary twin. Still, this way
cannot distinguish the popularity of specific variants of the secondary twins, especially
for that of the rare occurred multiple twinning. Finally, a method that transformes the
DGA of the secondary twin into the primary twin frame brings insights into the selection
of the secondary twin variants. This is the procedure V shown in Figure 2, which will be
discussed in the following.

Generally, variants that can maximumly accommodate the twin shear resultes from
primary twins that would tend to activate. This accommodation ability can be described
by evaluating the resultant e13 components obtained by procedure V. As to Ti, five types
of secondary twins have been successfully predicted, adopting this method, including co-
family double twinning of {1122}-{1121}, {1121}-{1124}, {1121}-{1122} and non-family double
twinning of {1122}-{1012} and {1124}-{1012} [11,21,48]. The results showed that all the active
secondary twin variants possess the highest e13 components that transformed into the twin
frame of the primary twins, suggesting that the selected secondary twin variants could
maximum diminish twin shear strain induced by corresponding primary twins.
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A phenomenon worthy to note is that secondary {1012} twinning inside primary {1124}
twins usually accompany by co-zone the {1122} twin [21,48]. The secondary {1012} twin is
demonstrated as the one that can maximally accommodate strain from the primary twin
by transforming the deformation gradient of the {1012} twin from its twin frame into the
primary twin frame. While the secondary {1012} twin variants T I

3 and T I
4 stimulated inside

the {1124} twin variant CI I
6 was ascribed to accommodate the twinning shear induced by

the incoming {1122} twin variant CI
3, since both the active secondary twin variants have the

highest e13 component transformed from the operative {1122} twin into the twin frames
of the six potential {1012} twin variants. Interestingly, Martin et al. [31] did not adopt this
approach to explain the active secondary twin group in AM30 alloy, but their calculation
results demonstrated that the two operative groups exhibit a higher e13 compared to
those absent.

4. Summary

The discourse gives a brief narrative over strain accommodations among twin variants
in the Ti and Mg alloys. The strain accommodation is one of the key factors affecting
twin variant selections during plastic deformation and can be quantitatively evaluated
by the transformation of displacement gradient tensor of twinning shear. These strain
accommodations are classified into five categories in terms of different regions where the
primary twin imposes influence. These regions include sample entirety, neighboring grain,
adjoining twin in neighboring grain, other primary twin variants adjacent to the primary
twin inside the same parent grain and secondary generation twins inside the primary twin.
By investigating the potentially required deformation modes that need to accommodate
strains resulted from twinning, it reveals that twin variants have easily been accommodated
by its vicinity are more prone to operate, conversely, those withstanding relatively high
resolved shear stress but hard to be accommodated are absent. The displacement gradient
accommodation criterion gains success in the interpretation of the non-Schmid behavior
and provides a necessary supplement in the twin variant selection rules.

Generally, Schmid factors and accommodation strains could be integrated as defor-
mation energy taking account of both the stress and strain [49]. Deformation modes that
would maximumly exhaust an external work are expected to happen, such as deformation
modes across grain boundaries such as twin–twin, slip–slip and twin–twin pairs; another
usually adopted criterion is the geometric compatibility factor, which reflects the strain
compatibility between deformation modes at both sides of the grain boundary by resolv-
ing the strain induced by one side deformation onto that of at the opposite side of the
grain boundary.
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Appendix A.

Appendix A.1. Transformation from Twin Frame TA→p into Sample Frame S

Suppose r is the c/a ratio of hcp-structured metals, and s is the twinning shear of a
specific twin; then, the displacement gradient tensor (DGA) of primary twin p in twin
frame TA→p can be expressed as:

eTA→p

ij =

 0 0 s
0 0 0
0 0 0


In frame TA→p, the xAp and zAp axes are set parallel to the twining shear direction

[uvtw] and normal of the twinning plane (hkil) of primary twin p, respectively. Note that
Miller-Bravais indices (hkil)[uvtw] for primary twin p are expressed in the hcp lattice of
parent grain A; therefore, they need to be transformed into orthogonal coordinate system
by the following relations:

x′1 =
√

3(u + v/2)
x′2 = 3v/2
x′3 = wr


z′1 = (2h + k)

z′2 =
√

3k
z′3 =

√
3l/r

Normalize axes xAp and zAp as unit lengths by dividing their respective mode:∣∣∣xAp
∣∣∣ = √3(u + v/2)2 + 9v2/4 + w2r2,

∣∣∣zAp
∣∣∣ = √(2h + k)2 + 3k2 + 3l2/r2

The y-axis is determined by a cross-product of zAp ⊗ xAp; then, the base vectors of the
orthogonal coordinate systems {xAp, yAp, zAp} can be expressed as below:

xAp
1 =

[√
3(u + v/2)

]
/
∣∣xAp

∣∣
xAp

2 = 3v/
(
2xAp)

xAp
3 = wr/

∣∣xAp
∣∣


zAp

1 = (2h + k)/
∣∣zAp

∣∣
zAp

2 =
√

3k/
∣∣zAp

∣∣
zAp

3 =
√

3l/
(
r
∣∣zAp

∣∣)


yAp
1 = xAp

3 zAp
2 − xAp

2 zAp
3

yAp
2 = xAp

1 zAp
3 − xAp

3 zAp
1

yAp
3 = xAp

2 zAp
1 − xAp

1 zAp
2

(A1)

Hence, the transformation matrix hA→p is obtained as:

hA→p =
(

xAp yAp zAp ) =
 xAp

1 yAp
1 zAp

1
xAp

2 yAp
2 zAp

2
xAp

3 yAp
3 zAp

3

 (A2)

The hA→p transforms eTA→p

ij from twin frame TA→p into crystal frame CA according to

equation eCA

ij = hA→p ∗ eTA→p

ij ∗ h−1
A→p.

Since the Euler angle of the parent grain A of
(

ϕA
1 ΦA ϕA

2
)

represents the rotation
of sample frame in order to coincide with the crystal frame of a grain, the rotation matrix
gA of parent grain A could be depicted as [50]:

gA =

 cosϕA
2 sinϕA

2 0
−sinϕA

2 cosϕA
2 0

0 0 1

 1 0 0
0 cosΦA sinΦA

0 −sinΦA cosΦA

 cosϕA
1 sinϕA

1 0
−sinϕA

1 cosϕA
1 0

0 0 1

 (A3)

Therefore, eCA

ij can be further transformed into a sample frame as eS
ij in terms of relation:

eS
ij = g−1

A ∗ eCA

ij ∗ gA = g−1
A ∗ hA→p ∗ eTA→p

ij ∗ h−1
A→p ∗ gA (A4)
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If the Euler angle of primary twin p is known as
(

ϕ
p
1 Φp ϕ

p
2

)
, then the DGT of

primary twin p can be directly transformed into sample frame by relation:

eS
ij = g−1

p ∗ eTA→p

ij ∗ gp (A5)

Appendix A.2. Transformation from Twin Frame TA→p of Primary Twin p in Parent Grain A into
Crystal Frame CB of Neighboring Grain B

Assume the Euler angle of neighboring grain B is presented as ( ϕB
1 ΦB ϕB

2 ), the
DGT of primary twin p could be further transformed into the crystal frame of neighboring
grain B based on Equation (A4) with rotation matrix gB as following:

eCB

ij = gB ∗ eS
ij ∗ g−1

B = gB ∗ g−1
A ∗ hA→p ∗ eTA→p

ij ∗ h−1
A→p ∗ gA ∗ g−1

B (A6)

Appendix A.3. Transformation from Twin Frame TA→p of Primary Twin p inside Parent Grain A
into Twin Frame TB→n of Primary Twin n in Neighboring Grain B

The twin frame TB→n of the primary twin n in neighboring grain B is defined in the
same way as described by Equation (A1). As a result, the base vectors {xn, yn, zn} of twin
frame TB→n constitute the transformation matrix hB→n:

hB→n =
(

xn yn zn ) =
 xn

1 yn
1 zn

1
xn

2 yn
2 zn

2
xn

3 yn
3 zn

3


Therefore, the DGT of primary twin p in grain A can be transformed into twin frame n

in grain B based on Equation (A6) as following:

eTB→n

ij = hB→n ∗ eCB

ij ∗ h−1
B→neTB→n

ij = hB→n ∗ gB ∗ g−1
A ∗ hA→p ∗ eTA→p

ij ∗ h−1
A→p ∗ gA ∗ g−1

B ∗ h−1
B→n (A7)

Appendix A.4. Transformation from Twin Frame TA→p of Primary Twin p into Twin Frame TA→v

of Primary Twin v within the Same Parent Grain A

This transformation is related to transformation matrices hA→p and hA→v, both of
which are determined by the same approach as Equations (A1) and (A2). Here, the matrix
hA→v is determined by twinning indices of primary twin v in parent grain A. Thus, the
transformation from eTA→p

ij into eTA→v

ij is expressed as:

eTA→v

ij = h−1
A→v ∗ hA→p ∗ eTA→p

ij ∗ h−1
A→p ∗ hA→v

Appendix A.5. Transformation from Twin Frame Tp→s of Secondary Twin s Expressed in Primary
Twin p into Twin Frame Tp of Primary Twin p

To derive the DGT transformation expression between secondary twin s and primary
twin p, transformation matrices related to procedure V in Figure 2 should be established
at first.

Matrix h1 can transform the twin frame TA→p of primary twin p into twin frame Tp.
If the primary twin p is type I twinning with rational indices of K1 and η2 that satisfy the
symmetry of rotating 180◦ around K1 normal, then h1 is expressed as:

h1 =

 −1 0 0
0 −1 0
0 0 1


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If p is a type II twinning with symmetry of rotating 180◦ around η1, then h1 gets
expressed as:

h1 =

 1 0 0
0 −1 0
0 0 −1


Matrix hp rotates the twin frame Tp of primary twin p into crystal frame Cp of the

primary twin p. Therefore, hp is determined by the twin parameters of primary twin p
expressed inside the twinned crystal and can be obtained according to the same way in
Equations (A1) and (A2). Taking the base vectors of frame Tp as {xp, yp, zp}, the transforma-
tion matrix hp is expressed as follow:

hp = (xp, yp, zp) =

 xp
1 yp

1 zp
1

xp
2 yp

2 zp
2

xp
3 yp

3 zp
3


Matrix hp→s rotates crystal frame Cp of primary twin p into twin frame Tp→s of sec-

ondary twin s, which is expressed inside the primary twin lattice. As the same approach
determining the hp matrix, hp→s is fixed by twin parameters of the secondary twin ex-
pressed in the lattice of primary twin p using Equations (A1) and (A2). Taking the base
vectors of twin frame Tp→s as {xs, ys, zs}, the hp→s is expressed as follows:

hp→s = (xs, ys, zs) =

 xs
1 ys

1 zs
1

xs
2 ys

2 zs
2

xs
3 ys

3 zs
3


Finally, the eTp→s

ij in the secondary twin frame can be transformed into the primary

twin frame expressed as eTp

ij , according to the following equation:

eTp

ij = h−1
p ∗ hp→s ∗ eTp→s

ij ∗ h−1
p→s ∗ hp
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