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Abstract: The current COVID-19 pandemic is caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection. Globally, this pandemic has affected over 111 million indi-
viduals and posed many health and economic challenges. Much research effort is dedicated to
discovering new treatments to address the associated challenges and restrict the spread of SARS-
CoV-2. Since SARS-CoV-2 is a positive-strand RNA virus, its replication requires the viral RNA-
dependent RNA polymerase (RdRp) enzyme. In this study, we report the discovery of new potential
RdRp enzyme inhibitors based on computer modeling and simulation methodologies. The an-
tiviral ZINC database was utilized for covalent docking virtual screening followed by molecular
inter-action analyses based on reported hot spots within the RdRp binding pocket (PDB: 7BV2).
Eleven molecules, ZINC000014944915, ZINC000027556215, ZINC000013556344, ZINC000003589958,
ZINC000003833965, ZINC000001642252, ZINC000028525778, ZINC000027557701, ZINC000013781295,
ZINC000001651128 and ZINC000013473324, were shown to have the highest binding interactions.
These molecules were further assessed by molecular dynamics (MD) simu-lations and absorption,
distribution, metabolism, excretion, and toxicity (ADMET) studies. The results showed that all 11
molecules except ZINC000027557701 formed stable complexes with the viral RdRp and fell within
the accepted ADMET parameters. The identified molecules can be used to design future potential
RdRp inhibitors.

Keywords: covalent docking; RdRp; SARS-CoV-2; ZINC antiviral database; MD simulation; vir-
tual screening

1. Introduction

In December of 2019, the first cases of a new respiratory disease were reported in
Wuhan, China. The disease rapidly spread globally, prompting the World Health Organi-
zation (WHO) to announce a worldwide pandemic. The term Coronavirus Disease 2019
(COVID-19) was assigned to the pandemic, and its causative agent was identified as a
novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1–3].
The COVID-19 virus is a new member of the Betacoronavirus genus, which includes severe
acute respiratory syndrome-related coronavirus (SARS-CoV), the Middle East respiratory
syndrome coronavirus (MERS-CoV), and various bat coronaviruses [4]. SARS-CoV-2 has
been linked to an elevated risk of human-to-human transmission. This is demonstrated
by the finding that the SARS-CoV-2 spike protein has a greater affinity for human host
cells [5–7].
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SARS-CoV-2 is classified as a positive-sense RNA virus. The virus encodes 16 non-
structural proteins (nsps) to assemble its replication and transcription complex (RTC),
which facilitates virus replication and transcription. Specifically, nsp12 functions as an
RNA-dependent RNA polymerase (RdRp) with nsp7 and nsp8 as cofactors. COVID-
19 replication and transcription are mediated by the RdRp, which catalyzes viral RNA
production; thus, the RdRp plays a crucial role in the survival and replication of the
virus [8–10]. The active RdRp site is highly conserved, with two successive and surface-
accessible aspartates in a beta-turn structure [11]. Several new antiviral drugs targeting the
RdRp domain, such as the nucleotide analog antiviral inhibitor remdesivir, have shown
promising results against SARS-CoV-2. Remdesivir is a prodrug that is converted to the
active triphosphate form in the body [12,13].

With the current pace of infection and the high mortality rate of SARS-CoV-2 world-
wide, researchers are investigating possible treatment mechanisms to address the crisis and
halt the virus’s spread. One pioneer method in drug discovery is in silico drug discovery
and design. Computer-aided drug design allows researchers to explore possible mecha-
nisms for use in disease treatment. In this report, we utilize computer-aided techniques,
such as virtual screening, molecular docking, and molecular dynamics (MD) simulations,
alongside additional tools to predict pharmacokinetic and toxicity parameters and identify
potential new covalent inhibitors of SARS-CoV-2 RdRp from the antiviral ZINC database.
The newly discovered inhibitors could pave the way for designing new molecules targeting
the SARS-CoV-2 RdRp

2. Material and Methods
2.1. Database Preparation

A library consisting of approximately 13,840 compounds was retrieved in SDF format
from the ZINC database website [14]. For structure-based virtual screening, the prepared
library included FDA-approved drugs that act against viral proteases as well as antiviral
compounds from natural and synthetic sources. Then, the SDF files were converted to
MDB format using MOE 2015.0101 (Molecular Operating Environment, Chemical Com-
puting Group Inc., Montreal, Quebec, Canada) to form the MOE database. Remdesivir (2-
ethylbutyl (2S)-2-[[[(2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-5-cyano-3,4-
dihydroxyoxolan-2-yl]methoxyphenoxyphosphoryl]amino]propanoate) was downloaded
from PubChem (ID: 121304016) for use as a reference molecule. Ligands were prepared by
adding hydrogens to all compounds, after which energy minimization was performed us-
ing the MMFF94x force field. Furthermore, ligand geometries were optimized using a root
mean square (RMS) gradient of 0.05 kcal/mol/Å. The optimized ligands were exported in
MDB format for further processing.

2.2. Structure-Based Virtual Screening

The SARS-CoV-2 RdRp model (PDB ID: 7BV2, chains A, B, and C) [15] was used for
molecular docking. The polyprotein replicate 7BV2 has a resolution of 2.50 Å and cleaves
the C-terminus at 11 sites. The known ligand of 7BV2 boceprevir was used as a control.
To improve the compound selectivity in this study, all hits previously obtained at the
SARS-CoV-2 binding site of RdRp were docked using the covalent docking protocol in
MOE. Therefore, the covalent docking protocol was validated by redocking of a native
ligand (remdesivir) before beginning the study, for which the resulting root mean square
deviation (RMSD) value was less than 2 Å.

Covalent docking studies with the designed database were performed using MOE
version 2015.0101 (Chemical Computing Group Inc., Montreal, QC, Canada) by setting the
primer strand at the first replicated base pair as the site of the covalent bond in the RdRp
enzyme and applying a Michael addition reaction. The following parameters were set as
the docking calculi: the residues were kept as flexible residues, the number of refinements
of retained poses was set to 100, and the number of generated conformations was set
to 10. Final pose scoring was performed based on the London dG free binding energy.
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In addition, the generalized-born volume integral/weighted surface area (GBVI/WSA)
free binding energy rescoring function was utilized to rescore the final poses. For further
analysis of the protein–ligand interactions, the docked poses with the lowest London dG
values were chosen.

During the docking process, protonation of the protein was performed by the Proto-
nate 3D method [16], and energy minimization was performed using the MOE-implemented
Amber12 force field. To specifically identify the protein’s active site, the grid was set to
include the ligands in the PDB file. During docking, the triangular matching algorithm
placement method was used in addition to the London dG scoring function. Furthermore,
for the rescoring function, the GBVI/WSA dG was utilized. All compounds were docked
in the given binding site. Next, the protein–ligand interaction fingerprinting (PLIF) module
in MOE was applied to fingerprint the binding interactions of crucial residues between the
compounds and the protein. Additional associations and poses of binding were visually
studied using MOE [17]. Based on the binding profiles, 11 hit compounds from the ZINC
database were subjected to MD simulation studies.

2.3. Molecular Dynamics Simulations

The NAMD 2.13 suite (http://www.ks.uiuc.edu/Research/namd; accessed on 21
May 2020) and MOE were employed for the molecular dynamics simulations [18]. Several
reports involving MD simulations, including protein–ligand interaction studies, have doc-
umented using this approach [19]. Using the solvation algorithm in MOE, the structures
were immersed in a TIP3P water box extending 10 Å from all protein atoms. Additionally,
the counter ions Na+ and Cl− were added to ensure charge neutrality, but the ion concen-
tration was maintained at or below 0.15 M. System equilibration was carried out using a
conjugate gradient energy minimization composed of 10,000 steps. A system warm-up
was conducted from 50 K to 310 K with 0.1 ns at each temperature increment, followed by
equilibration for 0.1 ns at a fixed temperature of 310 K. Next, an unrestricted run lasting 10
ns was performed, succeeded by cooling from 300 K to zero over 0.1 ns. The time step was
set as 2 fs, and the particle mesh Ewald method was utilized to evaluate the long-range
electrostatic interactions. The Visual Molecular Dynamics (VMD) 1.9.3 (the Theoretical and
Computational Biophysics group, NIH Center for Macromolecular Modeling and Bioinfor-
matics, at the Beckman Institute, University of Illinois at Urbana-Champaign, Champaign,
IL, USA) analysis tool was used to assess the trajectories. To gain insight into the stability of
each complex between the protein and the ligand, the following parameters were evaluated
during the MD simulation: RMSD, root mean square fluctuation (RMSF), and radius of
gyration (RoG).

2.4. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies

In drug development and design, analysis of several pharmacokinetic parameters is
essential for the development of drug-like molecules. Prediction of the ADMET properties
was performed utilizing the ADMET descriptors in Discovery Studio 4.5 (Accelrys, San
Diego, CA, USA) [20]. The module used mathematical models to quantitatively predict
the corresponding properties. To predict human intestinal absorption (HIA) after oral
administration, the ADMET absorption model was used. Based on 2D polar surface area
(PSA_2D) and AlogP (ADMET_AlogP98) measurements, the model was constructed using
199 compounds in the training set. The HIA model is defined by 95% and 99% confidence
ellipses in the ADMET_PSA_2D and ADMET_AlogP98 plane, respectively [21]. The upper
limits of the PSA_2D value for the 95% confidence ellipsoid and the PSA_2D value for
the 99% confidence ellipsoid were set as 131.62 and 148.12, respectively. To predict the
compound water solubility at ambient temperature (25 ◦C), the ADMET aqueous solubility
model was used. Using a set of 784 compounds with known aqueous solubilities in
the training set, the model employs the genetic partial least squares (PLS) process for
calculations [22]. In addition, the blood–brain barrier (BBB) permeability of a molecule
was predicted by the ADMET BBB model. A quantitative linear regression model was

http://www.ks.uiuc.edu/Research/namd
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used to derive the predicted blood–brain penetration of the discovered compounds by
referencing over 800 compounds known to be BBB-permeable after oral administration.
In the ADMET PSA 2D-ADMET AlogP98 plane, 95% and 99% confidence ellipses were
also predicted [23]. The ADMET plasma protein binding model was utilized to predict
each compound’s plasma protein binding ability. The model is based on AlogP98 and 1D
similarities to two sets of marker molecules. The two marker sets were flagged based on a
set binding level. The binding levels for marker flagging were set at 90% or greater binding
and 95% or greater binding. The predicted binding levels were modified according to the
calculated logP [24]. Cytochrome P450 2D6 enzyme inhibition was predicted using the 2D
chemical structure as input and the probability estimate for the prediction. A training set of
100 compounds with known CYP2D6 inhibition activities was used for the predictions [24].
Finally, potential human hepatotoxicity prediction was performed based on 382 known
hepatotoxic training compounds [25].

3. Results and Discussion
3.1. Inhibitor Binding Cleft of RdRp

The RTC of SARS-CoV-2 is composed of 16 nsps. Open reading frame-1a (ORF1a) and
ORF-1ab viral polyproteins encode these nsps, which aid the replication and transcription of
the virus [26]. Among these nsps, the catalytic subunit nsp12 functions as RNA-dependent
RNA polymerase by utilizing nsp7 and nsp8 as cofactors. Therefore, nsp12 plays a crucial
role in the replication and transcription cycle of the COVID-19 virus (Figure 1A) [26].

Crystals 2021, 11, 471 5 of 17 
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Figure 1. The SARS-CoV-2 core polymerase complex structure. (A) Schematic diagram of the SARS-CoV-2 RdRp complex.
(B) Overall density map of the SARSCoV-2 nsp12-nsp7-nsp8. (C) Overall atomic model of the nsp12–nsp7–nsp8 core
complex of SARS-CoV-2.
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To gain insight into the structure and function of SARS-CoV-2 nsp12, the structure of
the nsp12–nsp7–nsp8 complex was solved at a 3.7 Å resolution. As a result, the main-chain
trace and the bulkiest side chains of each subunit were resolved [27]. However, the density
map did not address the N-terminal of nsp12 (about 110 amino acids), the N-terminal of
nsp8 (about 80 amino acids), nor a small part of the nsp7 C-terminus (Figure 1B). Impor-
tantly, over 80% structural interpretation was achieved for the 160 kDa protein complex.

The polymerase complex comprises the nsp12 core catalytic subunit linked to the
nsp7–nsp8 heterodimer and an additional nsp8 subunit bound at a different binding site
(Figure 1B,C) [27]. The nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain
is located at the N-terminal of the nsp12 polymerase subunit. The NiRAN domain is shared
by all Nidovirales members [28]. The back side of the right hand-configured C-terminal
RdRp links to the NiRAN domain. The interface domain linking the NiRAN domain to
the finger subdomain of RdRp is between the NiRAN domain and the C-terminal RdRp
(Figure 1). In addition, it has been shown that NiRAN and the interface domain are crucial
structural features of the coronavirus RdRp, especially compared to other positive-sense
RNA viruses [29].

The C-terminal catalytic domain is composed of the finger, palm, and thumb subdo-
mains, which are considered conserved structural features of all viral RdRps (Figure 1).
Another unique feature of the SARS-CoV-2 RdRp is the closed-ring structure formed by
the long finger extension intersecting with the thumb subdomain (Figure 1). In contrast,
a smaller loop is formed in segmented negative-sense RNA virus (sNSV) polymerases,
resulting in an open-conformation structure [30]. For positive-sense RNA viruses, closed
contact between the fingers and the thumb subdomain is a typical structural feature [31,32].

3.2. Structure-Based Virtual Screening

In this study, we performed structure-based virtual screening with an antiviral com-
pound database against the viral polymerase using the crystal structure of the RdRp of
SARS-CoV-2. This method computationally fit the database molecules into the 3D struc-
ture of the active site. Then, the resulting interaction profiles were analyzed to rank the
molecules based on the highest binding interactions. The crystal structure of the SARSCoV-
2 RdRp was recently solved by Yin, Wanchao et al. (PDB ID code 7BV2) [33]. As this crystal
structure represents an element necessary for viral replication and survival, it was utilized
as the initial point for our computational studies. The arrangement of the SARS-CoV-2
nsp12 catalytic domain follows the typical right-hand configuration exhibited by all viral
RdRps. As seen in Figure 1A and Table 1, seven critical motifs (A–G) have been reported
within the RdRp catalytic domain. Specifically, motifs A–F are strongly conserved across all
viral RdRps, while motif G is a unique structural feature of primer-dependent RdRps found
in some positive-sense RNA viruses, where it is involved in RNA synthesis initiation by
interacting with the primer strand (Figure 2). Motif C resides in a β-turn loop linking two
adjacent strands and contains the essential catalytic residues Ser759–Asp760 and Asp761.
By forming a fingertip that extends into the catalytic chamber, motif F interacts with the
finger extension loops and the thumb subdomain (Figure 1A).

Table 1. The residues of seven critical catalytic motifs (A–G).

The Residues Crucial Residues in Active Site The Motif

Asn61–Pro627 Asp618, Cys622 and Asp623 motif A
Thr680–Thr710 Ser682, Thr687, Ala688 and Asn691 motif B
Phe753–Ser768 Ser759, Asp760 and Asp761 motif C
Leu775–Glu796 motif D
His811–Lys821 motif E
Thr538–Ser561 Lys545, Arg553 and Arg555 motif F
Lys500–Arg511 motif G
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Figure 2. The SARS-CoV-2 RdRp binding site. (A) SARS-CoV-2 motifs are depicted as surfaces and color-coded as: motif A
(yellow), motif B (red), motif C (green), and motif F (blue) as well as the template (grey)-primer (pink) RNAs. (B) The main
residues in the binding site are shown in the same color as its motifs and RNAs. The pictures of binding site are generated
using the MOE program.

The ZINC antiviral compound library was utilized for structure-based virtual screen-
ing against the crystal structure of the coronavirus RdRp of SARS-CoV-2. The process
computationally fit suitable molecules into the 3D structure of the active site of the target
protein. Next, these compounds were ranked according to their interaction profiles. Each
interaction profile was studied via covalent docking carried out using MOE 2015 and the
SARS-CoV-2 RdRp (PDB ID: 7BV2) [33]. The covalent binding site of RdRp, which was
described previously, contains crucial conserved catalytic residues Ser759, Asp760, and
Asp761, along with other crucial residues, i.e., Ser549, Lys551, Arg555, Thr190, Cys813,
Ser814, and Gln815. The docking process used to filter the prepared database was based
on the potential chemical probes that exhibited a higher binding affinity for the active site
residues described above. To ensure that all important active site residues were considered,
the control molecule Remdesivir was used as a template (Figure 3). Approximately 13,840
compounds were covalently docked, of which 241 irreversibly interacted and exhibited
significant affinities, with varied docking scores (all docking scores were less than −13.0).
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The PLIF module in MOE was used to analyze the interactions between the residues
of the active site and the hit molecules. The results of the candidate compounds indicated
hydrogen bond interactions with crucial residues. Therefore, from 241 initial compounds,
85 hits were chosen according to significant interactions with the catalytic dyad and other
hotspot residues of the active site. The 2D molecular docking interactions of the 11 most
potent compounds among the 85 identified were specifically analyzed, as seen in Table 2.
The top hits were also selected for MD simulations. The results of docking interactions indi-
cated that among the drugs, compound ZINC000014944915 exhibited the highest binding
affinity (−20.37 kcal/mol), as shown in Table 2 and Table S1 (Supplementary Materials).

Table 2. Binding affinity, docking score and the 2D Structure of the potential hits’ interactions with RdRp of SARS-CoV-2.

# Compound Binding
Affinity (kcal/mol) Docking Score 2D Structure of Compounds Interaction

1 ZINC000014944915 −20.37 −5.93
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have antiviral activity against human immunodeficiency virus-type1 (HIV-1) as an in-
tegrase inhibitor [34–39]. In addition, the hit compound ZINC000014944915 has been
reported against influenza virus [40]. Compound ZINC000013473324 is an antiviral agent
with reported activity against human rhinovirus A protease [41]. Finally, compound
ZINC000001651128 is a curcumin with various activity especially reported as an inhibitor
of the human immunodeficiency virus-type1 (HIV-1) integrase [42]. These findings proves
that our potential hits discoveries are indeed antiviral agents and are potentially active
against the SARS-CoV-2 RdRp. The stabilities of the hit compounds were further studied
via MD simulation.

3.3. Molecular Dynamics Simulation

MD simulation is an appealing method for real-time studies of the conformational
stability and dynamics of a protein upon ligand binding. Ten-nanosecond simulation studies
were performed on 11 selected systems (complexes including compounds ZINC000014944915,
ZINC000027556215, ZINC000013556344, ZINC000003589958, ZINC000003833965,
ZINC000001642252, ZINC000028525778, ZINC000027557701, ZINC000013781295,
ZINC000001651128 and ZINC000013473324).

3.3.1. RMSD Analysis

By measuring the variance from the original configuration, the RMSD was calculated
as part of the MD simulations to estimate the overall stability of the protein complex
upon ligand binding. Ten of the 11 MD simulation systems were remarkably stable. All
systems except ZINC000027557701 exhibited RMSD values of around 3 Å with average
RMSD values of 1.81 ± 0.305 Å to 2.141 ± 0.425 Å (Figure S1 and Table S2; Supplementary
Materials). Notably, slight fluctuation was observed in the Cα backbone around 10,300 ps.
However, the Cα backbone was stabilized for the remainder of the simulation, indicating
system convergence. These results showed stable internal motion in all systems, except
that containing ZINC000027557701.

3.3.2. RMSF Analysis

RMSF values of the protein residues were obtained via least-squares fitting to the
initial structural configuration as the control frame over a 10-ns trajectory. The RMSF
values of the RdRp protein residues with no ligand bound were calculated and compared
to those after compound binding (Figure S2; Supplementary Materials). After binding
the compound to the RdRp active site, the RMSF values of the residues revealed slight
fluctuation of the backbone residues. The loop region (Figure 4 fluctuated slightly across all
systems, while active residue regions remained unchanged during the simulation process.
The results show that interaction with all 11 hits stabilized the target protein. The binding
of all selected hits into the active site reduced variations in the loop in terms of only protein
structural fluctuations. However, ZINC000027557701 binding in the active site resulted in
further fluctuations in the protein structure, which were primarily observed in the 30th
and 33rd helix (Figure 4). Overall, when the selected ligands bound to the target protein,
the main protein backbone conformation remained unchanged. The active binding domain
was estimated to include the 29th and 33rd helix regions and the beta-turn between the
two F strands, as shown in Figure 4. Significant sharp peaks were observed for residues
630 to 640 and 686 to 694, which are close to these structures.
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3.3.3. Radius of Gyration

The radius of gyration provides information about protein structural folding and
rearrangement after ligand binding. Thus, the RoG was studied to evaluate the system
compactness over time. More protein unfolding (less compactness) is represented by higher
RoG values, while more protein folding (more compactness) is associated with lower RoG
values and greater structural stability. All systems yielded estimated average RoG values
between 31.0 and 31.4 Å (Figure S3; Supplementary Materials). The average gyration
scores of all selected systems were estimated and are tabulated in Table S2 (Supplementary
Materials). The data show that, during simulation, all systems were compact (except
ZINC000027557701, which produced a higher RoG value), suggesting that the systems
converged well.

http://www.compbio.dundee.ac.uk/jpred4
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3.3.4. Hydrogen Bond Stability

The hydrogen bond stability was determined to further validate the stability of each
complex. All possible hydrogen donors and acceptors in the active site domain of the
RdRp protein were estimated during the hydrogen bond stability analyses. The angles
between the acceptor and donor were set at 30◦, and the geometric criteria were maintained
≤3.5 Å. The hydrogen bonds formed between the compounds and the active residues
within the RdRp protein were properly maintained throughout the MD simulations. The
average hydrogen bonding interactions of all selected compounds are shown in Table
S2 (Supplementary Materials). Compounds ZINC000003589958 and ZINC000013556344
showed more favorable average hydrogen bonding interactions than those of the other
compounds. Additionally, it can be observed that all selected compounds formed direct
hydrogen bonds with the catalytic residue Asp760 at zero time and were undirected for
a limited period of simulation. Compounds ZINC000003589958 and ZINC000013556344
formed direct hydrogen bonds with Asp686 and Arg550 during the simulation process (see
Table S2 and Figure S4; Supplementary Materials).

3.4. ADMET Study

To support our effort to understand the pharmacokinetic properties and toxicity effects
of the newly identified hits, we studied the ADMET properties of the selected candidates.
The selected compounds were subjected to drug-like property analyses according to Veber
rules [43] and the Lipinski rule of five [44] (Table S3; Supplementary Materials).

Discovery Studio 2016 was utilized to calculate the ADMET parameters, and the
results are given in Table S4 (Supplementary Materials) [20]. Furthermore, the confidence
levels of the predictions provided by the BBB and the HIA models were determined by
constructing the ADMET plot. The calculated AlogP98 is plotted against the PSA_2D
for the selected candidates in Figure S5 (Supplementary Materials). Two analogs are
represented in this plot, namely, the 95% and 99% confidence ellipses, which correspond to
the HIA and BBB models, respectively. There is an inverse relationship between the PSA
value of a given compound and its human intestinal absorption value, which also extends
to the cell wall permeability [23]. Moreover, since the value of AlogP98 is a ratio that
indicates lipophilicity, it can be used to calculate the hydrophilicity and hydrophobicity of
a compound. As a result, hydrogen bonding characteristics can be obtained by calculating
the PSA and AlogP98 [21]. The regions of chemical space that contain well-absorbed
compounds (≥90%) are indicated by the 95% confidence ellipses, and the regions that
contain compounds with improved absorption through the cell membrane are represented
by the 99% confidence ellipses. In general, a compound with good cell permeability should
have PSA and AlogP98 values <140 Å2 and <5, respectively [21].

The selected compounds were subjected to ADMET studies. Compounds
ZINC000001642252, ZINC000003833965, ZINC000013473324, ZINC000013781295, and
ZINC000014944915 showed good human intestinal absorption (absorption level 0), and
compounds ZINC000001651128 and ZINC000028525778 showed moderate absorption
(absorption level 1). Compounds ZINC000013556344 and ZINC000027557701 showed low
absorption (absorption level 2), and the remaining compounds showed very low absorption
(absorption level 3). Upon investigating aqueous solubility, it was found that compounds
ZINC000013556344, ZINC000027556215, and ZINC000027557701 showed low aqueous
solubility (solubility level 2), while compounds ZINC000001642252, ZINC000001651128,
ZINC000003589958, ZINC000003833965, ZINC000013473324, ZINC000013781295, and
ZINC000028525778 showed good aqueous solubility (solubility level 3). Compound
ZINC000014944915 showed optimal solubility (solubility level 4). Compounds
ZINC000014944915 and ZINC000028525778 showed probable hepatotoxicity, while all
other compounds showed non-hepatotoxic properties. Compounds ZINC000001642252,
ZINC000001651128, ZINC000013473324, ZINC000013556344, ZINC000027557701, and
ZINC000028525778 showed plasma protein binding, while all other compounds did not ex-
hibit plasma protein binding properties. All selected compounds except ZINC000003589958,
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ZINC000013556344, and ZINC000027556215 fell inside the ADME model ellipse filter, sug-
gesting good intestinal absorption and BBB penetration ability.

4. Conclusions

To discover potential SARS-CoV-2 RdRp inhibitors, we performed computational
drug discovery techniques, including database optimization, virtual screening, MD sim-
ulations, and ADMET calculations and estimations. The antiviral ZINC database was
utilized for database preparation and screening. The SARS-CoV-2 RdRp was retrieved and
optimized for virtual screening and molecular docking analyses. Approximately 13,840
ZINC antiviral compounds were used for covalent docking virtual screening. In total,
241 of these compounds were shown to interact with the RdRp domain covalently, and
subsequent filtration based on docking scores yielded 85 compounds. Detailed molecular
docking interaction analyses based on the interactions of the hits with previously reported
important residues within the RdRp domain identified 11 compounds. These top hits
were utilized for MD simulations, including RMSD, RMSF, Rog, and hydrogen bonding
stabilization studies. ADMET studies were also carried out on the top hits.

In the virtual screening analysis, the top five compounds, ZINC000014944915,
ZINC000027556215, ZINC000013556344, ZINC000003833965, and ZINC000001642252, dis-
played the highest binding affinity scores of −20.37, −20.19, −17.91, −17.02 and −16.86
kcal/mol, respectively. In the RMSD studies, all hit compounds showed average RMSD
values of 1.81 ± 0.305 Å to 2.141 ± 0.425 Å, except the ZINC000027557701 system. The
RMSF studies showed that interaction with the hits stabilized the target protein, except
in the case of ZINC000027557701, which caused fluctuations in the protein structure.
RoG values revealed that all studied systems were compact, except the system contain-
ing ZINC000027557701. The hydrogen bond stabilization studies showed that all com-
pounds interacted well with the active residues within the binding domain of RdRp.
The ADMET analyses showed that no hits were hepatotoxic except ZINC000014944915
and ZINC000028525778. All compounds displayed good solubility, with no inhibition of
the CYP2D6 enzyme. Moreover, all hit molecules showed good to moderate absorption
levels, except for ZINC000003589958 and ZINC000027556215, which showed low absorp-
tion levels. Lastly, six hits—ZINC000001642252, ZINC000001651128, ZINC000013473324,
ZINC000013556344, ZINC000027557701, and ZINC000028525778—showed plasma protein
binding, while the remaining hits did not.

In conclusion, the hit molecules ZINC000003833965, ZINC000001642252,
ZINC000013781295, and ZINC000013473324 are potential RdRp inhibitors that display
better properties compared to the other hits. These four hits can be further studied and op-
timized to pave the way for developing better anti-COVID-19 agents. Further experimental
studies are needed to confirm these findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11050471/s1, Figure S1: RMSD of the hit compounds and the protein calculated as a
function of time over a 10 ns run; Figure S2: RMSF of the hit compounds and amino acid residues
calculated as a function of time over a 10 ns run; Figure S3: Radius of gyration of the protein and
the 11 compounds calculated as a function of time over a 10 ns run; Figure S4: Hydrogen bond
stabilization of the 11 compounds over 10 ns production run; Figure S5: ADMET plot for the selected
hits; Table S1: Molecular docking interaction between RdRp and selected compounds; Table S2: The
average of gyration scores and RMSD as well as the number of H-bonds for selected compounds;
Table S3: Physicochemical properties of the hit compounds based on Lipinski’s rule-of-five; Table S4:
ADMET values of selected hit compounds.
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