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Abstract: Compressive strength is a well-known measurement to evaluate the endurance of a given
concrete mixture to stress factors, such as compressive loads. A suggested approach to assess
compressive strength of concrete is to assume that it follows a probability model from which its
reliability is calculated. In reliability analysis, a probability distribution’s reliability function is used
to calculate the probability of a specimen surviving to a certain threshold without damage. To
approximate the reliability of a subject of interest, one must estimate the corresponding parameters
of the probability model. Researchers typically formulate an optimization problem, which is often
nonlinear, based on the maximum likelihood theory to obtain estimates for the targeted parameters
and then estimate the reliability. Nevertheless, there are additional nonlinear optimization problems
in practice from which different estimators for the model parameters are obtained once they are
solved numerically. Under normal circumstances, these estimators may perform similarly. However,
some might become more robust under irregular situations, such as in the case of data contamination.
In this paper, nine frequentist estimators are derived for the parameters of the Laplace Birnbaum-
Saunders distribution and then applied to a simulated data set and a real data set. Afterwards, they
are compared numerically via Monte Carlo comparative simulation study. The resulting estimates
for the reliability based on these estimators are also assessed in the latter study.

Keywords: Laplace Birnbaum-Saunders distribution; data contamination; maximum likelihood
estimation; least-square-based estimation; distance-based estimation

1. Introduction

In reality, concrete is the most widely used construction material in the world. Concrete
compressive strength is a measure used in determining the amount of resistance a structural
element can offer to deformation. Compressive strength is a widely used measure to access
the performance of a given concrete mixture. Considering this approach of concrete is vital
due to it is the main measure deciding how well concrete can withstand loads that influence
its measure. It precisely tells us whether a particular mix is suitable to meet the necessities
of a particular venture. Concrete can astoundingly stand up to compressive loading. This is
often why it is reasonable for constructing arches, columns, dams, foundations, and tunnel
linings among other structures.

Researchers from different fields of science may attempt to describe phenomena of
interest, such as concrete compressive strength, using either mathematical or probabilistic
models. For instance, scientists describe the life of an object using a probabilistic model called
a lifetime probability distribution. Such practice is common in the scientific community,
especially in many science fields that involve reliability and reliability analyses. For example,
in material science, the two-parameter Birnbaum-Saunders (BS) lifetime distribution can be
used by analysts to model fatigue of materials due to periodic cyclic loading [1,2]. This non-
negative lifetime model has unimodal skewed probability density and hazard rate curves.
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Unimodal hazard rate curves are common in practice; see, for example, Langlands et al. [3].
A non-negative continuous random variable T is said to follow the BS distribution if the
corresponding cumulative distribution function (CDF) is given by:

F(t; α, β) = Φ

(
1
α

[√
t
β
−
√

β

t

])
, t > 0, α, β > 0, (1)

where α is the shape parameter, β is the scale parameter, and Φ(·) is the CDF of the standard
normal distribution. Desmond [4] provided a more general derivation for the BS distribu-
tion assuming a biological model which reinforced the physical rationalization for the use
of the BS distribution by relaxing the original presumptions of [1,2]. The BS distribution has
desirable aspects and a close relationship to the normal distribution. Consequently, at least
a couple of hundred papers and a single research monograph have already appeared
describing all properties and developments of this distribution; see, for example, the com-
prehensive review by Balakrishnan and Kundu [5] in this connection. Examples of recent
applications of the BS distribution are such as Bourguignon et al. [6], Hassani et al. [7], and
Kannan et al. [8], among others. The BS distribution belongs to a generalized family of
distributions called the generalized BS distribution [9]. The generalization is obtained by
replacing the Gaussian kernel in Equation (1) with kernels of symmetrical distributions
such as the Laplace and logistic distributions. Sampling plans from truncated life tests
assuming the generalized BS distribution were developed in [10], while the generalized BS
distribution was used to analyze air pollutant concentration in [11]. For further details in
this connection, see [12]. The Laplace BS (LBS) distribution is a BS distribution based on
Laplace kernel. Its properties and some associated estimation methods were studied by
Zhu and Balakrishnan [13]. This paper expands upon their work by discussing additional
methods to estimate the parameter of the LBS distribution assuming data contamination.
A positive random variable is said to follow the LBS distribution if the corresponding CDF,
reliability function, and the probability density functions are given by:

F(t; α, β) = 0.5 + 0.5 sgn(t− β)

[
1− exp

(
− sgn(t− β)

A(t; β)

α

)]
, (2)

S(t; α, β) = 0.5− 0.5 sgn(t− β)

[
1− exp

(
− sgn(t− β)

A(t; β)

α

)]
, (3)

and

f (t; α, β) =
a(t; β)

4α
√

βt
exp

(
− sgn(t− β)

A(t; β)

α

)
, x, α, β > 0, (4)

respectively, such that α is a positive shape parameter, while β is a positive scale parameter,
where:

A(t; β) =
t− β√

βt
(5)

and
a(t; β) =

t + β√
βt

. (6)

The LBS distribution and other lifetime models are characterized by essential statistical
properties such as hazard (failure) rates and reliability. The latter concept represents the
probability of a specimen continuing to exist for a certain amount of time without loss.
Approximating the aspects of the life of objects of interest (e.g., reliability) is associated with
model parameters estimation. Estimating the probability distribution parameters has been
of great interest to scientists and has received much attention in the statistical literature.
In practice, one can obtain various estimators for the model parameters. Therefore, several
researchers conducted comparative Monte Carlo simulation studies to numerically assess
the estimators from different statistical and computation perspectives; see, for example,
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Gupta and Kundu [14], Alkasasbeh and Raqab [15], Mazucheli et al. [16], do Espirito Santo
and Mazucheli [17], and Balakrishnan and Alam [18], among other research contributions.

Due to the advancement of human civilization, researchers currently deal with various
types and large amounts of data originated from the targeted phenomena. In practice,
there is no guarantee that part of the data may be missing or contaminated with unusual
information values called outliers or extremes. In both cases, estimation efficiency is
negatively impacted since the quality of data became questionable. Under data contam-
ination, the maximum likelihood method is not robust since the deviations caused by
existing outliers can negatively affect the likelihood. Data contamination motivated many
researchers to propose alternative estimators to those obtained by the maximum likelihood
theory for various distributions; see, for example, Lawson et al. [19], Boudt et al. [20],
Agostinelli et al. [21], Wang et al. [22], among other papers.

The aim of this paper is twofold. Firstly, the LBS distribution is fitted to a real concrete
compressive strength data using nine estimation methods. Secondly, the performances of
the resulting estimators from the considered estimation methods; namely, modified mo-
ments estimators (MMEs), maximum likelihood estimators (MLEs), the maximum product
of spacings estimators (MPSEs), the least-squares estimators (LSEs), the weighted least-
squares estimators (WLSEs), the percentile estimators (PCEs), the Cramér-von Mises esti-
mators (CVMEs), the Anderson-Darling estimators (ADEs), and the right-tailed Anderson-
Darling estimators (RADEs) are investigated using numerical applications and Monte Carlo
simulations. The remaining parts of this article are organized as follows. Section 2 discusses
the nine estimation methods of interest. Section 3 illustrates the practical application of
the discussed estimators using a simulated data set and a real data set. Section 4 reports
the outcomes of extensive Monte Carlo simulation study to compare the performance of
each estimator under different settings. Finally, remarks and future research are used to
conclude this paper in Section 5.

2. Reliability and Model Parameters Estimation

In this section, eight nonlinear optimization problems are formulated to obtain eight
estimators for the α and β parameters mentioned in the introductory section. The ninth
estimators are the MMEs which have closed-form expression [13]. Before establishing the
targeted optimization problems, one must discussing some computational considerations
to solve them.

2.1. Computational Considerations for the Optimization Process

The first important computational consideration is finding suitable starting values
to solve the optimization problems. One of the important and practical aspects of the
LBS distribution is that the scale parameter β is actually the median of the popula-
tion. Hence, a reasonable starting value for this parameter is the sample median, i.e.,
β̂(0) = median(t1, . . . , t2). Regarding the starting value for the shape parameter α, one can
acquire such value by using the relationship between the LBS distribution and the standard
Laplace distribution. In fact, if T follows the LBS distribution with model parameters α
and β, then:

αZ =

√
T
β
−
√

β

T

follows the Laplace distribution with the location parameter equals to 0, and the scale
parameter equals to α. Hence, a starting value for α is obtained by determining the sample
Z values; say, z1, . . . , zn, based on the observed data t1, . . . , tn and the corresponding sample
median β̂(0), and then finding the mean absolute deviation (MAD) of z1, . . . , zn as a starting
value for α. That is,

α̂(0) =
1
n

n

∑
i=1
|zi −median(z1, . . . , z2)|,
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such that

zi =

√
ti

β̂(0)
−

√
β̂(0)

ti
.

The second computational consideration is the choice of optimization algorithm from
which one can obtain the estimators for the LBS distribution. Zhu and Balakrishnan [13]
showed that the probability density function of the LBS distribution Equation (4) is con-
tinuous, but it is not differentiable at β. Consequently, estimators like the MLEs require
an optimization method free of derivatives to be obtained, such as the Nelder-Mead algo-
rithm [23]. Note that the latter algorithm is utilized to acquire the remaining estimators to
avoid any potential bias in the competitive computations.

2.2. Maximum Likelihood Estimation

Zhu and Balakrishnan [13] have obtained MLEs for α and β and prove their existence
and uniqueness. One approach to obtain such estimators is by solving the following
maximization algorithm:

maximize − n log α +
n

∑
i=1

log a(ti, β)− 1
α

n

∑
i=1
|A(ti, β)|

s.t. α, β ∈ R2
+,

such that t1, . . . , tn are the observed random sample.

2.3. Least-Squares-Based Estimations

Given an observed random sample t1, . . . , tn from the LBS distribution with param-
eters α and β. Suppose that t1:n < . . . , tn:n are the corresponding observed sample order
statistics, and consider the following minimization problem:

minimize
n

∑
i=1

wi

(
0.5 + 0.5 sgn(ti:n − β)

[
1− e− sgn(ti:n−β)

A(ti:n ;β)
α

]
− i

n + 1

)2

s.t. α, β ∈ R2
+,

Hence, the solutions of the above optimization problem are the LSEs for α and β
given that w1 = · · · = wn = 1. However, if wi = [(n + 1)2(n + 1)]/[i(n− i + 1)], then the
solutions of the above minimization problem are the WLSEs of α and β [24].

2.4. Percentile Estimation

PCEs of α and β are acquired by fitting a linear model to the theoretical percentiles and
the sample percentiles [25,26]. This method requires closed-form cumulative distribution
and quantile functions. In the case of the LBS distribution, the cumulative distribution
function was given by Equation (2), while the quantile function is defined as:

Q(u; α, β) =
β

4

[
αQL(u) +

√
4 + {αQL(u)}2

]2
, (7)

such that 0 < u < 1, α, β > 0, and QL(u) is the quantile function of the standard Laplace
distribution, i.e., QL(u) = − sgn(u− 0.5) log(1− 2|u− 0.5|). The PCEs of α and β are the
solutions for the following minimization problem:

minimize
1
n

n

∑
i=1

(
ti:n −

β

4

[
αQL(pi:n) +

√
4 + {αQL(pi:n)}2

]2
)2

s.t. α, β ∈ R2
+,

where t1:n, . . . , tn:n are the observed sample order statistics, and pi:n = i/(n + 1).
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2.5. Maximum Product of Spacing Estimation

Another estimators of α and β that depends on solving a maximization problem are
the MPSEs. Recent research indicates that such estimates compete with MLEs in terms
of estimation efficiency and asymptotic properties [27–29]. Given the observed sample
order statistics t1:n < . . . < tn:n, then the MPSEs for the model parameters are determined
numerically by solving the following maximization problem:

maximize
1

n + 1

n+1

∑
i=1

log ∆i

s.t. α, β ∈ R2
+,

such that

∆i =


0.5 + 0.5 sgn(t1:n − β)

[
1− e− sgn(t1:n−β)

A(ti:n ;β)
α

]
if i = 1

0.5
{

sgn(ti:n − β)

[
1− e− sgn(ti:n−β)

A(ti:n ;β)
α

]
− sgn(ti−1:n − β)

[
1− e− sgn(ti−1:n−β)

A(ti−1:n ;β)
α

]}
if 1 < i ≤ n

0.5− 0.5 sgn(tn:n − β)
[
1− e− sgn(tn:n−β)

A(tn:n ;β)
α

]
if i = n + 1

.

2.6. Goodness-of-Fit Estimations

The remaining three estimators are based on the idea of minimizing goodness-of-fit
statistics, i.e., minimizing the difference between the estimated cumulative distribution
function and an empirical counterpart. Examples of such statistics are the Cramér-von
Mises, the Anderson-Darling, and the right-tailed Anderson-Darling statistics. The CVMEs
of α and β are obtained by evaluating the following minimization problem:

minimize
1

12n
+

n

∑
i=1

(
0.5 + 0.5 sgn(ti:n − β)

[
1− e− sgn(ti:n−β)

A(ti:n ;β)
α

]
− 2i− 1

2n

)2

s.t. α, β ∈ R2
+,

On the other hand, ADEs and RADEs of α and β are acquired as solutions for the
following minimization problems:

minimize − n− 1
n

n

∑
i=1

(2i− 1) log
(

0.5 + 0.5 sgn(ti:n − β)

[
1− e− sgn(ti:n−β)

A(ti:n ;β)
α

])
− 1

n

n

∑
i=1

(2i− 1) log
(

0.5− 0.5 sgn(tn−i+1:n − β)

[
1− e− sgn(tn−i+1:n−β)

A(ti:n ;β)
α

])
s.t. α, β ∈ R2

+,

and

minimize
n
2
− 2

n

∑
i=1

(
0.5 + 0.5 sgn(ti:n − β)

[
1− e− sgn(ti:n−β)

A(ti:n ;β)
α

])
− 1

n

n

∑
i=1

(2i− 1) log
(

0.5− 0.5 sgn(tn−i+1:n − β)

[
1− e− sgn(tn−i+1:n−β)

A(ti:n ;β)
α

])
s.t. α, β ∈ R2

+,

respectively.

3. Numerical Applications

In this section, a simulated data is analyzed; afterwards, a real data is analyzed for the
sake of illustration.
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3.1. Simulated Data Analysis

Suppose 15 random observations are generated from the LBS distribution with
α = β = 1 as shown in Table 1.

Table 1. Simulated data from LBS distribution with α = β = 1.

0.5790902 2.3047977 0.8182292 3.8502755 6.3717917
0.1314455 1.0595503 4.1175531 1.1146064 0.9132579
7.8732325 0.9067038 1.5453950 1.1697677 0.2345327

The simulated data in Table 1 are obtained according to the following algorithm:

1. Generate a random sample U1, . . . , Un from the standard uniform distribution (i.e.,
Ui ∼ Uniform(0, 1, ∀i.)

2. For i = 1, . . . , n, obtain the desired simulated random sample X1, . . . , Xn from the
LBS distribution with model parameters α and β by using Equation (7), i.e.

Xi =
β

4

[
αQL(Ui) +

√
4 + {αQL(Ui)}2

]2
,

such that QL(Ui) = − sgn(Ui − 0.5) log(1− 2|Ui − 0.5|).
Before obtaining the estimates for α and β, one must check their existence and unique-

ness. Mathematically proving these requirements is beyond the scope of this study; nev-
ertheless, one may prove them using graphical devices. Using extensive Monte Carlo
simulations, a three-dimensional (3D) profile plot for each objective function in the preced-
ing section is established, as shown in Figure 1. The 3D charts clearly indicate that there
are areas in which global extrema exist and are expected to be unique for each objective
function. The MMEs are obtained first for α and β as shown in [13], and then the remaining
estimators are obtained successively as shown in Table 2. The outcomes of the latter table
are obtained assuming no contamination in the data, and assuming contamination in the
upper 20% order statistics. On the other hand, based on the obtained estimates under
both assumptions, Table 3 provides the actual reliability probabilities calculated from the
complement of Equation (2) vs. their approximated counterparts using different estimators.
Both true and approximated reliability probabilities are evaluated at the sample minimum,
the sample three quartiles (Q1, Q2, Q3), and the sample maximum. From the previous
tables, one can easily observe that the PCEs for α and β provided the farthest approxima-
tions for the model parameters and the reliability probabilities. The performances of the
remaining estimates are further assessed later.

Table 2. Estimators of α and β based on data in Table 1.

No Data Contamination Upper 20% Data Contamination

Method α̂ β̂ α̂ β̂

MME 0.882537 1.236373 1.471021 2.242812
MLE 0.921295 1.114606 1.533757 1.169768
LSE 1.148499 1.265467 1.306802 1.302364

WLSE 1.156698 1.280952 1.566834 1.431192
PCE 0.944854 1.522263 1.962323 2.392981

MPSE 1.144715 1.109365 1.888477 1.348811
CVME 0.999214 1.252308 1.047122 1.262961
ADE 1.03128 1.270303 1.748756 1.553576

RADE 1.064402 1.260156 2.120223 1.493293
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Table 3. True reliability vs. approximated reliability based on estimates in Table 2.

No Data Contamination

Source Min. Q1 Q2 Q3 Max.

α, β 0.954444 0.568825 0.448565 0.152986 0.043167
MME 0.977602 0.668269 0.555444 0.171589 0.044892
MLE 0.969228 0.62178 0.5 0.158257 0.042022
LSE 0.955583 0.642644 0.552352 0.224777 0.080792

WLSE 0.955623 0.64561 0.556697 0.228682 0.083095
PCE 0.981386 0.728172 0.640978 0.233718 0.071739

MPSE 0.946619 0.598942 0.497945 0.197174 0.067713
CVME 0.968506 0.656495 0.555049 0.197184 0.060605
ADE 0.966481 0.657323 0.55958 0.206088 0.066026

RADE 0.963067 0.6506 0.554487 0.210102 0.069557

Upper 10% Data Contamination

Source Min. Q1 Q2 Q3 Max.

α, β 0.954444 0.568825 0.448565 0.152986 0.043167
MME 0.964443 0.745342 0.692176 0.402873 0.034084
MLE 0.911042 0.590419 0.515503 0.259574 0.012739
LSE 0.942659 0.636059 0.556207 0.253684 0.008556

WLSE 0.926149 0.639353 0.573918 0.303064 0.019867
PCE 0.935947 0.709472 0.664469 0.439685 0.071761

MPSE 0.891835 0.606203 0.548099 0.319037 0.031561
CVME 0.96475 0.65341 0.556279 0.207602 0.002869
ADE 0.917316 0.644617 0.586833 0.335648 0.031491

RADE 0.882689 0.61531 0.564643 0.352855 0.048659

(a) (b)

Figure 1. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 1. 3D plots of the objective functions based on data in Table 1 for (a) MLE, (b) LSE, (c) WLSE,
(d) PCE, (e) MPSE, (f) CVME, (g) ADE and (h) RADE. (cont.)

3.2. Real Data Analysis

To illustrate the application of the considered estimation methods in practice, the con-
crete compressive strength data of [30] is considered for analysis. This data set established
from 17 different sources to check the reliability of a suggested strength model. The data
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gathered concrete comprising cement alongside fly ash, blast furnace slag, and super-
plasticizer. The data set consisted of a single response variable; namely, the compressive
strength of concrete (in MPa), and 8 covariates. Using this data, various estimated models
are obtained and compared by the means of Kolmogorov-Smirnov (KS) test. The latter
one-sample testing procedure is used to test the null that the distribution function of a
given data set is that of the probability distribution of interest. To obtain the KS statistic,
one must consider the following steps:

1. Obtain the estimates of the parameters α and β, denoted by α̂ and β̂.
2. Compute ui:n = F(xi:n, α̂, β̂), such that xi:n is the observed ith sample order statistics,

where i = 1, . . . , n. Here, F(·, ·, ·) is given by Equation (2).
3. Calculate the value of KS statistic as follows:

KS = max
1≤i≤n

{
ui:n −

i− 1 : n
n

,
i
n
− ui:n

}
,

and accordingly calculate the p-value to make a decision about the hypotheses.

Furthermore, since ties exist and the model parameters were estimated, the p-values
for the KS statistics were obtained using B = 1, 000 parametric bootstrapping samples. The
steps to obtain the bootstrapping p-value for KS test are as follow:

1. For each method, obtain the estimates of the model parameters α and β; say, α̂ and β̂.
2. Use the estimates in the previous step and the algorithm in the preceding section to

generate a random sample X∗1 , . . . , X∗n from the LBS distribution with shape parameter
α̂ and scale parameter β̂.

3. Compute the KS statistics for each bootstrap sample as discussed before, i.e., repeat
Steps 2 and 3, B times to obtain KS(1), . . . , KS(B).

4. Calculate the p-value as follows:

p-value∗ =
1
B

B

∑
j=1

Ij,

where Ij is an indicator function, such that Ij = 1 if KS(j) > KS, and zero otherwise,
for j = 1, . . . , B and KS is the KS statistic obtained from the original data set.

Finally, it is important to mention that since ties were observed in the data, the MPSEs
cannot be acquired directly. When ties exist, one may use a generalization of the maximum
product of spacings method to obtain the required estimators; see Murage et al. [31] for
additional details. Alongside the estimated parameters and the goodness-of-fit statistics,
the reliability probability is calculated at 17 MPa, 28 MPa, and 70 MPa by substituting
these values in Equation (3) and replacing the model parameters with the corresponding
estimates. In practice, concrete compressive strength can fluctuate between 17 MPa and
28 MPa for residential concrete, while in can be higher as 70 MPa in the case of commercial
constructions [32].

Tables 4–7 respectively summarize the analyses of the considered data set assuming
no contamination in the data, 20% of upper data contamination (i.e., the upper 20% of
order statistics are multiplied by 5), 20% of lower data contamination (i.e., the lower 20%
of order statistics are divided by 5), and 40% two-tailed data contamination which is a
mixture of the previous data contamination cases. From the latter tables, one can note the
following observations based on the values of the KS test statistics:

• When there is no data contamination, both MLEs and MPSEs performed well in terms
of goodness-of-fit.

• In the case of upper data contamination, ADEs outperformed both MLEs and MPSEs
which took second and third place, respectively.

• On the other hand, both MLEs and MPSEs maintained their performance followed by
ADEs in the case of lower data contamination.
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• In contrast, WLSEs have perform better than MPSEs and MLEs when two-tailed data
contamination exists.

• Overall, MLEs and MPSEs provided the best results in terms of goodness-of-fit,
and they both have endured data contamination unlike their counterparts. This is
most likely due to the fact that the sample size is large (1000+ units). Furthermore,
PCEs and MMEs did not perform well among compared to their counterparts in all
considered settings.

• Finally, according to the reliability proportions estimated by MLEs and MPSEs, one can
conclude that the sampled specimens of [30] were suitable for residential buildings.

Table 4. Statistical analysis assuming no data contamination.

Source α β KS p-Value Pr(X > 17) Pr(X > 28) Pr(X > 70)

MME 0.409 30.679 0.139 0.517 0.884 0.600 0.063
MLE 0.437 33.943 0.064 0.602 0.900 0.678 0.092
LSE 0.468 33.788 0.072 0.527 0.888 0.666 0.102

WLSE 0.394 33.261 0.074 0.588 0.912 0.677 0.072
PCE 0.262 34.057 0.139 0.353 0.967 0.764 0.030

MPSE 0.444 33.719 0.065 0.658 0.896 0.671 0.093
CVME 0.467 33.789 0.072 0.508 0.888 0.666 0.101
ADE 0.462 33.369 0.069 0.682 0.887 0.658 0.097

RADE 0.390 34.211 0.075 0.517 0.920 0.701 0.077

Table 5. Statistical analysis assuming 20% of upper data contamination.

Source α β KS p-Value Pr(X > 17) Pr(X > 28) Pr(X > 70)

MME 0.855 48.919 0.287 0.490 0.873 0.654 0.116
MLE 0.846 36.446 0.165 0.549 0.877 0.666 0.123
LSE 0.541 34.110 0.194 0.478 0.877 0.659 0.114

WLSE 0.548 34.091 0.193 0.490 0.877 0.654 0.111
PCE 0.555 70.314 0.528 0.364 0.925 0.745 0.109

MPSE 0.842 36.242 0.166 0.449 0.871 0.654 0.119
CVME 0.540 34.110 0.194 0.497 0.878 0.659 0.114
ADE 0.959 36.881 0.160 0.502 0.869 0.651 0.121

RADE 1.246 35.897 0.180 0.476 0.868 0.650 0.120

Table 6. Statistical analysis assuming 20% of lower data contamination.

Source α β KS p-Value Pr(X > 17) Pr(X > 28) Pr(X > 70)

MME 0.932 17.976 0.383 0.516 0.783 0.466 0.084
MLE 0.906 32.245 0.175 0.482 0.866 0.647 0.122
LSE 0.450 33.947 0.198 0.461 0.888 0.666 0.102

WLSE 0.366 33.806 0.199 0.487 0.915 0.682 0.071
PCE 0.293 31.851 0.200 0.354 0.962 0.745 0.031

MPSE 0.923 31.872 0.176 0.546 0.859 0.638 0.124
CVME 0.450 33.948 0.198 0.481 0.888 0.666 0.102
ADE 1.050 29.162 0.181 0.604 0.864 0.636 0.113

RADE 0.379 34.413 0.199 0.491 0.920 0.702 0.076
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Table 7. Statistical analysis assuming 40% of two-tailed data contamination.

Source α β KS p-Value Pr(X > 17) Pr(X > 28) Pr(X > 70)

MME 1.375 28.531 0.199 0.503 0.790 0.542 0.127
MLE 1.325 33.400 0.165 0.598 0.841 0.632 0.147
LSE 0.549 34.119 0.195 0.461 0.876 0.658 0.115

WLSE 1.024 33.683 0.156 0.525 0.873 0.651 0.114
PCE 0.565 68.760 0.514 0.363 0.921 0.736 0.108

MPSE 1.331 33.062 0.163 0.747 0.837 0.627 0.148
CVME 0.547 34.119 0.195 0.477 0.876 0.658 0.115
ADE 1.563 32.972 0.180 0.793 0.845 0.630 0.138

RADE 1.436 33.489 0.175 0.609 0.867 0.649 0.120

4. Simulation Outcomes

This section presents the outcomes of Monte Carlo simulation experiments based on
1000 random samples from the LBS distribution with different combinations of values for
the shape parameter and sample sizes assuming the following scenarios:

• Model 1: A model with no contamination.
• Model 2: A model with 10% of severe upper contamination, i.e., the upper 10% of

order statistics are multiplied by 5.
• Model 3: A model with 10% of severe lower contamination, i.e., the lower 10% of

order statistics are multiplied by 1/5.
• Model 4: A model with 20% of severe two-tailed contamination, i.e., the upper 10%

of order statistics are multiplied by 5, while the lower 10% of order statistics are
multiplied by 1/5.

For each scenario, the simulation study assumes n = 10(10)100, α = 0.5(0.5)2.0,
and β = 1, without loss of any generality. To measure estimation efficiency, the simulated
bias and simulated root mean-squared-error (RMSE) are calculated as

Bias(α) =
1
N

N

∑
i=1

(α̂i − α), Bias(β) =
1
N

N

∑
i=1

(
β̂i − β

)
,

RMSE(α) =

√√√√ 1
N

N

∑
i=1

(α̂i − α)2 and RMSE(β) =

√√√√ 1
N

N

∑
i=1

(
β̂i − β

)2
,

such that N = 1000, while α̂i (β̂i) is an estimate of the model parameter α (β) based on
simulation repetition i. Furthermore, to measure the goodness-of-fit of the fitted model
parameters based on the nine estimators, the average absolute difference between the true
and estimated reliability function (Dabs), and the maximum absolute difference between
the true and estimated reliability function (Dmax) are determined as

Dabs =
1

n× N

N

∑
i=1

n

∑
j=1

∣∣S(tj; α, β)− S(tj; α̂i, β̂i)
∣∣,

and

Dmax =
1
N

N

∑
i=1

max
j=1,...,n

∣∣S(tj; α, β)− S(tj; α̂i, β̂i)
∣∣,

respectively, such that S(t; α, β) = 1− F(t; α, β), while α̂i (β̂i) is an estimate of the model
parameter α (β) based on simulation repetition i.

From a statistical perspective, an estimator is computationally consistent when its
simulated bias tends to 0 as the sample size increases. Furthermore, when the simulated
bias neither increases nor decreases when data contamination exists, then one can conclude
that the estimator is computationally robust. Here, Figures 2 and 3 clearly indicate that the
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most consistent and robust estimators for the model parameters α and β are the MPSEs
and CVMEs regardless of the sample size and the true value of α.

In computational statistics, an estimator is computationally efficient when the sim-
ulated RMSE tends to 0 as the sample size increases regardless of the existence of data
contamination. Figures 4 and 5 suggest that the MPSEs, CVMEs, and the LSEs of α and
β are the most efficient estimators compared to the other ones regardless of the simula-
tion settings.

In goodness-of-fit analysis, whenever a pair of estimators yields Dabs and Dmax that
tends to 0 as the sample size increases, and are not negatively affected by data contam-
ination, then this pair of estimates provides the least difference between the true and
estimated reliability function. This is very important in practice since the aim is to find the
best approximation for the reliability. Figures 6 and 7 again indicate that MPSEs, CVMEs,
and the LSEs of α and β are the estimators that performed well in terms of goodness-of-fit.

Figure 2. Simulated biases for the estimators of α.
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Figure 3. Simulated biases for the estimators of β.

Figure 4. Simulated RMSEs for the estimators of α.
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Figure 5. Simulated RMSEs for the estimators of β.

Figure 6. Simulated average absolute difference between the true and estimated reliability function.
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Figure 7. Simulated maximum absolute difference between the true and estimated reliability function.

5. Conclusions

In this paper, the estimation problem of the parameters and the reliability function of
the Laplace Birnbaum-Saunders lifetime distribution is considered. Besides the method of
maximum likelihood, eight classical frequentist estimation methods have been discussed
for this purpose; namely, modified moments, maximum product of spacings, least-squares,
weighted least-squares, percentile, Cramér-von Mises, Anderson-Darling and right-tailed
Anderson-Darling estimation methods. Based on the assumption that the invariance prop-
erty is exist for the different estimation methods, the reliability function is also estimated
using the different estimation methods. To compare the performance of the different es-
timators a Monte Carlo simulation study is conducted. The practical application of the
estimators is illustrated by analyzing a simulated data set and one real data set belongs
to compressive strength of concrete. Both data analyses and the Monte Carlo simulation
study indicated that all methods perform well when there is no contamination in the data.
Once there is some contamination in the data, maximum product of spacings, least-squares,
and Cramér-von Mises estimates are notably robust compared to the other estimators
and the performance of the other method improve as the sample size increases. Data
contamination is not the only problem that faces researchers in practice. Data censoring is
another practical challenge that needs to be addressed in future research since it negatively
impacts estimation efficiency and robustness. Another important research direction is to
compare the studied frequentist estimators to Bayesian estimation in terms of performance
based on additional real experimental results which are available in literature.
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