
crystals

Article

Tetrabromoethane as σ-Hole Donor toward Bromide Ligands:
Halogen Bonding between C2H2Br4 and Bromide
Dialkylcyanamide Platinum(II) Complexes

Anna M. Cheranyova and Daniil M. Ivanov *

����������
�������

Citation: Cheranyova, A.M.; Ivanov,

D.M. Tetrabromoethane as σ-Hole

Donor toward Bromide Ligands:

Halogen Bonding between C2H2Br4

and Bromide Dialkylcyanamide

Platinum(II) Complexes. Crystals

2021, 11, 835. https://doi.org/

10.3390/cryst11070835

Academic Editor: Sergiy Rosokha

Received: 4 July 2021

Accepted: 17 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
st063368@student.spbu.ru
* Correspondence: d.m.ivanov@spbu.ru

Abstract: The complexes trans-[PtBr2(NCNR2)2] (R2 = Me2 1, (CH2)5 2) were cocrystallized with
1,1,2,2-tetrabromoethane (tbe) in CH2Cl2 forming solvates 1·tbe and 2·tbe, respectively. In both
solvates, tbe involved halogen bonding, viz. the C–Br···Br–Pt interactions, were detected by single-
crystal X-ray diffractions experiments. Appropriate density functional theory calculations (M06/def2-
TZVP) performed for isolated molecules and complex-tbe clusters, where the existence of the inter-
actions and their noncovalent nature were confirmed by electrostatic potential surfaces (ρ = 0.001
a.u.) for isolated molecules, topology analysis of electron density, electron localization function and
HOMO-LUMO overlap projections for clusters.
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1. Introduction

In the past decade, the halogen bonding (XB) concept [1] has attracted a considerable
attention as a new type of intermolecular interaction and has now become an important
tool for XB involving crystal engineering. The expressed directionality of XB was subse-
quently used in biology and materials sciences to create functional systems with a wide
range of applications spanning from supramolecular chemistry, to crystal engineering,
catalysis, electrochemistry, etc. [2–6]. Although the vast majority of XB studies do not
utilize organometallic building blocks, these metal-containing species functioning as XB
participants are very useful for the design of new supramolecular systems [7–10].

Involvement of various haloalkanes (in particular bromoalkanes) in the occurrence
of XBs is among rapidly growing areas of XB based crystal engineering [3]. Perfluo-
rinated bromoalkanes were found [11–13] to form XBs with metal-free halide anions.
Dibromomethane [14,15], bromoform [16,17], tetrabromomethane [16,18,19] and hexabro-
moethane [20], functioning as XB acceptors, were studied toward halide ligands in metal
complexes.

1,1,2,2-tetrabromoethane (tbe), which contains the same CHBr2 fragments as those
in dibromomethane or bromoform, have never been utilized as XB donor (Figure 1). This
compound is used in organic chemistry as an alkylating agent [21,22] and in ferrocene
chemistry as a mild brominating agent [23–27]. The only tbe solvates were obtained [28],
but they were only characterized by elemental analyses.

In this study, the dialkylcyanamide platinum(II) complexes trans-[PtBr2(NCNR2)2]
(R2 = Me2 1, (CH2)5 2), which function as useful XB acceptors [18,29], were employed
as XB acceptors toward tbe (Figure 1). Since tbe may be a source of bromides, the bro-
mide complexes were chosen in order to exclude various exchange reactions between the
halogens.

We report herein our data on cocrystallization of tbe with dialkylcyanamide bromide
complexes of platinum (II). In 1:1 solvates 1·tbe and 2·tbe, the first examples of tbe involved
XBs and hydrogen bonds (HBs) were found.
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2. Materials and Methods

1,1,2,2-C2H2Br4, K2[PtCl4], KBr, dialkylcyanamides and all solvents were obtained
from commercial sources and used as received; complex trans-[PtBr2(NCNMe2)2] (1) was
synthesized via a previously published procedure [29].

2.1. Synthesis of Complex Trans-[PtBr2(NCN(CH2)5)2]

To K2[PtCl4] (0.1 g, 0.24 mmol) in water (1 mL) added a 10-fold excess of KBr (0.284 g,
2.4 mmol), whereupon the solution was heated with mixing for 2 h at 70 ◦C. After heating
the solution became maroon. A 5-fold excess of NCNC5H10 (0.140 mL, 1.2 mmol) was
added to this solution. Oil formed at the bottom of the vessel after 24 h. The resulting oil
was powdered with diethyl ether and held under ultrasound. The resulting precipitate (a
mixture of cis- and trans-isomers) was washed with three portions of 3 mL of water and
diethyl ether, and then dried in air at room temperature. To isolate the pure trans-isomer,
the resulting mixture was dissolved in CHCl3 and was refluxed for 3 h. Yield: 71%. 1H
NMR (400 MHz, CDCl3) δ = 3.32 (m, NCH2), 1.62–1.67 (m, NCH2CH2) and 1.52–1.59 (m,
NCH2CH2CH2) ppm (Figure S5). 13C{1H} NMR (101 MHz, CDCl3) δ = 115.74 (s, C≡N),
49.79 (s, NCH2CH2), 24.53 (s, CH2CH2CH2) and 22.48 (s, CH2CH2CH2) ppm (Figure S6).
195Pt NMR (86 MHz, CDCl3) δ = −2596.15 ppm (Figure S7). HRESI-MS, m/z: calculated
for [M+H]+ 576.9732, found 576.9755 (Figure S4). Single crystals of 2 were prepared from
a dichloromethane at RT by slow evaporation (Figure S1). Comparison of the XRD and
PXRD data showed that the phases coincide (Figure S8).

2.2. Crystallization

Single crystals of 1·tbe and 2·tbe were obtained by slow evaporation of a dichloromethane
solution (1 mL) of a mixture of the corresponding 1 (0.002 mmol) or 2 (0.002 mmol) and tbe
taken in an excess (0.87 mmol) at RT. Yellow crystals 2, 1·tbe and 2·tbe of suitable for XRD
were released after 3−4 d.

2.3. Analytic Methods

The MS data were obtained on a Bruker micrOTOF spectrometer equipped with
electrospray ionization (ESI) source. The NMR spectra were recorded on a Bruker AVANCE
III 400 spectrometer at ambient temperature in CDCl3 (at 400, 101, 86 MHz for 1H, 13C{1H}
and 195Pt NMR spectra, respectively). IR spectra were recorded on a Bruker TENSOR
27 FT-IR spectrometer (4000–200 cm−1, KBr pellets) (Figure S3). Powder X-ray diffraction
(PXRD) data were measured at room temperature using a Bruker D2 Phaser Desktop X-ray
diffractometer equipped with a CuKα1 + 2 source; the data were collected in the range of
2θ = 5–80◦ with a step size of 0.02◦(2θ).

2.4. X-ray Structure Determination and Refinement

Suitable single crystals were studied on a SuperNova Duo CCD diffractometer (Cu
Kα (λ = 1.54184), mirror monochromator, ω-scan). Crystals were incubated at 100 K during
data collection. All structures were deciphered by direct methods using SHELXT [30]
and refined using SHELXL [31]. All non-hydrogen atoms were refined with individual
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parameters of anisotropic displacement. Hydrogen atoms in all structures are placed
in ideal calculated positions and refined as colliding atoms with parameters of relative
isotropic displacement. The main data of crystallography and details of refinement are
given in Table S1 in Supporting Information. CCDC numbers 2094282–2094284 contain all
supporting structural and refinement data.

2.5. Computational Details

The energy characteristics of the complexes, tbe and clusters included in this study
were calculated by the DFT method with the M06/def2-TZVP [32,33] theory using atom
coordinates obtained from crystal structures. The GAUSSIAN-09 [34] program was used
for calculations. The MEP surfaces [35] were calculated at the same theoretical level and
presented using 0.001 a.u. isosurfaces. The color scheme is a red-white-blue scale with
red for ρ+ cut (repulsive) and blue for ρ− cut (attractive). White isosurfaces correspond
to weakly repulsive and attractive interactions, respectively. 3D-surfaces were visualized
using the VMD 1.9.3 [36] program. ELF projections and QTAIM analysis was performed in
Multiwfn 3.7 [37,38] software. The QTAIM analysis was performed using the program at
the same level of theory. Visualization of the projections of boundary orbitals was carried
out using the program Multiwfn 3.7.

3. Results and Discussion
3.1. Electrostatic Surface Potentials

Electrostatic potentials (ESP) on surface (ρ = 0.001 a.u.) were calculated (M06/def2-
TZVP) for tbe, 1 and 2 isolated molecules. Donor XB has a σ-hole on the surface of
the bromine atom, which we see for tbe (positive potential, Figure 2). XB acceptors
are nucleophiles, and bromide ligands demonstrate significant negative potential on all
sides (Figure 3). The scale was selected in such a way as to convey as much information
as possible about the distribution of the electrostatic potential in the molecules [39,40].
Thus, the ESP calculations show that the formation of XB and HB is promising for their
joint crystallization.
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3.2. Single-Crystal X-ray Diffraction Data for Solvates

The structure of 1·tbe consists of one molecule of the complex trans-[PtBr2(NCNMe2)2]
and one molecule of tbe; the same is observed in the structure of adduct 2·tbe. In both
cases, the complex molecule is surrounded by 4 tbe molecules with the formation of
bromine–bromine short contacts.

For the 1·tbe structure (Figure 4a), these contacts are 3.3734(12) Å and 3.4613(16) Å,
which are less than 2RvdW(Br) = 3.70 Å [41], and the angle around bromine is close to 180◦

(173.8(3)◦ and 174.3(3)◦). For structure 2·tbe (Figure 4b), the distances between bromine
and bromide ligand are 3.5585(7) Å and 3.6100(7) Å, and the angles are close to 180◦

(167.20(13)◦ and 174.56(13)◦). All the angles around bromide ligands are far from linear
(Table 1), and the C–Br···Br–Pt interactions can be treated as type II halogen–halogen
contacts, i.e., XBs [42].
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Table 1. Parameters of XB in adducts 1·tbe and 2·tbe (X = 1, 2).

Solvate d(BrXA···Br1), Å ∠(C1A–BrXA···Br1),◦ ∠(BrXA···Br1–Pt1),◦

1·tbe
3.3734 (12) 173.8 (3) 124.19 (4)
3.4613 (16) 174.3 (3) 93.48 (3)

2·tbe
3.5585 (7) 167.20 (13) 112.284 (17)
3.6100 (7) 174.56 (13) 87.635 (14)

In 1·tbe, when the halogen bonds are stronger, a significant (within 3σ) elongation
of the Pt–Br coordination bonds (2.4340(6) Å and 2.4555(9) Å) is observed, which can be
explained by the redistribution of the electron density during the formation of these halogen
bonds. In 2·tbe, there is no difference within 3σ in the isolated molecule (2.4382(6) Å) and
in the solvate (2.4357(4) Å). However, there is a difference in the piperidyl conformations in
the solvent-free crystal 2 and in 2·tbe, which can be explained by the crystal packing effects.

By analogy with the formation of two XBs with a bromide ligand, the formation of
two HBs with sterically available oxygen in the composition of phosphine oxide is possible,
which shows the general behavior between different supramolecular synthons [43].

The formation of XBs leads to the 2D supramolecular layers in both cases (Figure S2).
In 1·tbe, the additional Br2CHCBr2–H···Br–Pt hydrogen bonds were detected (Figure S9
and Table S2). The hydrogen bonds together with XBs allow the 3D scaffold supramolecular
structure of 1·tbe.

3.3. Theoretical Consideration

In addition to ESP surfaces, the presence and nature of intermolecular interactions
were studied using the complex·tbe clusters with each type (see Supplementary Materials
for details) of the interactions under consideration. The calculation (M06/def2-TZVP) was
carried out on the experimentally obtained atomic coordinates. To obtain more information
about the weak interactions under study, a topological analysis of the electron density
distribution was carried out within the framework of the Bader QTAIM method [44,45].

The QTAIM analysis demonstrates the presence of a bond critical point (3, −1) (BCP)
between the bromine and the bromide ligand (Table 2), as well as between the bromine
in tbe and the hydrogen atoms in the complexes. Negative [46] and small values of
sign(λ2)ρ at the BCPs confirm the attractive and noncovalent nature of the interactions.
They can also be treated as typically noncovalent due to close to zero positive energy
density (0.001–0.002 a.u.) and the balance of the Lagrangian kinetic energy G(r) and the
potential energy density V(r) (−G(r)/V(r) > 1) on the corresponding BCPs.

Table 2. Potential energy density V(r), Lagrangian kinetic energy G(r) and energy density H(r) (Hartree) at the bond critical
points (3, −1), sums of NPA atomic charges on tbe (ΣNPA(tbe), in qe), and values of the Wiberg indices (WBI), corresponding
to different noncovalent interactions in 1·tbe and 2·tbe.

Cluster XB Sign(λ2)ρ G(r) V(r) H(r) ΣNPA(tbe) WBI

(1)·(tbe) (type 1) Br1A···Br1 −0.012 0.008 −0.006 0.002 −0.033 0.04

(1)·(tbe) (type 2) Br2A···Br1 −0.011 0.007 −0.006 0.001 −0.026 0.03

(2)·(tbe) (type 1) Br1A···Br1 −0.009 0.005 −0.004 0.001 −0.016 0.02

(2)·(tbe) (type 2) Br2A···Br1 −0.008 0.005 −0.004 0.001 −0.015 0.02

The same calculations for the same clusters were performed in natural atomic parti-
tioning scheme. The sums of natural population analysis (NPA) atomic charges are negative
on the tbe molecule in each cluster, so the interaction between halogens also occurs due to
the charge transfer from the complex molecules to tbe. Wiberg bond indices in NPA can be
interpreted as chemical bond indices (orders). In all clusters, the Wiberg bond indices of
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the Br···Br XBs are very small but not zero (0.02–0.04) which point to the small covalent
contribution to these interactions.

The ELF is a derivative of the electron density, which allows the location of areas
of shared and unshared electron pairs [18,47–49]. A combination of ELF and QTAIM
methods is represented in Figure 5, where ELF projections were plotted together with
bond (3, −1) critical points (BCPs, blue), nuclear (3, −3) critical points (NCPs, brown), ring
(3, +1) critical points (RCPs, orange), and bond paths (white lines).
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pairs of bromide and through the depletion ELF areas of the on bromine atoms in tbe. These
observations confirm the XB nature of the Br···Br interactions, where bromide ligands are
nucleophiles and tbe molecules are electrophiles.

The same observations were performed for (2)·(tbe) clusters (bottom on Figure 5)
halogen-bonding bond paths go through lone pairs on the halide ligands and the σ-holes
on Br atoms in XB donors.

It is noteworthy that, in the case of these clusters the ELF regions for halogen bonding
Br1A···Br1 and Br2A···Br1, the critical points of bonds and the arrangement of bond paths
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are the same for both clusters, which indicates the similarity in the nature of noncova-
lent interactions.

Intermolecular halogen bonds are always directed towards their bromide ligands. It
should be noted that the HOMO’s of the complex are located mainly on bromide ligands.
The superposition of the boundary orbitals of donors and acceptors of halogen bonds on the
crystal structures of their adducts demonstrates that all associates exhibit HOMO/LUMO
overlaps (Figure 6) [12,16,50]. To construct the projections, HOMO-1 was taken, since
the lone pairs of the bromine atom are in the plane of the complex, and for HOMO
they are perpendicular to the plane. HOMO-LUMO overlap projections were built along
with the construction of connection paths. This suggests that the arrangement of Br···Br
contacts is associated with molecular orbital interactions between donors and acceptors of
halogen bonds, which indicates the importance of the covalent component in the binding
of halogens.
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4. Conclusions

In this work, we firstly found the formation of XBs with 1,1,2,2-tetrabromoethane as
XB donor, which were shown in the formation of 1:1 solvates with platinum(II) bromide di-
alkylcyanamide complexes. The nature of halogen bonds was investigated experimentally
by single-crystal X-ray diffraction analysis of the solvates. Further theoretical calcula-
tions, including topological analysis of electron density, ESP surfaces, ELF projections,
HOMO/LUMO overlaps, Wiberg bond indices and natural population charge analysis,
confirmed tetrabromoethane is indeed an electrophile toward bromide ligand due to the
presence of σ-holes on bromine atoms. As other bromoalkanes, it can be used as elec-
trophilic supramolecular synthon (donor of four σ-holes) together with bromide complexes.
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Our inspection of literature data for substances with the general formula RCHBr2 show
that they may also be studied as potential XB donors [51–56], among dibromomethane,
bromoform and 1,1,2,2-tetrabromoethane.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst11070835/s1, Figure S1: Structure of complex trans-[PtBr2(NCN(CH2)5)2]; Figure S2:
Formation of 2D polymer networks in adducts 1·tbe (top) and 2·tbe (bottom); Figure S3: IR-spectra
of complex trans-[PtBr2(NCN(CH2)5)2]: 2944 (w), 2852 (w), ν(C–H); 2291 (s), ν(C≡N); 1170 (w),
1107 (w), ν(C–N); 467 (m), ν(Pt–N); Figure S4: Mass spectrum of complex trans-[PtBr2(NCN(CH2)5)2];
Figure S5: 1H NMR spectrum of complex trans-[PtBr2(NCN(CH2)5)2]; Figure S6: 13C{1H} NMR
spectrum of complex trans-[PtBr2(NCN(CH2)5)2]; Figure S7: 195Pt NMR spectrum of complex trans-
[PtBr2(NCN(CH2)5)2]; Figure S8: Comparison of PXRD (red line) and XRD (blue line) complex
trans-[PtBr2(NCN(CH2)5)2]. The phases coincide, the difference is due to different experimental
conditions (for PXRD—RT, for XRD—100 K). Figure S9: Structure of cluster 1·tbe (halogen bonding);
Figure S10: Structure of cluster 1·tbe (hydrogen bonding); Figure S11: Structure of cluster 2·tbe
(halogen bonding). Table S1: Crystal data and structure refinement for 1·tbe, 2 and 2·tbe at 100 K;
Table S2: Values of the Wiberg indices (WBI), Lagrangian kinetic energy G(r), potential energy density
V(r) and energy density H(r) (Hartree) at the bond critical points (3, −1), corresponding to different
noncovalent interactions in 1·tbe.
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