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Abstract: Silver nanowires (Ag-NWs), which possess a high aspect ratio with superior electrical con-
ductivity and transmittance, show great promise as flexible transparent electrodes (FTEs) for future
electronics. Unfortunately, the fabrication of Ag-NW conductive networks with low conductivity and
high transmittance is a major challenge due to the ohmic contact resistance between Ag-NWs. Here
we report a facile method of fabricating high-performance Ag-NW electrodes on flexible substrates.
A 532 nm nanosecond pulsed laser is employed to nano-weld the Ag-NW junctions through the
energy confinement caused by localized surface plasmon resonance, reducing the sheet resistance
and connecting the junctions with the substrate. Additionally, the thermal effect of the pulsed laser
on organic substrates can be ignored due to the low energy input and high transparency of the
substrate. The fabricated FTEs demonstrate a high transmittance (up to 85.9%) in the visible band, a
low sheet resistance of 11.3 Ω/sq, high flexibility and strong durability. The applications of FTEs to
2D materials and LEDs are also explored. The present work points toward a promising new method
for fabricating high-performance FTEs for future wearable electronic and optoelectronic devices.

Keywords: flexible transparent electrodes; silver nanowires; laser nano-welding; organic electronics

1. Introduction

High-performance flexible transparent electrodes (FTEs) with outstanding mechanical
and optical properties facilitate the rapid development of wearable electronics and optoelec-
tronics [1]. Compared with rigid materials such as silicon and silica, elastic substrates make
the devices foldable, twistable, compressible, and stretchable without compromising stabil-
ity and reliability, allowing for a wide range of applications, including flexible electronic
displays, organic light-emitting diodes (OLEDs), solar cells, and electronic skins [2–5]. FTEs
are critical components in the above-mentioned wearable devices to ensure a high-efficiency
power supply with low energy consumption. Moreover, the excellent optical transmittance
would replace indium tin oxide (ITO) for next-generation, highly flexible optoelectronic
applications, overcoming the drawbacks of time-consuming synthesis, indium requirement,
and fragility during stretching and bending. In recent decades, numerous efforts have been
made to develop alternative FTEs, including graphene [6–8], nanowires [9–12], carbon
nanotubes (CNTs) [13–15], and PEDOT:PSS [16–18].

Silver nanowires (Ag-NWs) have attracted considerable attention as FTE materials
owing to their good electrical conductivity, high transparency in the visible band, excellent
ductility, and facile fabrication process [19]. In particular, the conductive networks formed
by ultralong metallic nanofibers have shown promise for application to FTEs because of
their superior optical, electrical, and mechanical properties [20,21]. A variety of electronic
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components with Ag-NW FTEs were fabricated in previous studies, including flexible and
transparent antennas [22], wireless circuits [23], transistors [24], and sensors [25], demon-
strating the potential applications in wearable devices. However, the contact resistance
between Ag-NWs and adhesion to the organic substrates have presented two major chal-
lenges for high-performance FTEs. Methods for the improvement of contact resistances
have been sophisticatedly presented in previous works. Thermal annealing has received
the most attention due to its facile fabrication process and high welding quality. However,
thermal annealing requires an oxygen-free environment due to the high chemical reactivity
of Ag-NWs at high temperature. Moreover, thermal annealing is not suitable for the flexible
organic substrates due to the low melting temperature of organic materials. Consequently,
a low-temperature thermal annealing (below 200 ◦C) was developed [26]. Other physical
welding methods employing force, electricity, light, etc. were also developed to realize
Ag-NW network welding without significant thermal effects for FTEs [27–35]. Although
high-pressure welding optimized the conductivity of the Ag-NW FTEs down to 8.4 Ω/sq,
the substrates and other layers could be destroyed [27]. To solve this problem, Liu et al.
proposed a capillary-force-induced cold-welding technique in which the moisture-treated
Ag-NWs exhibited a significant reduction in sheet resistance (~37 Ω/sq) due to the giant
capillary forces exerted between Ag-NWs [28]. Unfortunately, the poor adhesion of Ag-
NWs on the substrate has not been improved. Another method that has been used is electric
welding; it is based on the high contact resistance at the junction of Ag-NWs, where Joule
heating caused by the application of bias voltages results in localized melting, welding
the Ag-NWs [29]. The main drawback of this method is the non-homogeneous current
distribution due to the complex Ag-NW network, which proved unsuitable for large-area
welding. Hong et al. achieved Ag-NW nano-welding by electron-beam irradiation, which
provided sufficient energy to melt the Ag-NWs [30]. However, the required vacuum cham-
ber and the high-cost instrument limited the method for industrial applications. Compared
with electron beams, light is an ideal energy source to induce the nano-welding of Ag-NWs.
Liang et al. employed ultraviolet A (UVA) light irradiation for Ag-NW nano-welding,
reducing the sheet resistance by three orders of magnitude (down to 25 Ω/sq) with a good
transparency (97%) [31]. The femtosecond pulsed laser (fs-pulsed laser) was also used to
irradiate Ag-NWs, where the excited localized surface plasmon resonances (LSPRs) at the
gaps between Ag-NWs generated a considerable enhancement of electric field strength,
inducing local melting for nano-welding. Meanwhile, the polyethylene glycol terephtha-
late (PET) substrate was not damaged during the laser irradiation. The obtained sheet
resistance and optical transmittance by fs-pulsed nano-welding were 16.1 Ω/sq and 91%,
respectively [32]. Although nanosecond pulsed lasers (ns-pulsed lasers) were also tested
for the nano-welding of Ag-NWs [33], most of the laser-irradiation methods were only
suitable for inorganic and limited organic substrates with high melting temperatures and
stiffnesses (glass, silica, PET, PVA), owing to the requirement of thermal endurance from
laser energy input. Generally, the most used highly flexible and bio-compatible organic
materials (e.g., polydimethylsiloxane, PDMS), possess low melting points and stiffnesses.
Therefore, a nano-welding technique for junction-localized energy confinement that will
not deteriorate the substrate is still lacking. In addition, the adhesion of Ag-NW networks
to the organic substrate also needs to be resolved by jointing Ag-NWs with the substrate
gently [9,10].

In this work, we developed a facile technique for fabricating high-performance
FTEs via ns-pulsed laser nano-welding of Ag-NWs on organic substrates, creating Ag-
NWs/PMMA/PDMS sandwich structures. LSPR-induced laser energy confinement at
the junctions between the Ag-NWs was employed to generate a high temperature for
nano-welding in order to reduce contact resistances while dramatically boosting the elec-
trical conductivity of the Ag-NWs. Meanwhile, the Ag-NW networks were jointed with
the organic substrate for good adhesive strength. The ns-pulsed laser energy for nano-
welding was low enough to avoid thermal damage to the organic substrates completely.
The fabricated FTEs in this work demonstrated superior mechanical, electrical, and optical
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properties. The compatibility of FTEs with 2D materials and traditional LEDs was also
explored for the design of flexible optoelectronic devices in the future.

2. Materials and Methods

A schematic of the procedure for fabricating Ag-NW FTEs is illustrated in Figure 1a.
The glass substrates (2 cm × 2 cm) were first cleaned ultrasonically in acetone, isopropanol,
and deionized water, successively, for 5 min. The polymethyl methacrylate (PMMA) solu-
tion in toluene (purchased from Shanghai Kexinda Polymer Materials Co., Ltd., Shanghai,
China) was spin-coated onto the glass substrate at 8000 rpm for 40 s to achieve a thick-
ness of ~10 µm, then cured in ambient atmospheric for 10 s. Then, the PMMA film was
treated with plasma (YZD08-5C, 80 W, Saiaote Technology Co. Ltd., Wuhu, China) for 30 s
to achieve a hydrophilic surface, beneficial for both uniform spreading and the preven-
tion of agglomeration during Ag-NW suspension deposition. The Ag-NWs (purchased
from Nanjing XFNANO Co., Ltd., Nanjing, China), with a mean length of ~100 µm and
diameter of 30.0 ± 5.0 nm, diluted in isopropyl alcohol (IPA) for various concentrations
(0.3–0.7 mg/mL), were sprayed onto the PMMA surfaces. To minimize the coffee-ring
effect on Ag-NWs deposition, 3M low-adhesion tapes were employed to confine the suspen-
sion flow within a specific region. The homogeneous Ag-NWs were therefore formed after
the suspension was dried. The densities of Ag-NWs on PMMA films were controlled by
two synthesis parameters: the concentration of the Ag-NWs suspension (0.3–0.7 mg/mL)
and the number of spraying layers (5–20 layers). Afterwards, the Ag-NWs/PMMA film
was irradiated by a 532 nm ns-pulsed laser (Spectra-Physics, LAB-190-30H, 10 ns, 27 Hz)
under ambient conditions at room temperature, achieving Ag-NW nano-welding and
jointing with the PMMA substrate. It should be noted that the highly transparent PMMA
with respect to 532 nm (95%) and the short pulse duration minimized the thermal damage
on the substrate within the irradiation time of 50 s. The oxidation of Ag-NWs during laser
irradiation was also negligible. The PDMS Sylgard 184 (purchased from Dow corning Co.,
Ltd., Midland, MI, USA) was mixed and stirred with the curing agent at the ratio of 10:1 by
weight to obtain the PDMS colloidal solution. The fabricated Ag-NWs/PMMA film was
then flipped over on the spinner. The PDMS solution was spin-coated onto the bottom
side of the Ag-NWs/PMMA film at a rotation speed of 5000 rpm for 30 s. The PDMS film
was baked at 120 ◦C for 2 min on a plate heater in a vacuum chamber for solidification
and bubble removal. The Ag-NWs/PMMA/PDMS film was therefore obtained, where the
thickness of the PDMS film was ~20 µm. It should be noted that the PDMS film provided
an outstandingly flexible substrate for the FTEs, and the plasma-treated PMMA film served
as a buffer layer for high adhesion of Ag-NWs and PDMS in the sandwich structure, as
shown in Figure 1b. Figure 1c demonstrates the optical and mechanical performance of
the Ag-NWs/PMMA/PDMS FTEs. In addition, the MoS2 monolayer (purchased from
Shenzhen Six-Carbon Technology, Shenzhen, China), grown on an n-type Si substrate with
a 300 nm-thick SiO2 film, was also employed for future experiments.

The sheet resistances were measured using the four-point probe method (Suzhou
Jingge Electronic Co., Ltd., ST2258C, Suzhou, China), in which the mean values of sheet
resistances from six random points of the FTEs were calculated. The optical transmit-
tances of the FTEs were obtained by a UV-VIS spectrophotometer (Shimadzu, UV-3600,
Kyoto, Japan). The morphologies of the Ag-NWs in the FTEs were captured by optical mi-
croscopy (Olympus BX-51, Tokyo, Japan), scanning electron microscopy (Hitachi, SU8220,
Tokyo, Japan), and transmission electron microscopy (FEI, Tecnai G2-20-S-TWIN, Lausanne,
Switzerland). The film thickness was acquired by a profilometer (Veeco Dektak-XT, Bruker,
Billerica, MA, USA). The gate-voltage applied to the MoS2 was supplied by a DC power
supply (Beijing leading Hongzhi Electronic Technology Co., Ltd., XD1715A-120, Beijing,
China). The photoluminescence spectra were analyzed by a SmartRaman confocal-micron-
Raman system (developed by Institute of Semiconductors, CAS, Beijing, China) with a
10x/NA0.25 objective lens (Olympus, MPlan N, Tokyo, Japan) under the backscattering
geometry, which was coupled with a Horiba LabRam iHR550 spectrometer (Kyoto, Japan)
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with a 100 lines/mm grating and a CCD detector. The excitation CW laser wavelength
was 633 nm (HNL 100-EC-PS, 25.8 µW, Changchun New Industries Technology Co., Ltd.,
Changchun, China). The electrical power supply and current measurement for LEDs were
provided by a source meter (Keithley 4200-SCS, Tektronix, Beaverton, OR, USA).
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Figure 1. Fabrication of Ag-NWs/PMMA/PDMS FTEs. (a) Schematic of synthesis procedure. (b) Cross-section schematic
of the FTEs. (c) Mechanical and optical properties of the FTEs.

The numerical simulation was performed using the finite element algorithm method in
the COMSOL Multiphysics (licensed by COMSOL Co., Ltd., Stockholm, Sweden) software
package. A 2D cross-sectional model was developed to calculate the electric fields regulated
at the cross-junctions and gaps between Ag-NWs. The Ag-NW diameter was 30 nm, and
the relative permittivity was −9.3751 + 0.83203i according to Drude’s model. The ambient
environment was set as air. For the analysis of electric field enhancement, a plane wave
with a wavelength of 532 nm was incident onto the Ag-NWs. Perfectly matched layers
were applied as the boundary conditions.

3. Results and Discussion
3.1. Morphology of Laser Nano-Welded Ag-NWs

The morphologies of Ag-NWs nano-welded via various laser fluences are shown
in Figure 2. The as-deposited Ag-NWs were randomly distributed on the PMMA film,
forming a conductive network, as shown in Figure 2a. The close-up view in Figure 2b
further demonstrates the cross junctions of the Ag-NWs before laser nano-welding. The
contacts between Ag-NWs and with the PMMA substrate were ascribed to van der Waals
forces. The fluence threshold for laser nano-welding was ~10.0 mJ/cm2, by which the
cross junctions were melted slightly and connected after resolidification. The melting
phenomenon became obvious with the laser fluence increasing to 17.4 mJ/cm2. It can
be clearly seen in Figure 2c–e that only the cross junctions were melted during laser
irradiation whereas the other parts of Ag-NWs were not affected, indicating the laser-
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induced thermal effect was confined to the contact points. When the laser fluence was
greater than 27.9 mJ/cm2, the Ag-NWs sustained thermal damage. The high molten
volumes and surface tensile effect broke the Ag-NWs, as shown in Figure 2f. Figure 2g,h
further exhibits the welded points before and after laser irradiation, providing strong
evidence of Ag-NW melting at the cross junction. To further optimize the laser nano-
welding parameters, the effects of laser fluence and irradiation time on sheet resistance
were studied, as shown in Figure 2i. The sheet resistance of as-deposited Ag-NWs was
110 Ω/sq and dramatically reduced via laser nano-welding within tens of seconds. The
increased laser fluence and irradiation time both lowered the sheet resistance. It can also
be seen that the sheet resistances were close to constants dominated by laser fluences as
the irradiation time exceeded 50 s. The irradiation time of 50 s was therefore chosen as
the optimal parameter to avoid oxidation of the Ag-NWs and thermal damages on the
organic substrate. It should be noted that the high sheet resistance with a laser fluence of
37.9 mJ/cm2 at an irradiation time of 50 s was due to the deterioration of the Ag-NWs, as
shown in Figure 2f. Hence, the laser fluence was set to 27.9 mJ/cm2 with an irradiation
of 50 s for the lowest sheet resistance down to 11.3 Ω/sq, whereby the thermal effect on
organic substrates was also negligible.
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Figure 2. Morphologies and electrical properties of Ag-NWs/PMMA/PMMA FTEs via ns-pulsed laser nano-welding under
various process parameters. (a) SEM images. (b) Close-up view of as-deposited Ag-NWs before nano-welding. (c–f) Laser
nano-welding of Ag-NWs under laser fluence of (c) 10.0 mJ/cm2, (d) 17.4 mJ/cm2, (e) 27.9 mJ/cm2, and (f) 37.9 mJ/cm2 at
irradiation time of 50 s. (g,h) TEM images of (g) as-deposited and (h) laser nano-welded Ag-NWs. (i) Evolution of sheet
resistance with laser fluence and irradiation time.
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3.2. Mechanism of Laser Nano-Welding of Ag-NWs on PMMA

To further study the mechanism of laser nano-welding of the Ag-NWs on organic
substrates, a numerical simulation of laser interaction with Ag-NWs was performed. Two
typical structures of as-deposited Ag-NWs were considered, as illustrated in Figure 3a,b,
including cross-junction and head-to-head configurations. It is well-acknowledged that the
LSPRs in the vicinity of Ag-NWs can be excited by light with a wavelength of ~50 nm, by
which the electromagnetic (EM) fields are significantly enhanced and localized around the
Ag-NWs. Meanwhile, the Joule heating caused by ohmic energy loss resulted in melting
for the nano-welding of Ag-NWs [36–39]. The electric fields in the two structures are
shown in Figure 3c,d. It can be clearly observed that the electrical intensities were boosted
in the gaps between Ag-NWs, where the enhancement ratios were 573.4 and 2193.2 for
cross-junction and head-to-head structures, respectively. As a result, these regions were
first melted under laser irradiation and connected, realizing Ag-NW welding. The electrical
intensities far from these gaps were extremely low, preventing the deterioration of Ag-NWs.
The numerical simulation was in agreement with the experimental results, revealing the
mechanism of laser nano-welding of the Ag-NWs. Furthermore, selective nano-welding
was conducive to Ag-NW network jointing with the PMMA. Owing to its low melting
point (~200 ◦C), the PMMA film can be melted due to the high temperature at the Ag-NW
welding regions, and the Ag-NW network was partially embedded into the organic film for
good adhesion. To validate the hypothesis, a 3M low-adhesion tape was employed to press
and remove the Ag-NWs from the FTEs, as shown in Figure 3e,f. The adhesion between
Ag-NWs and PMMA was significantly strengthened after laser nano-welding, as shown by
the slight reduction of Ag-NW quantity under removal cycles of over 100. This confirmed
the jointing of the Ag-NW network and PMMA substrate by laser irradiation.

3.3. Synthesis Optimization of Ag-NWs/PMMA/PDMS FTEs

The criteria for high-quality FTEs consist of electrical conductivity and transmittance.
The ideal FTEs should possess high conductivity, good transmittance, and durable flex-
ibility. The transmittance was generally reduced as conductivity increased due to light
scattering and absorption by the high concentration of Ag-NWs. Therefore, the balance
between conductivity and transmittance should be maintained by optimizing the density
of Ag-NWs on the PMMA film. The multiple-spraying strategy was therefore employed to
control the density by two parameters, that is, the concentration of the Ag-NWs suspension
and the number of spraying layers. To obtain a stable sheet resistance, the number of
spraying layers was greater than five. Figure 4 shows the sheet resistances and transmit-
tances of Ag-NWs/PMMA/PDMS FTEs under different suspension concentrations and
spraying layers after laser nano-welding with 28.9 mJ/cm2 for 50 s. In Figure 4a–e, it
can be clearly seen that the sheet resistance and transmittance were both decreased as
the concentration and number of spraying layers increased. For the low concentration of
0.3 mg/mL, the sheet resistance was dramatically reduced when the number of spraying
layers was eight, and then kept constant. Furthermore, the transmittance was linearly
reduced from 89.9% to 63.4% as the number of spraying layers and concentration increased.
The higher concentration could reduce the number of spraying layers down to five for
the lowest sheet resistances. To evaluate the optimal performance in optical and electrical
properties, the figure of merit (FoM) was employed as follows [40]:

FoM =
T10

Rsh
(1)

where T is the transmittance at 550 nm and Rsh is the sheet resistance of the FTEs. The
optimal FoMs under various suspension concentrations were extracted and are plotted in
Figure 4f. The suspension concentration of 0.5 mg/mL with five spraying layers was se-
lected for the highest FoM, where the transmittance was 85.9% and the sheet resistance was
11.3 Ω/sq. The performance was comparable with that obtained in previous works [27–35].
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The advantages of the technique developed in this work are its facile fabrication method
and the low cost of FTE synthesis.
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Figure 3. Numerical simulation of laser nano-welding of Ag-NWs and validation of Ag-NWs jointing with PMMA substrates.
(a) Cross junction. (b) Head-to-head configurations for simulation. (c,d) Electric field distributions and intensities (c) near
the cross junction between Ag-NWs and (d) near the gap of head-to-head Ag-NWs. (e,f) Removal experiments using 3M
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3.4. Durability of Ag-NWs/PMMA/PDMS FTEs

Figure 5a shows the transmittance spectra of PDMS, PMMA, and Ag-NWs/PMMA/
PDMS FTEs in the visible band. Although the Ag-NWs slightly reduced the transmittance,
the flat spectrum in the visible band indicated good transparency without wavelength
selection, as shown in Figure 1c. The flexibility of Ag-NWs/PMMA/PDMS FTEs was
examined by the fold-bending test. The fold-bending-induced strain (ε) was 75.6%, which
was estimated by [41]

ε =
t

2R
× 100% (2)

where t is the thickness of the FTE and R is the bending radius, which were 31.0 µm and
20.5 µm measured by the profilometer, respectively. Figure 5b shows the sheet resistance
maintained for up to 100 cycles of fold-bending with high strain, and then increased due to
the fatigue of Ag-NWs. In addition, the adhesion of Ag-NWs on the organic substrate was
also investigated. The above-mentioned discussion indicates that the Ag-NW network was
jointed onto the PMMA film during laser nano-welding, whereby the adhesion between
Ag-NWs and substrate was significantly strengthened since the Ag-NWs were partially
embedded in the PMMA film. The 3M low-adhesion tape was thereby used to carry
out the Ag-NW adhesion test by pressing it onto the film and peeling it off. Figure 5c
indicates that the sheet resistance could be kept constant for the peeling-off process for up
to 110 cycles, confirming the good adhesion of Ag-NWs on the PMMA/PDMS film via
laser nano-welding. Figure 5d exhibited the stability of the Ag-NWs/PMMA/PDMS FTEs
in ambient atmospheric at room temperature, where the sheet resistances were constant for
1 month. The excellent durability, flexibility, adhesion, and period stability recommend the
laser nano-welded Ag-NWs/PMMA/PDMS FTEs for wide application in future wearable
devices.

3.5. Applications of Ag-NWs/PMMA/PDMS Films as High-Performance FTEs

To demonstrate the performance of Ag-NWs/PMMA/PDMS FTEs, two typical con-
figurations of wearable devices were employed and fabricated as shown in Figure 6.
The applications of 2D materials in flexible electronic/optoelectronic components have
been well-acknowledged [42]. For vertical device structures, FTEs became important for
2D material wearable designs. Figure 6a shows the typical sandwich structure for gate-
controlled MoS2 luminescence, in which an Ag-NWs/PMMA/PDMS FTE covered an
MoS2 monolayer, which was deposited on a 300 nm-thick SiO2 isolayer oxidized from an
n+-Si substrate. The PMDS side was contacted with the MoS2 monolayer for applying the
gate voltage, U, from the Ag-NW network to the n+-Si substrate. The generated electric
field, E, was estimated by E = U/d, where d is the combined thickness of the PMMA,
the PDMS, the MoS2 monolayer, and the SiO2 isolayer. The luminescence of the MoS2
monolayer is regulated by the gate voltage due to the interaction of excitons with charge
carriers via the phase-space filling effect [43,44]. This optoelectronic property can be used
to realize electro-optical modulators operating in the visible band. Owing to the high
transparency and conductivity of Ag-NWs/PMMA/PDMS FTEs, the phenomenon was
achieved by in-situ PL measurement, as shown in Figure 6b. The PL intensity from the
MoS2 monolayer was significantly enhanced as the gate-voltage-induced electric field
increased. The PL enhancement ratio was from 203.8% to 239.7% under the electric field
intensity of 10.0–29.7 kV/cm, as demonstrated in Figure 6c, confirming the compatibility
of Ag-NWs/PMMA/PDMS FTEs with 2D materials for electro-optical applications.
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The Ag-NWs/PMMA/PDMS films can also be used as facile, high-performance
conductive tapes for conventional electronic components, where the good ohmic contacts
with the footprints can be achieved by van der Waals and static electrical forces instead of
by soldering. Figure 6d shows the I–V characteristics of a commercial surface-mounted
LED with rigid metal electrodes and FTEs, respectively. It can be clearly seen that the ohmic
contacts between FTEs and LED footprints were achieved. The increased opening voltage
threshold of the LED from 1.7 V to 1.8 V was attributed to the inserted resistance of the
FTEs. However, the I–V curve using FTEs was very similar to that of rigid metal electrodes.
The photographs of luminescence from the LEDs with various electrodes under different
bias voltages are shown Figure 6e. Although the inserted resistance slightly reduced the
efficiency of the LED, the luminescence behaviors suggested the superiority of FTEs over
conventional metal electrodes in future flexible electronic devices.
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4. Conclusions

In this work, high-performance Ag-NWs/PMMA/PDMS FTEs were fabricated by the
nanosecond pulsed laser nano-welding of Ag-NWs on PMMA/PDMS flexible substrates.
Compared with previous fabrication techniques, laser nano-welding provided a facile
and time-saving approach to improve Ag-NW network formation and adhesion onto
the flexible organic substrates. The stimulated localized surface plasmon resonances
confined the incident laser energy into the cross junctions and gaps between Ag-NWs for
selective melting. The Ag-NWs were therefore welded for resistance reduction and jointed
with the PMMA film with high adhesive strength. The fabricated FTEs demonstrated a
high transmittance of 85.9% in the visible band and a low sheet resistance of 11.3 Ω/sq,
attributable to the small absorption cross section and high conductivity of the nano-welded
Ag-NWs. The superior durability, high flexibility, strong adhesion, and period stability
tolerance commended the FTEs for practical wearable applications, in pursuit of which
two typical components in 2D material luminescence devices and LEDs were explored.
The gate voltages for high electric fields for regulating the PL emission from an MoS2
monolayer was determined. The FTEs were also confirmed to be suitable for conventional
electronic devices (i.e., LEDs), as a flexible-type electrode for wearable designs to replace
rigid metal ones, since soldering between the FTEs and component footprints for ohmic
contacts was avoided. The present work points a path forward in the development of
high-performance FTEs for next-generation flexible electronic/optoelectronic devices with
outstanding optical transmittance, high conductivity, and good durability.
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