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Abstract: ZnSe nanoparticles (NPs) were prepared by combining both hydrothermal and mechanical
milling methods. Transmission electron microscopy images show that fabricated ZnSe NPs with a
sphere-like shape have an average size (d) in the range of 20–100 nm, affected by changing the milling
time from 10 to 60 min. All the samples crystalize in zincblende-type structure without impurities,
as confirmed by analyzing X-ray diffraction patterns, Raman spectra, and energy-dispersive X-ray
spectroscopy. Carefully checking Raman spectra, we have observed the broadening and redshift of
vibration modes as decreasing NP size, which are ascribed to extra appearance of disorder and defects.
The photoluminescence study has found a blue emission at 462 nm attributed to the excitonic near-
band edge and a broad defect-related emission around 520–555 nm. Increasing milling time leads to
the decrease in the exciton-emission intensity, while the defect-related emissions increase gradually.
Interestingly, as decreasing d, we have observed an improved photodegradation of Rhodamine B
under UV irradiation, proving application potentials of ZnSe NPs in photocatalytic activity.

Keywords: ZnSe nanoparticles; Raman/photoluminescence spectra; photocatalytic performance

1. Introduction

In recent years, nanostructured semiconductors have been widely studied not only
for understanding their fundamental properties but also for technological applications in
electronic and optoelectronic devices [1,2]. In particular, they also have great potential in
the photocatalysis for solar-fuel production and environmental remediation [3]. The photo-
catalytic process using semiconductors as photocatalysts is to produce active species, which
decompose organic pollutants into non-toxic by-products. Basically, the photocatalysis
generates electron-hole pairs under exposure proper light irradiation; these electron-hole
pairs move to the surface of semiconductors to participate in the redox reactions in order
to form reactive oxygen species (ROS), including OH*, O2*, and OOH*. The active species
decompose organic pollutants (typically, industrial dyes) into CO2 and H2O.

TiO2 is a well-known photocatalyst offering a high efficiency as reported in previous
studies [4]. However, its photocatalytic activity is limited because its large bandgap leads
to the sunlight absorption taking place in a narrow spectral range. It is necessary to find
alternative materials to overcome this limit. It has been found that ZnSe is an excellent
candidate because it is known as a suitable band gap (Eg = 2.67 eV) material [5] and has
a large exciton binding energy at room temperature (21 meV), which can be used as a
photocatalyst in degrading pollutant molecules, including methylene blue [6], Rhodamine B
(RhB) [7], and methyl orange [8,9]. Suitable values of Eg and exciton binding energy of ZnSe
are also important criteria to fabricate blue-laser diodes and blue-emitting diodes [10,11].
As the photocatalytic activity occurs on the surface [12], a large surface area of the catalyst
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is a crucial point to enhance the photocatalytic activity. Based on this feature, it has been
fabricated various ZnSe nanostructures, including nanoparticles (NPs) [7], nanorods [8],
hierarchical structures [6], and nanotubes [5]. To further improve the photocatalytic activity,
it has also been fabricated RGO-ZnSe nanocomposites [13], ZnSe-CdSe [14], ZnO-ZnSe [15],
and MoS2-ZnSe nano heterostructures [16].

In this work, we present a simple route that combines the hydrothermal and mechan-
ical milling methods for preparing ZnSe NPs with different particle sizes of 20–100 nm.
Additional milling method is critical point to achieve NPs with desired sizes that could
not be obtained by using alone hydrothermal synthesis without surface active agents or
ligands. The fabricated samples have zincblende structure based on X-ray diffraction (XRD)
and Raman scattering (RS) analyses. The broadening and redshift of structures in Raman
spectra with increasing grinding time are a result of arising more disorders and defects in
NPs. This is confirmed again by the photoluminescence (PL) study in which the variations
of the intensity of the exciton- and defect-related emissions as a function of the particle size
(or the milling time, tm). Our investigations into the photocatalytic activity prove that the
photodegradation of the RhB solution under UV-light irradiation is higher than 90% for
the sample with the smallest size, which has the largest surface–volume ratio. A possible
mechanism of the photocatalytic activity is provided.

2. Materials and Methods

Chemical agents including Zn, Se, and NaOH (99.99%) were purchased from Merck
(Kenilworth, NJ, USA). First, ZnSe NPs were synthesized by using a hydrothermal
method [17]. Briefly, Zn and Se powder (3.5 mmol) together with 70 mL NaOH (4 M)
were put in a Teflon lined stainless steel autoclave. The autoclave was then kept at 190 ◦C
for 25 h. After chemical reactions as shown in Equations (1)–(4), the autoclave was cooled
down to room temperature. The precipitate (ZnSe) in the autoclave was filtered, washed,
and dried. The powder product was then divided into small parts (~2 g) and ground for
different times of 10, 20, 40, and 60 min; herein, as-prepared ZnSe NPs would be labelled
as the sample with tm = 0. The grinding used a high-energy mechanical ball miller (SPEX
8000D, Spex SamplePrep, Metuchen, NJ, USA) and the set of stainless-steel vials and balls,
as described in Figure 1. Before milling, the grinding medium was coated by a ZnSe layer
(by putting ZnSe powder into the grinding media and mixing about 10 min, without collect-
ing the product after that). This is to avoid unexpected dopants appearing in the samples.
The milling with various tm values would create the samples having different sizes.

Zn + 2H2O + 2OH− → [Zn(OH)4]
2− + H2 ↑ (1)

3Se + 6OH− → 2Se2− + SeO3
2− + 3H2O (2)

3H2 + SeO3
2− → Se2− + 3H2O (3)

[Zn(OH)4]
2− + Se2− → ZnSe ↓ +4OH− (4)

Following the fabrication, NPs were dispersed on carbon-coated copper grids, then a
transmission electron microscope (TEM, JEM-2100) operating at 200 kV was employed to
check the particle size, crystal quality, and morphology of the samples. The crystal structure
was checked by using a D8 Advance diffractometer working with a Cu-Kα radiation
source (λ = 0.154 nm). This electron microscope also linked with energy-dispersive X-ray
spectroscopy (EDS) that allowed us to check elements present in the samples. Raman
scattering (RS) spectra were acquired by using a RS spectrometer (Xplora plus, Horiba),
which operated with a laser wavelength (λexc) of 532 nm. To study the PL properties, we
used an iHR-550 fluorescence spectrophotometer working with λexc = 355 nm, with the
resolution of ~0.03 nm.

Regarding the photocatalytic performance of ZnSe NPs, it was evaluated upon pho-
todegrading RhB under UV irradiation. In each experiment, 0.06 mg of each sample of ZnSe
NPs was put into a glass beaker containing 60 mL RhB solution (5 ppm). The mixture was
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magnetically stirred in the dark for 30 min. After achieving the adsorption equilibrium, this
mixture was checked the photocatalytic performance using a set of four UV solarium lamps
with the total power of 90 W and the radiation intensity of 3.2 mW/cm2. After certain time
intervals of UV irradiating, a PL spectrum was recorded to examine the photodegradation
of the RhB solution, using an iHR550 spectrophotometer (Horiba).
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Figure 1. Fabrication steps of ZnSe NPs using the hydrothermal and mechanical milling methods.

3. Results and Discussion

The XRD method was used to examine the crystal structure of all the fabricated sam-
ples, as shown in Figure 2. Diffraction patterns were recorded in the range of 2θ = 20–80◦,
where scanning steps were fixed at 0.01◦. XRD peaks are clearly observed. Careful analyses
upon the Rietveld refinement technique have found that the XRD data of the samples
well match the zincblende-type structure, belonging to the F43m space group (JCPDS No.
37-1463) [18]. The zincblende-type structure of ZnSe is depicted in Figure 3a for illustration.
To the XRD limit, no impurity phase was detected. As analyzing the diffraction patterns,
lattice constance of samples is about 5.666 ± 0.002 Å, which is well in agreement with
previous works [19–21].
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Figure 3. TEM images of ZnSe NPs with (a) tm = 0, (b) tm = 10 min, (c) tm = 20 min, (d) tm = 40 min,
and (e) tm = 60 min, which show the change in particle sizes. (f) A typical high-resolution TEM image
for with tm = 60 min.

TEM images of the fabricated samples are shown in Figure 3a–f, which indicate that
the NPs have a sphere-like shape, where both d and surface morphology are changed with
respect to variation time tm. While the as-prepared sample (tm = 0) includes uniform NPs
with smooth surface and d ≈ 100 nm, increasing the milling time reduces d gradually from
about 80 nm for tm = 10 min, through 50 nm for tm = 20 min, to ~20 nm for tm = 40 and
60 min. For the samples with long milling time, particles tightly attached to each other
to form clusters. It should be noticed that for as-prepared NPs synthesized by the same
method, Peng et al. [22] obtained smaller-sized NPs, which are due to the difference in
fabrication conditions, such as starting materials, reaction time, reaction temperature, and
especially containing surface active agent.

Photographing high-resolution TEM images of ZnSe NPs, as shown representatively
in Figure 3f for tm = 60 min, we have observed lattice-fringe spacings in the center covered
by a very thin amorphous-like layer (~0.5 nm) on the surface, which is considered as a
defect layer. Such a feature suggests long-milled ZnSe NPs having the formation of the
core/shell-type structure, which is usually observed in nanomaterials [7]. In an attempt to
check possible elements in the fabricated NPs, EDS spectra were recorded at energies of
0–15 keV. The data plotted in Figure 4 reveal the EDS spectra having the energy peaks of
Zn and Se, besides some peaks from carbon-coated copper grids. To the equipment limit,
impurities related to the sample fabrication have not been detected. In short, the results
collected from the XRD, TEM, and EDS analyses proved the high quality of fabricated
ZnSe NPs.

The crystal structure of ZnSe NPs have also been assessed upon the features of RS
spectra. Figure 5 shows their RS spectra in the wavenumber range of 100–600 cm−1. For
the sample with tm = 0, its spectrum exhibits vibration modes peaked at about 138, 186, 201,
247, 289, and 492 cm−1. According to Refs. [23–25], the modes at 138, 201, and 247 cm−1

are assigned to 2TA, TO, and LO, respectively, while the mode at 492 cm−1 is associated
with the LO phonon replica (2LO). They are considered as the characteristic modes of the
zincblende-type ZnSe structure. These modes still persist in the other samples, proving
good quality of the fabricated ZnSe NPs, which is in accordance with the results obtained
from the XRD studies. The intensity of peaks rapidly decreases (particularly, 2TO and
2LO) while their peak position shifts towards lower frequencies when tm increases from 10
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to 60 min, as shown in Figure 5 and its inset. This is related to lattice defects induced in
ZnSe NPs by the milling process as decreasing the particle size d [26]. According to the
spatial-correlation model [27], the spatial-correlation function of phonons in an ideal ZnSe
crystal is infinite and obeys the q = 0 selection rules. For ZnSe NPs, the appearance and
enhancement of the lattice defects can cause micro-structural disorders and shatter the
translational symmetry. Under such situations, the standard selection rules (q = 0) would
be modified and the correlations among phonon modes become restricted. It means that
there is the contribution of q 6= 0 phonons to RS processes. This results in the redshift
and reduced intensity of the vibrations as observed above. Notably, besides four assigned
modes, the RS spectrum of the as-prepared ZnSe NPs (tm = 0) have two additional weak
modes (indicated as the asterisks in Figure 5) at about 186 and 289 cm−1. The first one
(186 cm−1) is assigned to the LA mode [23] or the plasmon-LO-phonon-coupled mode [28],
which becomes invisible as tm ≥ 10 min. Meanwhile, the other could be associated with
the defect-related mode [29].
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All the above results demonstrated that NP samples have the single phase and high
crystal quality. The milling would reduce the particle size d and create more bulk de-
fects [10]. Under an excitation wavelength of λexc = 355 nm, we observed their PL spectra
having two emission bands labeled as E1 and E2, as shown in Figure 6a and its inset. The
first emission E1 is blue at 462 nm, which is associated to the near-band-edge emission
due to the recombination of free excitons [30]. It is evident that the intensity of the E1
peak rapidly decreases after 10 min of grinding and gradually drops with the milling time
increasing, as shown in Figure 6a. In contrast to E1 peak behavior, the intensity of the
E2 peak is enhanced with a longer grinding time. Combined with the structural and RS
analyses, we assume that such changes in the peak position and intensity of E1 and E2 are
associated with lattice defects and disorders induced by lowering the particle size d due to
the tm increase. During the high-energy milling, many defects could be induced, such as
zinc vacancies (VZn), selenide vacancies (VSe), zinc interstitials (Zni), selenide interstitials
(Sei), and so forth. As E2 is found to be a broad emission, it is possible for all of these
defects to appear in the samples. However, with the features of the PL spectra, we can
assess which defect types are dominant in the samples.
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For tm = 0–30 nm, only one peak in E2 region is observed at about 520–550 nm
(2.38–2.25 eV), which is ascribed to VSe [31], VZn, and/or Zni defects [10,32]. The E2 band
can be deconvoluted into two components for samples tm = 40 and 60 min, as shown in the
inset of Figure 6a. The first peak (520–550 nm) in the E2 band is assigned relating to the
vacancies and interstitials, while the feature at ~600 nm refers to lattice defects [10]. Thus,
a strong increase in the E2 intensity as tm = 40–60 min, as shown in the inset of Figure 6a,
proves that the concentrations of VSe, VZn, and/or Zni defects in ZnSe NPs increase. They
can play as trapped electron centers and/or radiative recombination centers (with energy
states within the band gap) and cause a quick decrease in intensity of E1. It is interesting
that the dominant emission from the bulk defects was also observed in the similar ZnO
NPs prepared by the same method (high energy ball milling), as reported by Aggelopoulos
et al. [33]. Figure 6b shows the variation of the integrated PL intensity ratio of E2 to E1
(IE2/IE1), which exponentially increases as a function of tm. We note that the error value of
tm = 60 is much larger than others for two reasons. Firstly, this sample has a signal-to-noise
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ratio lower than the remained samples, as clearly seen in Figure 6a. In addition, the error
value is proportional to the obtained value.

To assess the applicability of ZnSe NPs in the photocatalytic activity, we have examined
the photodegradation experiments of the RhB solution, which is a typical organic dye used
in the textile industry. This process was carried out with different time durations under
the UV-light condition. Figure 7a,b shows the PL spectra of two representative samples
with tm = 0 and 60 min, which were measured with different intervals, until 150 min. We
note that these two graphs are plotted on the same scale. As observed in Figure 7a, the PL
intensity of RhB over hydrothermal sample (ZnSe NPs with tm = 0) immediately reduced
for the first 15 min at the onset of reaction, followed by the subsequent decrease. At the
same time (Figure 7b), the decrease occurred more rapidly by the presence of milling
sample (ZnSe NPs with tm = 60 min). Here, the PL-intensity variation at 585 nm versus the
irradiation time was used to assess the photocatalytic degradation efficiency because it is
related to the relative concentration of the RhB solution [34].
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If labelling Ci and Ct as the RhB concentrations at the initial time (ti = −30 min) and
different illumination intervals, respectively, the efficiency will be estimated by the Ct/Ci
ratio. The Ci and Ct values were determined via the emission intensities of the 585 nm peak
of RhB solutions under the irradiation time during the photocatalytic reaction. The Ct/Ci
plots versus the irradiation time are shown in Figure 8. It can be seen that the adsorption
ability determined by the reaction took place under the dark condition for 30 min was
slightly significant (less than 20%) for all investigating materials. This step is important
to ensure that RhB solution is stable before photocatalytic process is proceeded. Under
the UV-light condition, a rapid decrease within the first 15 min (~30%), followed by the
subsequent decrease. The photocatalytic degradation performance was nearly completely
achieved (~80%) after 150 min with the milled ZnSe sample (tm = 60 min). The obtained
results partly confirmed the impact of milling on the improved photocatalytic activity
of ZnSe samples. Based on other reports [35–37] and our obtained results, degradation
mechanisms can be described in Figure 9.
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Firstly, ZnSe catalyst absorbs UV light with an energy of hν to generate electron
(e−) and hole (h+) pairs in the valence band (VB) and conduction band (CB), respectively,
according to the following equation:

ZnSe + hυ (UV light)→ ZnSe
(
h+

VB + e−CB
)

(5)

The h+
VB carriers are subsequently trapped by absorbed H2O on the ZnSe surface to

generate highly reactive hydroxyl radicals (OH*), as shown in the equations:

ZnSe
(
h+

VB
)
+ H2O→ ZnSe + H+ + OH∗ (6)

ZnSe
(
h+

VB
)
+ OH− → ZnSe + OH∗ (7)

Concurrently, O2 acts as an electron acceptor from the CB to form a superoxide anion
radical (O2*−), which combines with protons to generate HO2*, as shown in the following
equations:

ZnSe
(
e−VB

)
+ O2 → ZnSe + O∗_2 (8)

O∗_2 + H+ → HO2 (9)

The OH* radical can be also generated from the trapped electron (e−) after creating
the OOH* radical by the sequence of the following equations:

HO2 + H+ + ZnSe
(
e−VB

)
→ H2O2 + ZnSe (10)

H2O2 + ZnSe
(
e−VB

)
→ OH∗ + OH− + ZnSe (11)
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OH∗ + RhB →→ . . .→→ CO2 + H2O (12)

After the processes from Equations (5)–(12), RhB molecules will be degraded to their
intermediates and the expected products such as CO2 and H2O. The photocatalytic activity
depends on many factors, for example, the UV-irradiation time, bandgap energy, particle
size, and/or defect types of ZnSe. In our work, among the studied samples, ZnSe NPs with
tm = 60 min were the most active photocatalyst, corresponding to ~80% RhB decomposed
after 150 min being irradiated by the UV light, which was about 10% higher than the value
of the as-prepared NPs (tm = 0). This value is comparable to that obtained for ZnO/ZnSe
hybrid nanocomposites [38], and higher than that obtained in the previous studies for
ZnSe NPs [7] and nanorod films [8]. We suggest that a high photocatalytic performance of
our ZnSe NPs with tm = 60 min is mostly related to their large surface area. This allows
more RhB molecules adsorbed on the surface of ZnSe NPs that enhances a charge-transfer
rate, due to a higher number of active-catalytic centers. Based on the PL data, as shown
in Figure 6a, it was evident that the photocatalytic activity was dependent on both the
particle size and defects. The smallest size (the largest surface area) and a green emission at
~555 nm due to VZn defects of ZnSe NPs with tm = 60 min mainly contributed the improved
photocatalytic activity.

4. Conclusions

We investigate the structural characterization, optical properties, and photocatalytic
performance of ZnSe NPs, which were obtained by changing the milling time tm = 0–60 min.
All obtained samples have the single phase of zincblende-type and without impurities,
confirmed by XRD, TEM, EDS, and RS analyses. It should be noticed that the increasing tm
results in the redshift and broadening of the characteristic Raman modes of ZnSe, which
are related to the NP surface state, lattice defects, and micro-structural disorders. From the
PL spectra, the existence of the E1 and E2 peaks are attributed to the excitonic-near-band
edge and defects, respectively. Their intensity and peak position strongly change with
respect to tm, due to more defects induced in the ZnSe host lattice. The photocatalytic
activity of ZnSe NPs was also assessed upon the RhB-solution degradation. We found that
ZnSe NPs with tm = 60 min showing the best photocatalytic performance, which could be
related to the enhanced emission intensity at ~555 nm due to VZn defects that acted as a
co-catalyst to limit the recombination of charge carriers. Photocatalytic mechanisms were
proposed to explain the RhB degradation.
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