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Abstract: Different patterns can be created on the surface of growing crystals, among which the step
bunches and/or step meanders are two of the most studied. The Ehrlich–Schwoebel effect at the
surface steps is considered one of the “usual suspects” of such patterning. A direct step barrier is
when it is easier to attach a particle to the step from the lower terrace than from the upper terrace.
Thus, during the process of crystal growth leads to the formation of meanders, while an inverse
barrier leads to step bunching. Based on our vicinal Cellular Automaton model, but this time in
(2 + 1)D, we show that the combination of a direct and inverse step barrier and the proper selection of
the potential of the well between them leads to the formation of bunched step structures. Following
this is the formation of anti-bands. In addition, changing the height of the direct step barrier leads to
the growth of nanocolumns, nanowires, and nanopyramids or meanders, in the same system.

Keywords: crystal growth and instabilities; vicinal surfaces; surface patterning; step bunching and
meandering; cellular automata; nanowires

1. Introduction

The tremendous development in the field of nanotechnology has been made possible
by significant advances in experimental techniques. At the same time, good theoretical
surface modeling is essential to create well-defined and structured crystalline substrates
that are ready to be used in research and technological processes. Proper modeling of
the crystal growth process supported by ever-increasing computational power allows us
to understand and thus control self-organized surface patterning at the nanoscale. Step-
bunches, nanowires, islands, and mounds of different shapes are the structures looked for
as a basis for the implementation of new, technologically important concepts. Recently,
finding a solid platform for topologically protected quantum computing has been an
important driving force behind such research [1–3]. Other examples of nanoscale based new
technologies are giant magnetoresistance (GMR) [4–6], light-emitting diodes (LED) [5–9],
and memristor–based e–circuits [10,11]. In order to achieve the expected vicinal shape,
different kinds of nanoscale internal properties have to be considered. In general, epitaxial
crystal growth is governed by the proper supply of material, then diffusion over the surface,
and the process of particle incorporation into the crystal structure. Each of these three
elements can be crucial for the formation of desirable shapes at the surface; however, it
is the particle diffusion in the presence of a step-edge barrier that is known to drive the
surface of growing crystals in the direction of well-defined ordering. The asymmetry in the
shape of potential energy in the form of a step-edge barrier or so-called Ehrlich–Schwöbel
barrier was first observed by Ehrlich and Hudda for tungsten [12] and theoretically treated
by Schwöbel and Shipsey in 1966 [13]. In general, two different types of Ehrlich–Schwoebel
(ES) effects are discussed: the direct step barrier (dES) that is on top of the step, and
the inverse step barrier (iES) that is present below the step and prevents particles from
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attaching to the step from below. The major effect of the presence of an ES is the growth
in instability of stepped surfaces against any kind of perturbation [14]. Local variations
enhance themselves, which leads to a modification of the starting surface. The growth
mode becomes unstable, and macroscopic surface features appear—the typical bottom-up
route towards surface patterning.

Direct ES was shown to exist experimentally at Si surface, visible as asymmetry in the
position of formed islands [15,16]. Experimental investigation of surface adatom kinetic in
Refs. [17–19] has shown the existence of dES at steps on clean GaN surfaces, whereas an
iES is seen for Ga-passivated steps. In this first case, islands are observed to accumulate at
descending steps, while on surfaces with 2 ML excess Ga, the islands are located close to
ascending steps. The presence of ES on an oxide surface was studied in [20].

Along with various experimental methods, many computational models have been
developed since the ES effect was first discovered [12]. Das Sarma et al. [21] completely
model the formation of epitaxial mounds, showing that mounded morphologies in non-
equilibrium surface growth may arise and stating that the ES effect is one out of a number
of distinct physical mechanisms acting as an energy barrier to diffusion. A kinetic Monte
Carlo modeling study by Leal et al. [22] was performed to test this idea, and it showed that
mounded morphologies can be obtained even with a small barrier while self-affine growth
is obtained in the absence of an explicit step barrier. The step height-dependent ES and
step-edge crossing mechanisms of the organic molecule on a ZnO surface were studied [23],
employing atomistic MD simulations and mean first passage time theory. Additionally,
Xiang and Huang [24] performed the density functional theory-based ab initio method to
obtain ES values for various step heights on different Cu terminations. These results show
an energy difference in the barrier height of nearly four times between a single and double
step-down diffusion process. In Ref. [25], the results of ab initio calculations show that
the uniquely decorated step-edges have much lowered ES barriers than that of the clean
edges. Thus the two-dimensional growth on Cu(111) surface is promoted significantly.
There is also a discussion on how one can model iES in MC simulations. In [26], it is noted
that a similar upper-terrace dominated step asymmetry can also arise from the presence of
a positive incorporation barrier—the additional energy barrier which impedes adatoms
diffusing towards an ascending step. It was found that a positive incorporation barrier
can, in general, result in step bunching, whereas a negative iES barrier usually does not.
In addition, the MC study of the GaN system that systematically scans the ES where
performed, and phase diagrams for surface ordering as a function of barrier type and
height were plotted [27,28]. It is clear that the ES effect is a common feature in the energy
surface landscape. The evidence for its existence is found experimentally [15–20] or by ab
initio calculations [23–25]. Moreover, it was shown that the type of ES can be controlled by
appropriate step passivation.

The experimental techniques have already undergone enormous development and
thus are able to show the surface patterns down to atoms. However, the theoretical
approaches with a potential of an analytic and quantitative study of the process of crystal
growth remain largely (1 + 1) D. Of course, 2D Monte Carlo simulations, Molecular
Dynamics, or ab initio calculations operate in (2 + 1)D space; however, they have so far
only illustrative and qualitative character. What we propose here is a model that extends
into an additional dimension and there unleashes unprecedented possibilities. The model
is based on the previously proposed (1 + 1)D atomistic scale model of a dynamic vicinal
surface (denoted by vicCA) [29–33]. The vicCA model is a novel combination of Cellular
Automaton and Monte Carlo steps. Realized together, the system time evolution allows for
the quantitative study of the scaling behavior of the bunching phenomenon in long runs
with large systems. The fine-tuning of step transparency bound to the adatom diffusion
and step kinetics was realized and studied by means of this model [30,31]. We also studied
the simplest possibility to include step-step interactions in the form of step-step exclusion
as a part of the vicCA model [33]. In the present work, we generalize our model to two
dimensions (2 + 1 actually) and, importantly, add the possibility of nucleation of particles
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at the top of the layer. As a consequence, several new surface pattern formations were
observed. We show how the presence of dES, iES, and the new level of energy potential
between them in the system affects the ordering of the surface. We also study how to
control changes in the sequence from one face to the other by setting the appropriate ratio
between one barrier height and the other.

2. Model

In this work, our vicinal Cellular Automaton model (vicCA), introduced and studied
before in various (1 + 1)D contexts [29–33], is now suited in (2 + 1)D by using several
simple rules. In its present version, it is still easy to manipulate and run a conceptual model
that materializes important concepts, i.e., various diffusional and kinetic asymmetries that
control the surface patterning. More practically, our vicCA model consists of two essentially
different modules: the Cellular Automaton (CA) one responsible for the evolution of the
vicinal crystal surface realizing the growth events at once according to pre-defined rule(s),
and the Monte Carlo (MC) one representing the diffusion of the adatoms and realized in
a serial mode, adatom by adatom chosen in random. One diffusional step is completed
when each adatom is visited once (on average). In the MC unit of one simulation time
step nDS diffusional steps are realized. One CA unit followed by one MC unit and the
completion of the surface particles to their initial concentration c0 represents one-time step
of a simulation. This design allows for the study of large systems in long simulations.

In the present work, we expand Cellular Automata rules in such a way that two-
dimensional surfaces can be studied, and three-dimensional separate structures as nanowires
can be built by allowing particles to nucleate on top of the crystal surface.

The model consists of two parts—crystal surface with the height of the crystal ex-
pressed in the layer number is described at each point of the (2 + 1)D system, and adatom
layer coding with 1 a particle and with 0 an empty surface site. The surface usually consists
of steps descending from the left to the right and initially separated by terraces of length l0.
Periodic boundary conditions are imposed in the direction along the steps, while helical
periodic boundary conditions preserving step differences assumed in the direction across
steps are applied. The simulation procedure involves the MC part during which particles
in the adatom layer diffuse along the surface and the realization of CA rules when particles
can be built into the crystal structure. The time step of the vicCA procedure is completed
by compensation of adatom concentration to its initial value c0, and then the next time
step starts.

The CA rules are contained in a table of 2 × 81 elements. These rules determine
when an adatom builds into the crystal. All rules we use in our model are listed in the
Appendix A. There are three different situations when a particle becomes part of the crystal.
The usual places where it happens are the kinks on the steps. The particle attaches to the
crystal at the step when it is at a kink—this means that it attaches to the step at the corner.
The second situation is when a particle adjacent to a straight step and at the same time to
another adatom becomes a crystal site. The above two rules together decide about the step
stiffness. This means that particles are easily built in the crystal at kinks, while it is more
difficult at the straight part of the step. The step stiffness can be regulated, causing the
second event to be more or less probable. The more difficult it is, the stiffer the steps. The
other way of regulation of step stiffness is by the introduction of the kink-kink repulsion,
similar to step-step exclusion used in the (1 + 1)D model [33]. This method can be applied
in further model studies. However, each way in which step stiffness can be modified is
indirect. According to the assumed rules, a third situation exists in which the adatom
turns into part of the crystal layer, such as when the adatom becomes a nucleus for a new
layer regardless of the step position (see Appendix A). We assume that such a situation
occurs when at least three adatoms stick together. In (2 + 1)D, the steps can occur in any of
four possible orientations when all of them are treated in the same way. We also add one
more rule—we “correct” voids of one site automatically, which means that if a single site is
surrounded by steps from each side, it is filled irrespectively if there is an adatom there or
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not. Thus, defined once, these rules do not change during all simulations, and their results
are shown below. Note that this is a CA model, so we use a parallel update procedure—the
decision for each growth event is taken locally, visiting site by site, but postponed until
such decisions are taken for all sites and then enacted at once.

The source of the varying outputs of our simulations lies in the diffusion of adatoms.
All particles diffuse along a given energy landscape that depends on the step position.
Each particle diffuses independently, but double occupancy is forbidden. All jumps along
terraces, except those in the immediate vicinity of the step, are performed with the same
probability, which, after the equal choice of jump direction, is equal to 1. For jumps at the
step different alternatives are studied. The classical choice is the direct Ehrlich-Schwoebel
barrier (dES), located at the top of step (Figure 1a). Such a position for the barrier makes
it difficult to jump across the step (down or up). We set a probability of such a jump
PdES, which is 1 for no barrier and 0 for an infinite barrier. All other cases in between are
studied. Similarly, we set inverse Schwoebel barrier PiES, which is located at the bottom
of step (Figure 1b) and prevents particles from jumping towards step from below or back.
We combined these two cases and added one more parameter pw, namely, such one that
decides about the energy of particle that stays at the bottom of the step. The site at the
bottom of the step is at a particular position, because adatoms that occupy this site interact
with particles that build crystal steps, and their energy is changed by these interactions.
An assumption of different potential energy at this particular point causes that the model
is more realistic. Such a particle, if its energy is larger than in other positions, jumps more
easily over a left-hand or right-hand barrier (Figure 1c), while if its energy is lower, its
jump is more difficult. The parameter pw changes from 0 (which means that the particle
is blocked at its position) to the lower value of PdES

−1 or PiES
−1 Particle jumps out of the

site at the bottom of the step with a probability of pwPdES or pwPiES, and for the maximal
value of pw, one of them is equal to 1. The parameter causing the jumping over barriers
becomes asymmetric but fulfills the detailed balance condition. As we see, together with
the CA rules for incorporation at steps, it allows particles to form various surface patterns,
depending on the choice of all three parameters pw, PdES, and PiES. During the diffusion
process, all adatoms try to perform nDS diffusional jumps, but only those that point at an
unoccupied neighboring lattice site are performed.
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Figure 1. Energy landscape for diffusing particles. (a) Direct Ehrlich–Schwoebel (dES) barrier at the
top of the step, with jump probability given by PdES. (b) Inverse Ehrlich–Schwoebel (iES) barrier
below the step with jump probability given by PiES. (c) PdES, PiES and the changed depth of the
potential well below. The jump rate out of the well is described by parameter pw.
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Finally, the number of particles in the adatom cloud is randomly updated by the
addition of particles so that at the end of each time step, the adatom concentration equals
its initial value c0, thus setting equilibrium between the lattice gas and the ambience. The
above procedure describes the sequence of a single time step and is repeated many times
during each run of the simulation. Therefore, we measure the time in growth updates.

3. Pattern Formation

It is well known that the presence of dES located at the top of the step leads to
step meandering in the process of crystal growth [14,27,28,34]. In Figure 2, we show the
meandered surface obtained after 105 vicCA simulation time steps. We used the barrier
of infinite height, given the probability of jumping across the steps PdES = 0. Each of the
meandered steps are clearly seen in this plot. Together they form noticeable “fingers”
in the direction vertical to the steps. Such fingers are quite often observed at the top of
grown crystals.
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Another common situation is step bunch formation, and this can be attributed to
the presence of iES (Refs. [14,30,31,35] and the references therein). We have applied such
a barrier in our system, and the resulting bunches are shown in Figure 3. Again, we
have used the infinite barrier, PiES = 0, and we show the system formed after 105 vicCA
simulation time steps. Three bunches parallel to the initial step direction are well seen
in the figure. It can be noted that due to the introduced possibility of particle nucleation,
islands appear at wider terraces. We observed that at given conditions, islands are attached
to the moving steps and do not initiate further 3D growth. The height of bunches increases
with the longer time of the simulation.
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A third classical example that can be studied through the vicCA model is the growth of
nanowire at the surface. The typical mode for nanowire formation is growing them under
a cap, i.e., golden spot [1–3]. The role of such a spot is in changing energy potential under
the cap, which means that sites under gold act like a local sink. We modeled such a system
by assuming an asymmetric barrier at the top of the step. This barrier allows particles to
jump up with probability 1 and to jump down from the top of the wire with probability
PdES_asm = 0.1. In the example illustrated in Figure 4, resulting surface patterns with well-
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formed nanowires can be clearly seen. The potential landscape, in this case, is presented at
the right side of the plot. Because of the asymmetry of dES, which is not compensated by
the asymmetry of iES like in Figure 1c, this case leads to aggregation of particles on the
top of islands. In this respect, this case is different from all other systems presented in the
current work. We can see that such conditions result in creation of long, thin nanowires.
The positions of nanowires are random because we do not initiate nanowire growth at
given places on the surface. In addition, the energy potential in Figure 4 works only when
nanowire is formed at the surface.
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The three patterns shown above are examples of simple orderings that appear as a
result of given shapes of the energy landscapes. Simple assumptions about the energy
arrangement result in a well-defined surface pattern: dES causes meanders, iES causes
bunches, and the existence of a lower potential on the top of the island leads to nanowire
formation. Below we present the various surface patterns that are a consequence of the
fact that adatom diffusion occurs at the potential linking the above cases. It turns out that
we are able to reproduce several different patterns on the surface of a growing crystal.
This is possible by changing the parameters of the step barriers dES, iES, and the energy
level assigned to the position at the bottom of the step given by the probability pw. These
patterns can be understood as a combination of the above-mentioned orderings or as a
completely new system on the surface driven by a step potential.

In Figure 5, we show four different three-dimensional surface formations that are
found when the relative height of the barriers at steps is changed. Figure 5a shows bunches
that are accompanied by antibunches. The crystal surface is the highest at the middle of
the terrace, and it builds a bunch to the right, while to the left, a new bunch in the opposite
direction is created. In the center, we see square or rectangular islands following the lattice
symmetry. The shapes of the islands are caused by the cubic lattice we study here and CA
rules of the attachment of particles to the crystal phase. These rules favor kink positions at
the step, thus allowing the step to straighten up. Such a formation is found with parameters
PiES = 0.2, PdES = 0.6. When decreasing PdES = 0.4, which means that the height of direct
Schwoebel barrier dES increases and more particles are trapped at the top of the step, we
get a very interesting new pattern, referred to as nanopillars or nanocolumns (Figure 5b). It
consists of cubic formations, much wider than the initial inter-step distance l0. They have
smooth, straight-up walls, and they grow very tall when the simulation continues. Finally,
the gaps between these formations become narrow and very deep.
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When PdES becomes smaller and is of the order of PiES, formations at the surface are
closer to nanowires, as can be seen in Figure 5c, where the pattern obtained for PdES = 0.2
is shown. If these nanowires are compared to Figure 4, it can be seen that walls here are
not so smooth, and nanowire diameter decreases with its height. Note, however, that these
nanowires were created on setting the potential given in Figure 1c, not the one shown in
the inset of Figure 4. Particles are not trapped at the top of the wire, as they are in the
case of Figure 4. Nevertheless, without trapping, it was possible to build a structure with
nanowires; this means no droplet to initiate and control nanowire growth is needed here.
It should also be stressed here that we used low PdES, close to PiES, but not 0. It appears
that when PdES is lowered to 0, we obtain another type of structure. In this case, the whole
surface is covered by pyramids with similar shapes and sizes, as shown in Figure 5d. It is a
very characteristic 3D formation, quite often generated at the surface of growing crystals.
Such shapes change to classical meandered patterns shown in Figure 2 when the c0 is
lower, and the particles attach to steps before they stick together and nucleate. In addition,
this means that meanders are formed in the case of very slow growth, while 3D growth
in the form of pyramids will be present for a faster crystal growth process. It is worth
noting that all the above-mentioned orderings reflect the underlying symmetry of the
lattice. Therefore, the islands have square or rectangular shapes, and the formations shown
in Figure 5 are also squares. A hexagonal lattice as the base would convert these shapes to
triangles or hexagons.

In order to examine the possible surface structures more systematically, we have
scanned the system behavior as a function of PiES and PdES for one value of c0 = 0.02. PdES
and PiES were changed by 0.2, and as a result, in Figure 6, we can see a map of possible
orderings in this case. Let us note that a large part of this plot is covered by a regular
structure, which means that steps move evenly, with small fluctuations, forming perfect
crystal structures. Apart from the regular structure, we have all patterns mentioned above,
except meanders that would replace pyramids in this diagram for lower c0, which refers to
the lower particle flux, determining the crystal growth rate. The point (0,0) corresponding
to infinite direct and inverse barriers is very specific. It concerns the situation where the
particle cannot diffuse to the step, neither from the bottom nor from the top. The only
possibility is to land exactly at the step, and only then the particle can attach to it. Such
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events happen but are very rare; hence, we see very slow growth of rather straight steps
for these parameters.
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4. Conclusions

We have demonstrated the main feasibility of using Cellular Automata to build rather
realistic models of crystal growth and the instabilities that lead to pattern formation.
Moreover, we have demonstrated the power of such a model for (“in silico”) bottom-up
synthesis of various nanostructures. The combination of dES, iES, and one additional
nucleation rule for island formation made it possible to control and change the pattern
formation from bunches, antibunches, nanocolumns, nanowires, and finally meanders
or pyramids. There is also a wide range of parameters that lead to stable crystal growth
through even step motion. The model is simple, and large systems in long runs can be
simulated, which allows for systematic, quantitative studies on the selected effect. With
further refinement, this model could be used to build a completely new platform for
studying nanoscale phenomena.
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Appendix A. Table of Cellular Automaton Rules

The realization of CA step of the vicCA model is based on 2 × 81 CA rules. We
enumerate them in a table below. The rule is a function of five discrete parameters. The
value of this function is 0 or 1. Value 0 means that no action is performed, and value
1 means that the adatom at the given site is incorporated in a crystal phase. The first
parameter of the function corresponds to an adatom, and it is equal to 1 when an adatom is
present at a given site and 0 if the site is empty. Note that this parameter has two different
values, which duplicates sets of possible CA rules. When it is equal to 0, there is only one
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situation, the filling voids case, in which the rule gives the value 1. All other situations
have an outcome zero. The next four parameters correspond to the states of neighboring
sites in a sequence right, down, left, and up. Each of the neighbors can be in one of the
three states (0,1,2): state 2, which means that up step is present there (or we have a crystal
atom in this cell); state 1, which means that we have an adatom there; and state 0, which
means none of these cases.

Crystal seed
Rule(1,1,1,1,0) = 1
Rule(1,1,0,1,1) = 1
Rule(1,1,1,1,1) = 1

Adsorption at step
Rule(1,0,0,1,2) = 1
Rule(1,0,0,2,1) = 1
Rule(1,0,1,2,0) = 1
Rule(1,1,2,0,0) = 1
Rule(1,2,1,0,0) = 1
Rule(1,2,0,0,1) = 1
Rule(1,0,1,1,2) = 1
Rule(1,0,1,2,1) = 1
Rule(1,0,2,1,1) = 1
Rule(1,1,0,1,2) = 1
Rule(1,1,0,2,1) = 1
Rule(1,1,1,0,2) = 1
Rule(1,1,1,2,0) = 1
Rule(1,1,2,0,1) = 1
Rule(1,1,2,1,0) = 1
Rule(1,2,0,1,1) = 1
Rule(1,2,1,0,1) = 1
Rule(1,2,1,1,0) = 1
Rule(1,1,1,1,2) = 1
Rule(1,1,1,2,1) = 1
Rule(1,1,2,1,1) = 1
Rule(1,2,1,1,1) = 1
Rule(1,0,2,1,0) = 1
Rule(1,1,0,0,2) = 1

Adsorption at kink
Rule(1,0,0,2,2) = 1
Rule(1,0,2,2,0) = 1
Rule(1,2,0,0,2) = 1
Rule(1,2,2,0,0) = 1
Rule(1,0,1,2,2) = 1
Rule(1,0,2,1,2) = 1
Rule(1,0,2,2,1) = 1
Rule(1,1,0,2,2) = 1
Rule(1,1,2,0,2) = 1
Rule(1,1,2,2,0) = 1
Rule(1,2,0,1,2) = 1
Rule(1,2,0,2,1) = 1
Rule(1,2,1,0,2) = 1
Rule(1,2,1,2,0) = 1
Rule(1,2,2,0,1) = 1
Rule(1,2,2,1,0) = 1
Rule(1,0,2,2,2) = 1
Rule(1,2,0,2,2) = 1
Rule(1,2,2,0,2) = 1
Rule(1,2,2,2,0) = 1
Rule(1,1,1,2,2) = 1
Rule(1,1,2,1,2) = 1
Rule(1,1,2,2,1) = 1
Rule(1,2,1,1,2) = 1
Rule(1,2,1,2,1) = 1
Rule(1,2,2,1,1) = 1
Rule(1,1,2,2,2) = 1
Rule(1,2,1,2,2) = 1
Rule(1,2,2,1,2) = 1
Rule(1,2,2,2,1) = 1
Rule(1,2,2,2,2) = 1

Filling voids
Rule(0,1,1,1,1) = 1

No Adsorption
Rule(1,0,0,0,0) = 0
Rule(1,0,0,0,1) = 0
Rule(1,0,0,1,0) = 0
Rule(1,0,1,0,0) = 0
Rule(1,1,0,0,0) = 0
Rule(1,0,0,1,1) = 0
Rule(1,0,1,0,1) = 0
Rule(1,0,1,1,0) = 0
Rule(1,0,0,1,1) = 0
Rule(1,1,0,1,0) = 0
Rule(1,1,0,0,1) = 0
Rule(1,1,1,0,1) = 0
Rule(1,0,1,1,1) = 0
Rule(1,0,0,0,2) = 0
Rule(1,0,0,2,0) = 0
Rule(1,0,2,0,0) = 0
Rule(1,2,0,0,0) = 0
Rule(1,0,1,0,2) = 0
Rule(1,0,2,0,1) = 0
Rule(1,1,0,2,0) = 0
Rule(1,2,0,1,0) = 0
Rule(1,0,2,0,2) = 0
Rule(1,2,0,2,0) = 0
Rule(0,*,*,*,*) = 0
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