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Abstract: We present analytical calculations of the energies and eigenfunctions of all normal modes of
excitation of charge +1 two-dimensional splay (bend) disclinations confined to an annular region with
inner radius R1 and outer radius R2 and with perpendicular (tangential) boundary conditions on the
region’s inner and outer perimeters. Defects such as these appear in islands in smectic-C films and can
in principle be created in bolaamphiphilic nematic films. Under perpendicular boundary conditions
on the two surfaces and when the ratio β = Ks/Kb of the splay to bend 2D Frank constants is less than
one, the splay configuration is stable for all values µ = R2/R1. When β > 1, the splay configuration
is stable only for µ less than a critical value µc(β), becoming unstable to a “spiral” mixed splay-bend
configuration for µ > µc. The same behavior occurs in trapped bend defects with tangential boundary
conditions but with Ks and Kb interchanged. By calculating free energies, we verify that the transition
from a splay or bend configuration to a mixed one is continuous. We discuss the differences between
our calculations that yield expressions for experimentally observable excitation energies and other
calculations that produce the same critical points and spiral configurations as ours but not the same
excitation energies. We also calculate measurable correlation functions and associated decay times of
angular fluctuations.

Keywords: liquid crystals; thin films; disclination defects

1. Introduction

We are honored to submit this paper in celebration of Noel Clark’s 80th birthday.
Noel is a giant of our community. He has made major contributions to almost every as-
pect of liquid-crystal (LC) science with contributions to soft-matter in general as a bonus:
fundamental and applied, light and X-ray scattering, displays and other applications
spawning at least three startup companies, ferroelectric LCs (most recently a true three-
dimensional (3D) fluid version [1]), ferronematics, banana LC’s, defects in LCs, LCs in
random environments, lyotropic lamellar phases, DNA LC’s along with speculations about
the origin of life, de Vries smectics, and the list goes on. This paper is a small contri-
bution to one of the fields, freely-suspended or free-standing LC films [2,3], in which
Noel has been a leading figure from the beginning—as coauthor of the first paper on
the subject [4] and in over 25 papers (some of which are cited here [5–22]) that followed.
These few-layer-thick smectic-C (Sm-C) films [4] have provided, and the more recently
discovered bolaamphiphilic nematic films [1,23] have the potential to provide, fertile
ground for studying topological defects in liquid crystals [24–28] (LCs). Viewed under a
microscope [4–9,11], these films give striking visual proof of the existence of point disclina-
tions and their varied properties.

It is well established that thermal fluctuations lead to a spontaneous motion of these
point disclinations akin to the Brownian motion of a particle [11,29,30]. We have found
only two publications [31,32] that directly calculate fluctuation energies, not of simple splay
or bend defects as shown in Figure 1, but of more complex spiral structures of Figure 2b
displaying both splay and bend. These publications use a different parametrization than
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ours that produces excitation energies that are positive throughout stable regions and that
correctly identify the phase boundaries in Figure 3. These energies, however, unlike those
we calculate, do not correspond to those that would be measured in an experiment as will
be discussed in more detail in Section 6.

(a) (b)

Figure 1. Sketches of in-plane c-director fields in annular traps with concentric outer and inner
bounding circles with (a) perpendicular and (b) tangential boundary conditions.

Figure 2. Computer generated images of (a) splay or bend defects and (b) spiral defects under crossed
polarizers. The twisting or spiral structure is produced by a combination of splay and bend. The
spiral structure was calculated with β = 1.5 and µ = 800 corresponding to the orange curve in
Figure 9.
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Figure 3. Phase diagrams for an annulus with (a) tangential and (b) perpendicular BCs. The dividing
line between the two defect types is µS

c (β) in (a) and µB
c (β) in (b). In (a), the bend (spiral) defect is

stable, and in (b), the splay (spiral) defect is stable in the shaded (unshaded) areas.

In smectic-C films, the nematic director n tilts relative to the local normal to smectic
layers creating a component parallel to these layers that, when normalized to unit mag-
nitude defines the c-director, c(r) that is a function of its spatial position r. Both splay
and bend defects Figure 1, and even more complex twisting structures [16,32–34], are
common in circular islands with extra smectic layers in freely-suspended SmC films. Bend
(splay) defects in c generally occur in systems in which the 2D Frank constant, Kb, for bend
(units of energy) is less (greater) than the 2D splay constant Ks. The former condition is
more common in nonpolar SmC phases and the latter in ferroelectric SmC∗ phases [33–35],
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in which Kb > Ks is a result of renormalization of Kb through couplings to the electric
polarization [5,36]. Charge S = +1 defects also arise in films of anticlinic smectic phases
(Sm-CA) [37] and should, in principle, arise in bolaamphiphilic nematic films [23]. Core re-
gions where Sm-C or nematic order vanishes can act as the inner circle of an annular island
as can nematic or cholesteric (for chiral Sm-C∗) droplets [34] or even smoke particles [32].
To simplify our calculations, we will assume, following common practice [3], that the core
region is a circle of radius R1 the same boundary condition (BC) as the outer circle with
radius R2, i.e., perpendicular for splay and tangential for bend defects. In addition, we
assume that the BCs do not change when c(r) is rotated through an angle of π about an
inplane axis through r. We also fix the inner circle to be at the center of the outer circle, thus
ignoring diffusive motion of the inner core.

2. Results

We investigate the fluctuations of the inplane c-director field in an annular region,
which we will refer to as a trap, of inner radius R1 and outer radius R2 holding a splay,
bend, or mixed splay bend charge S = +1 disclination defect at its center. The properties
of these defects, particularly their stability, depend on two the ratios:

µ =
R2

R1
and β =

Ks

Kb
. (1)

We begin with systems with perpendicular BCs. If β < 1, the energy (ignoring BCs),
πKs ln µ, of a pure splay defect is less than that, πKb ln µ, of a pure bend defect. With these
BCs, the splay defect is the stable, lowest-energy configuration for an annulus of any µ. On
the other hand, if β > 1, the pure bend defect (again ignoring BCs) has lower energy than
the pure splay defect. In this case, the enforced perpendicular alignment at boundaries
stabilizes the splay state at small β− 1 because of the high energy cost of rotation from the
pure splay state in the confined geometry defined by µ. As µ increases, however, there is
more room for the rotation to occur, and at a critical value µS

c (β), the splay defect becomes
unstable to the formation of a state, which we will refer to as the spiral state, with mixed
splay and bend, as shown in Figure 3a. Alternatively, at fixed µ, the splay state is stable with
respect to the spiral state for all β less than a critical value βS

c (µ). A similar scenario occurs
when the BCs are tangential. The pure bend defect is stable with respect to the spiral state
for all β greater than a critical value βS

c (µ) as shown in Figure 3b. Experiments reported
in Ref. [35] display exactly the scenario just discussed: Islands with Kb < Ks subjected to
tangential boundary conditions adopt the bend defect geometry for all µ. Small area islands
of polar SmC∗ with Kb > Ks and tangential boundary conditions adopt the pure bend
configuration even though the bulk energy prefers the pure splay configuration. Upon
increasing the area, the system undergoes a transition, when µ exceeds a critical value µc,
to a spiral state. The value of µc decreases with decreasing Kb/Ks as we find. Approximate
numerical calculations in Ref. [35] of the c-director fit the experiments very well. It should
be noted that these calculations, like ours, model the system as an annulus with tangential
boundary conditions at both interior boundaries. In what follows, we will often not display
the superscripts S and B indicating splay and bend.

The energy of the lowest-energy normal mode (the critical mode) determines the
stability of the splay state: if it is positive, the state is at least metastable; if it is negative, the
state is unstable. The energy densities of normal modes are all expressed as ε = Kb(κ/R2)

2

where κ is a unitless “wavenumber”. When β > 1 and µ < µc, κ is real, and both κ and ε
are positive, approaching zero at µc. When µ > µc, κ = iκ′ is imaginary, ε is negative, and
both κ′ and |ε| rise from zero at µc. Figure 4 plots κ for the three lowest-energy modes as
a function of µ. These results are repeated, but with Ks and Kb interchanged, for trapped
bend defects subjected to tangential BCs. Figure 3 shows the phase diagrams for the traps
with tangential and with perpendicular BCs.
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Figure 4. Wavenumbers κmn as a function of µ for our sample configurations with imaginary ν0 and
µc ≈ 535. The dots are obtained by numerical calculation of the zeros κ01 (black), κ02 (gray) and κ11

(blue) of the full function Zνm . The black line stems from our approximate analytical solution for κ01

as given in Equation (20). Note the excellent agreement between the black dots and the black line for
µ close to µc. Also note the steep rise of the κ01 near µc.

The two-dimensional (2D) scenario presented here follows closely the 3D
scenario [38] for a radial hedgehog defect trapped in a spherical nematic emulsion droplet
with a small spherical droplet at its center. The agreement between theory and experiment
in the 3D case [39] is extremely good. In particular, because fluctuations diminish and
become difficult to measure as the energies of the lowest-energy excitations increase, fluc-
tuations in droplets with µ near µc are large and visible, whereas fluctuations in droplets
with µ distant from µc are small and barely visible. The result is that only droplets with µ
less than but close to µc exhibit observable fluctuations. Our prediction is that the same
phenomenon should occur under appropriate conditions in 2D.

This is a theoretical paper that provides a full analysis of fluctuations in trapped
defects. In Section 3, we obtain analytic expressions for the complete eigenvalue spectrum
and associated wavefunctions (Figure 5) of both splay and bend defects with perpendicular
or tangential BCs at inner and outer circular boundaries. The results are a little unusual.
The wavefunctions are Bessel functions of irrational or rational order, and the particular
one associated with the critical soft mode is of imaginary order with either irrational or
rational magnitude. In Section 4, we calculate the director correlation functions that might
be measured in optical experiments. In Section 5, using an alternative parametrization in
terms of x = ln r/R1 used in previous publications [31,32,34], we calculate the function
f (r) in the splay-defect system with for µ > µc and show that there is a transition to
lower-energy spiral state in systems with the soft mode. In Section 6, we campare results
obtained by our procedure with those of the alternative parametrization that correctly
calculates stable or metastable configurations, but provides normal-mode energies that are
not part of the experimental fluctuation spectra. In the final Discussion section (Section 7),
we review our results and speculate about future directions.
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Figure 5. The radial eigenfunctions umn(r), where m and n are, respectively, the standard integer
azimuthal and radial quantum numbers for polar coordinates, for a system with the imaginary value
of ν0 used in Figure 6c. All plots are for n = 1, the lowest permitted value for n. On the ordinate, we
included a factor

√
V, where V = πR2

2 is the total area enclosed by the outer circle of the trap so that
the plotted eigenfunctions are dimensionless.
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Figure 6. The functions Z0 ≡ Zν0 as a function of κ for µ < µc, µ = µc and µ > µc: (a) Z0 for
β = 0.8 < 1, (b) Z1 for β = 1.25 > 1; (c) Z0 for β = 1.25, and (d) Z0(κ) as a function of κ′ = κ/i for
µ > µc. The rapid oscillations are a consequence of the logarithmic scale. Note that there are no
zeros at small κ for (a,b) indicating large values of ε both for cases with β < 1 and for modes with
m = 1 (and greater). In addition, the positions of the zeros in (a,b) are fairly insensitive to the value
of µ and to the critical point. In (c), there is a zero in the top curve (µ < µc) that vanishes at µc and
ceases to exist for µ > µc. In (d), there is a zero in bottom curve (µ > µc) that vanishes at µc and then
disappears when µ < µc. Z0 has an infinity of larger-value zeros in (c), whereas in (d), it has only one
zero when µ ≥ µc.
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3. Theoretical Preliminaries

In 2D, there is no twist deformation, and the Frank elastic energy of a SmC film is

F =
1
2

∫
d2r
{

Ks(∇ · c)2 + Kb(∇× c)2
}

. (2)

Here, Ks and Kb are the effective 2D Frank elastic constants for splay and bend,
respectively. They depend on the original 3D Frank constants of the LC, the film thickness,
and the tilt angle θ and have the units of energy.

3.1. Splay and Bend Disclinations

Because of the rotational symmetry of the boundaries of our droplets, it is useful to
employ 2D polar coordinates where, as usual, r is the radius, φ the polar angle, and êr and
êφ are the corresponding basis vectors. Perpendicular BCs favor a +1 splay defect in which
the c-director adopts the homogeneous, radial configuration c = êr: tangential BCs favor a
+1 bend defect with a circular configuration with c = êφ. Each of the two configurations
and deviations from them can be parameterized by a scalar angle field ( f or g):

c = cos f êr + sin f êφ ≈
(

1− 1
2

f 2
)

êr + f êφ splay, (3a)

c = sin g êr + cos g êφ ≈ gêr +

(
1− 1

2
g2
)

êφ bend, (3b)

where f and g are functions depending on~r = (r, φ).
The Frank energy for the splay defect expressed in terms of f is then [32]

F =
1
2

K
∫ d2r

r2 {[1− σ cos(2 f )] + [1 + σ cos(2 f )](r∂r f )2 + 2σ sin(2 f )r∂r f

+ (1− σ cos 2 f )(∂φ f )2 + 2(1− σ) sin 2 f r ∂r f ∂φ f } , (4)

where K = (Ks + Kb)/2 and σ = (Kb − Ks)/(2K). The energy for a bend defect is identical
to the above with Ks and Kb interchanged, or equivalently replacing σ by −σ. After
expansion to harmonic order in f and some algebra, we can recast the Frank energy
(relative to the equilibrium energy πKs ln(R2/R1)) as

Fh =
1
2

∫ R2

R1

drr
∫ 2π

0
dφ

{
(Kb − Ks)

1
r2 f 2 + Ks

1
r2

(
∂φ f

)2
+ Kb(∂r f )2

}
. (5)

3.2. Eigenvalue Problem

Next, we determine the eigenvalues and eigenfunctions of the Frank elastic energy in
the harmonic limit as stated in Equation (5). Then, we expand the latter in terms of these
eigenvalues and eigenfunctions which will allow us to calculate measurable quantities such
as director correlation functions.

The eigensystem of F is determined by the characteristic equation

δFh
δ f (r)

=
1
r2

{
(Kb − Ks)− Ks∂2

φ − Kb(r2∂2
r + r∂r)

}
f = ε f , (6)

where ε is an eigenenergy density and where we used

δ f (r)
δ f (r′)

= δ(r− r′) =
1
r

δ(r− r′)δ(φ− φ′) . (7)

with r = rêr(φ). Note the factors of r−2 on the first two terms but not on the ε term. This is
a reflection of the 2D nature of the problem. We will return to this observation in Section 6.
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To solve Equation (6), we note that the dependence of the polar angle is contained entirely
in one term of the sum. This motivates a product ansatz of the form

f (r, φ) = Au(r)Φ(φ) , (8)

where for normalization purposes we choose u(r) to have units of inverse length, A to
have units of length, and Φ(φ) to be unitless. Because f must be 2π-periodic in φ, we
immediately deduce that

Φ(φ) = eimφ , (9)

with integer m. After substitution of Equations (8) and (9) into Equation (6), the characteris-
tic equation (after multiplying by r2) becomes[

r2∂2
r + r∂r + k2r2 − ν2

m

]
um(r) = 0 , (10)

where

k =

√
ε

Kb
(11)

and

νm =

√
1 + (m2 − 1)

Ks

Kb
. (12)

The νm parameters will take on an important role shortly as the indices of Bessel
functions that are the main building blocks of our solution. They are in general irrational
numbers that are all real for m ≥ 1 so long as the elastic constants are positive, which we
assume to be true. ν0 is real when Ks < Kb, i.e., when the pure splay defect is favored over
the pure bend defect, and it is imaginary when Kb < Ks and the bend defect is favored.
Whether ν0 is real or imaginary has important qualitative consequences that we will discuss
shortly. Equation (10) is the well-known Bessel differential equation whose solutions are
linear combinations of Bessel functions of the first and second kind, Jν(kr) and Yν(kr),
respectively. We seek solutions that vanish at r = R1 and r = R2. The first condition is
satisfied for any ν, k, and r by the linear combination,

Zν(kr) = Yν(kr)Jν(kR1)− Jν(kr)Yν(kR1) . (13)

The second condition is met when κmn = kmnR2 is the nth zero of Zνm(kR2):

Zνm(κ) = Yνm(κ)Jνm(κ/µ)− Jνm(κ/µ)Yνm(κ/µ) = 0 , (14)

where
κ = kR2 , (15)

and where n sequentially specifies the zeros with increasing values of κ.
The solutions κmn determine the energy of the modes mn:

εmn = Kb

(
κmn

R2

)2
. (16)

When m ≥ 1, all νm are real, and both Jνm(κ) and Yνm(κ) and, consequently, Zνm(κ)
oscillates out to infinity and, therefore, Zνm(κ) has an infinite number of zeros for each
m > 1 (See Figure 6a,b). When m = 0, ν0 is real when Ks < Kb and imaginary when
Kb < Ks. In the former case, the splay configuration has lower energy than that of the bend
state in an infinite sample, and there is no instability (signaled by a vanishing mode) toward
a state with bend and splay. In the latter case, shown in Figure 6c, the splay state has higher
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energy than the pure bend state at µ→ ∞ but lower energy imposed by the splay-favoring
perpendicular BCs at sufficiently small µ. The value of Zν0(0) depends on µ: it is positive
for µ < µc, zero at µ = µc, and negative at µ > µc. When µ < µc, there is a zero in the
function that approaches zero as Zν0(κ) approaches 0 with κ. When µ > µc, the latter zero
no longer exists. Thus, it appears the we have lost a solution altogether and that the curve
of κ versus µ in Figure 4 simply stops. But, it turns out we missed a solution that occurs
when κ = iκ′, where κ′, is real as shown in Figure 6d. This solution, κ′01, exists when ν0 is
imaginary and µ > µc; it disappears at µ = µc and does not exist for µ < µc. Because κ is
imaginary for this solution, the energy ε01 is negative, indicating that the radial hedgehog
is unstable for all µ > µc, a result that should be expected because when µ becomes large,
BCs become less important and the bend defect should win out when Kb < Ks.

The value of µc and the behavior of κ near µc is easily determined by expanding Zν0(κ)
to second order in κ

Zν0(κ) =
µν0 − µ−ν0

πν0

(
1− λ2(µ)κ2 +Oκ4

)
. (17)

An expression for λ will be given in Equation (20). For the moment we are interested
in Zν0(0). As Figure 6b shows, the zero of Zν0(κ) that exists for µ < µc vanishes when
Zν0(0) reaches zero, causing, as shown in Figure 6c, κ01 and ε01 to vanish. Thus, the critical
point at which the radial defect becomes marginally unstable occurs at Zν0(0) = 0, or when

µ = µc(β) = exp
(

iπ
ν0(β)

)
or equivalently β(µ) = βc(µ) = 1 +

(
π

ln µ

)2
. (18)

Note that because µc must be real, it only exists for values of the Frank constants for
which ν0 is imaginary (We ignore the hypothetical case that ν0 could be exactly the inverse
of a positive even integer). In our sample configuration with β = 1.25 and imaginary ν0,

µc = e2π ≈ 535.492 . (19)

What happens physically when µ approaches and crosses its critical value? To shed
light on this question, it is instructive to see how the wavenumbers change near µc. For µ
just below µc, κ01 is small, and we can obtain an approximate solution for it by calculating
κ2 by setting Equation (17) truncated to quadratic order equal to zero. The result is

κ2
01(µ) = λ−2(µ) =

4µ2(1− ν2
0
)(

1− µ2ν0
)

(µ2 + 1)(1− µ2ν0) + ν0(µ2 − 1)(1 + µ2ν0)
. (20)

Figure 4 shows a plot of κ01 vs. µ, i.e., a plot of the square root of this result along with
with points calculated by the full Zν function.

Equation (20) encapsulates the behavior of κ near µ = µc for both µ < µc and µ > µc.
From Equation (18), µ2ν0

c = e2πi = 1 so that κ01(µc) is zero as required. To determine κ01(µ)
for µ near µc, we expand µ to linear order in µ − µc. The result is κ2

01(µ) ∼ −(µ − µc),
implying that when µ < µc, ε01 is positive and κ01(µ) ∼

√
µc − µ is real and positive and

that when µ > µc, ε01 is negative and κ01(µ) ≡ iκ′01 ∼ i
√

µ− µc is imaginary. The negative
value of ε01 implies an instability towards a mixed spiral state. As Figure 4 illustrates, the
zeros of Zν0 at higher values of κ (κ02, κ11, etc.) continue to exist, but their energies are
much greater than that of ε01.
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3.3. Eigenfunctions and Expansion of the Frank Energy

Now, we proceed with our calculation of the normalized eigenfunctions. The solutions
umn to Equation (10) are all linear in Zν(kr) with a normalization coefficient V−1/2

mn (with
units of inverse length) such that∫ R2

R1

drr umn(r)umn′(r) =
∫ R2

R1

drr V−1
mn Z2

νm(κmnr/R1) = δnn′ , (21)

which yields

Vmn =

(
R2

κmn

)2
γmn , (22)

where

γmn =
∫ κmn

κmn/µ
dyy Z2

νm(y) , (23)

is a dimensionless integral depending on κmn and the ratio of radii µ.
Figure 5 plots the radial eigenfunctions um1(r) for our sample configuration with

imaginary ν0. It is noteworthy that the eigenfunction with the lowest energy, u01(r), is
peaked near the defect core because its µ is close to µc. This is qualitatively different from
the other sample configurations with real νm (m > 0) which are much less localized. Note
that the curves in this figure are functions of r/R1 at fixed µ. This means that peaks in the
curve will have a definite value of R1 = R2/µ regardless of the value of R2.

We now have all of the components to express f in terms of the solutions to the
eigenvalue problem,

f (r, φ) = ∑
mn

AmnΨmn(r, φ) , (24)

with

Ψmn(r, φ) =
1√
2π

umn(r) eimφ . (25)

Note that the product eigenfunctions as a whole satisfy the orthonormality relations∫
drdφ Ψ∗mn(r, φ)Ψm′n′(r, φ) = δmm′δnn′ , (26)

and that the expansion coefficients Amn have units of the square root of an area. Finally,
using Equation (24) and the orthnormality of the wavefunctions (Equation (26)), we expand
the harmonic Frank energy in terms of the in the amplitudes Amn:

Fh =
1
2 ∑

n
A2

0nε0n + ∑
m>0,n

|Amn|2εmn . (27)

4. Correlation Functions

Our goal in this section is to provide expressions for the full time-dependent f -
correlation functions. A necessary first step is to define our dynamics. The real dynamics of
the c-director is quite complicated with interactions between fluid flow and c and compli-
cated anisotropic dissipative processes. Here, we will content ourselves with the simplest
purely-dissipative dynamical model in which

∂t f (r, φ) = −Γ
δF

δ f (r, φ)
, (28)
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where Γ, which we set equal to 10 s
Kg for illustrative purposes in what follows, is a kinetic

coefficient given by the inverse of the rotational viscosity γ1 of the mesogens. Thus, the
dynamical equation has the same functional derivative with respect to f (r) as Equation (6),
implying that the experimentally measured inverse decay times are necessarily given
by Γεmn:

∂t A0n = −Γ
∂Fh

∂A0n
= −Γ ε0n A0n ,

∂t Amn = −Γ
∂Fh

∂A∗mn
= −Γ εmn Amn . (29)

These equations of motion are readily integrated with the result

Amn(t) = Amn(0) e−Γ εmnt , (30)

for both m = 0 and m > 0. Then, using the the standard equilibrium statistical weight
exp[−Fh/(kBT)] with kB the Boltzmann constant and T the temperature, we can calculate
the static equilibrium averages,〈

A2
0n

〉
=

kBT
ε0n

, and 〈A∗mn Amn〉 =
kBT
εmn

(31)

from which we obtain

〈A∗mn(t)Amn(0)〉 = kBT Gmn(t) (32)

for the A-A correlations, where

Gmn(t) =
1

εmn
e−Γ εmnt . (33)

We can now express the f -correlation function as

C(r, , r′, φ− φ′, t) = 〈 f (r, φ, t) f (r′, φ′, 0)〉

= S0(r, r′, t) + ∑
m>0

[
Sm(r, r′, t)eim(φ−φ′) + S∗m(r, r′, t)e−im(φ−φ′)

]
, (34)

where for all m

Sm(r, r′, t) = ∑
n

kBT
2π εmn

e−Γεmnt umn(r)umn(r′) ≈
kBT

2π εm1
e−Γεm1t um1(r)um1(r′) . (35)

Recall from Equations (21) and (22) that umn(r) depends implicitly on κmn, µ, and R2.
Note that the net effect of the relaxation dynamics is to replace the inverse energies in the
static correlation function stated in Equations (32) and (35) by the time-dependent G’s.
Note also that for t → 0, our time-dependent correlation functions reduce to their static
counterparts as they should. The function C(r, φ) = C(r, r, φ, 0) is plotted in Figure 7.
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Figure 7. The correlation function C(r, φ) = C(r, r, φ, 0) defined in Equation (34). The left shows
the correlation as a function of dimensionless coordinates in the plane. The green loop indicates an
assumed probing radius of r = RProbe. The right shows a zoom-in on the correlation function along
the green loop.

5. Mixed Spiral States

In the absence of BCs, pure splay and bend states in an annular trap have respective
energies πKs ln µ and πKb ln µ so that the splay state has lower energy when Ks < Kb and
the bend state lower energy when Kb < Ks. This simple reasoning changes when there
are BCs, such as the perpendicular and tangential ones on both boundaries considered in
this manuscript, because they enforce an alignment near the boundaries causing locally
higher energy density than that of the uniform bulk configuration. Thus it is reasonable to
ask whether the uniform splay configuration in an annular trap is the lowest energy state
when β = Ks/Kb > 1, both when µ < µc and when µ > µc. The fact that the energies of
all modes, including ε01 remain positive for all µ < µc establishes that the splay state is at
least metastable and provides credible evidence that it is the true equilibrium state. The
fact that ε01 is zero at µ = µc also suggests that it is a precursor to a lower-energy mixed
spiral state for µ > µc. To address these issues, we follow Refs. [31,32,34] and seek local
extrema of the full Frank free energy of Equation (4). We first note that to find local extrema,
it is useful to change variables to x = ln(r/R1) and, for simplicity, to consider only m = 0
isotropic distortions so that f is independent of φ. The Frank energy expressed in terms of
the x-variable is then

Fx = πK
∫ ln µ

0
dx[(1 + σ cos 2 f )(∂x f )2 + 2σ sin 2 f ∂x f + (1− σ cos 2 f )] . (36)

The second term in this expression is a perfect derivative and integrates to zero. Local
extrema of Fx are then solutions to

δFx

δ f (x)
= (1 + σ cos f )

d2 f
dx2 + σ sin 2 f

(
d f
dx

)2
− σ sin 2 f = 0. (37)

Solutions to this equation, other that of the pure splay for which f = 0, with per-
pendicular BCs will necessarily contain both splay and bend. We will refer to them as
mixed states.

Our goal here is not an exhaustive analysis of the full phase diagram; rather it is to
establish whether or not there are mixed states with lower energy than that of the pure
splay state favored by BCs. To this end, we use the shooting method to find solutions to
Equation (37) for the systems with homeotropic BCs. In our systematic, but not exhaustive
calculations, we found no mixed states with lower energy than the the pure splay state
when β < 1. But when β > 1, we find lower-energy mixed states for every µ > µc we
tested. Figure 8 plots the energy difference ∆F(β, µ) = F− Fsplay in units of πKs between
the mixed and the pure splay state as a function of µ for different values of β > 1. Curves
for all β as calculated by the shooting technique are zero for µ < µc and negative for µ > µc,
establishing that the transition from the pure splay state to the mixed state is second order.
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Figure 9 plots the profile of f (r/R1) for β = 1.25 and selected values of µ > 1. It shows
that the magnitude of f increases with increasing µ. It also shows a pronounced peak in f
near the core, consistent with the observations of Ref. [34]. It is worth emphasizing again
that the perpendicular boundary conditions guarantee that right at the two boundaries the
defect is forced to have a splay configuration, but the configuration at any radius between
R1 and R2 is mixed splay and bend.

β=1.1
β=1.25
β=1.5

-0.5 0.0 0.5 1.0

-0.15

-0.10

-0.05

0.00

(μ-μc)/μc

Δ
F

Figure 8. Plots of ∆F(β, µ) calculated from Equation (37) as a function of [µ − µc(β)]/µc(β) for
different values of β. Note, µc(x) grows exponentially as β approaches 1, and the regions depicted in
this figure are relative to a large value of µ for small β− 1.

0 200 400 600 800

0.0

0.1

0.2

0.3

0.4

r/R1

f

Figure 9. Plot of f (r/R1) for mixed states with β = 1.25 and for different values for µ: µ/µc = 1.1
(red), µ/µc = 1.25 (blue), and µ/µc = 1.5 (orange). Note the peak in amplitude near the core.

6. Two Calculational Procedures

Upon comparing Equations (4) and (36), it is natural to ask why not continue with
the less complex Equation (36) to investigate the stability of the splay state. The answer
is Equation (36) does not predict excitation energies and decay times that are described
by the dynamical equation (Equation (28)) for the c-director and measured in standard
experiments. To see how, we express f (r, φ) as a function, f (x, φ) of x = ln(r/R1) rather
than r:

f (x, φ) = ∑
m

fm(x)eimφ, (38)

where fm(x) is taken to be unitless. The harmonic energy of Equation (5) then becomes,

Fx
h =

1
2

∫ ln µ

1
dx
∫ 2π

0
dφ
[
(Kb − Ks) f 2 + Kb(∂x f )2 + Ks(∂φ f )2

]
, (39)

Note the differences between Equations (5) and (39):

1. Equation (5) is integrated over 2D volume elements rdrdφ and Equation (39) over the
1D volume element dx.
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2. Equation (5) has a factor of 1/r2 in front of the [(Kb − Ks) f 2 + Ks(∂φ f )2] whereas that
term is simply [(Kb − Ks) f 2 + Ks(∂φ f )2] in Equation (39).

3. The change of variables from r to x changed the free energy from a 2D form to a form
equivalent to a 1D one.

With the aid of δ f (x)/δ f (x′) = δ(x− x′), the new eigenvalue equation for the radial
function fm(x) reflects these differences:

1
π

δFx
h

δ fm(x)
= −Kb

[
d2 fm

dx2 +
(

1 + β(m2 − 1)
)

fm

]
= εm fm. (40)

The solution to this equation is

fm(x) = sin qx (41)

where
q→ qn =

nπ

ln µ
(42)

to satisfy the boundary conditions fm(0) = 0 and fm(ln µ) = 0. The resultant energy is

εmn = Kb[q2
n + 1 + β(m2 − 1)] , (43)

which is surely different from the energy functions calculated in Section 3.2: it has a
different analytic form from that of ε in Equation (16) does, and it has units of energy
rather than energy density. But ε01 = 0 defines the limit of stability, which is identical to
Equation (18) obtained from ε01 = 0. Thus the two approaches produce the same critical
line in the two-dimensional space of β and µ, but away from the critical line, their mode
energies are different, even though they both reflect stability of the splay phase, as long as
their respective energies are positive. Experimental measurements of fluctuations of the
c-director are controlled by the dynamics of c(r, φ, t), as described by Equation (28) which
depends on δFh/δ f (r) rather than δFx

h /δ fm(x). Thus, correlation function measured, for
example, by video imaging, depend on εmn and not εmn.

7. Review and Discussion

In summary, we have analyzed fluctuations and phase behavior of splay and bend
+1 disclination defects trapped in an annular region defined by the area between an outer
circle of radius R2 and a smaller concentric circle of radius R1 with either perpendicular
or tangential BCs at the two circular boundaries. If β = Ks/Kb < 1 under perpendicular
BC’s, the splay defect is stable for all values of µ = R2/R1 , where Ks and Kb are the 2D
splay and bend Frank constants, respectively, but when β > 1, the defect is only stable
for µ less than a critical value µc(β), Equation (18). At µ = µc, the defect undergoes a
continuous (second-order) transition to a spiral state. Under tangential BCs, the behavior
of the defect follows the same scenario as that of the splay state except with Ks and Kb
interchanged, i.e., the bend defect is stable for all µ when β−1 = Kb/Ks < 1 and unstable to
a mixed spiral defect when β−1 > 1 and µ > µc(β−1). Our treatment includes analytical
calculations of normal-mode energies, associated eigenfunctions, and related two-point
director correlation functions relative to the pure splay and bend states. We point out
the differences between our approach, which calculates properties that are observable
in real experiments, and an approach used to identify critical points and to calculate
spiral configurations. The two approaches predict the same critical points and mixed
configurations and their domain of stability. They do, however, predict different values for
normal-mode energies and their wave functions except at phase boundaries.

We have not found any published papers reporting experimental measurements of
fluctuations of trapped defects in smectic-C films or other media. It does seem, however,
that video imaging, for example, of fluctuations in the cloverleaf pattern produced by “pure”
bend or splay configurations should be possible. In addition, the existence of materials
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covering a wide range of β’s (for example by mixing mesogens [33–35] with different Frank
constants, chirality, or polarity) and the possibility of modifying the properties of the inner
circles with different inclusions [18,32] (e.g., dust particles or different fluids) suggests an
interesting avenues for future research. Measurements of fluctuations about 3D hedgehogs
trapped in micron-scale emulsion droplets with nanoscale water droplets at their center
have been carried out successfully [38], and their results are well explained by the 3D
version [39] of the theory presented here.
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