MDPI Article # Synthesis, Crystal and Electronic Structures, Nonlinear Optical Properties, and Magnetic Properties of Two Thiophosphates: KInP₂S₇ and KCrP₂S₇ Craig Cropek ¹, Vivian Nguyen ¹, Santosh Karki Chhetri ², Jin Hu ^{2,3}, Shengping Guo ⁴ and Jian Wang ^{1,*} - Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS 67260, USA - Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA - Materials Science and Engineering Program, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA - School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China - * Correspondence: jian.wang@wichita.edu Abstract: Two thiophosphates, KInP₂S₇ and KCrP₂S₇, were structurally characterized without investigating any optical properties. Herein in this work, KInP₂S₇ and KCrP₂S₇ were revisited to investigate their optical and magnetic properties, respectively. Pure polycrystalline samples and crystals of KInP₂S₇ and KCrP₂S₇ were grown by high temperature solid state reactions, where mm-sized crystals of KCrP₂S₇ were collected. KCrP₂S₇ is isostructural to KInP₂S₇, which features a layered structure. KInP₂S₇ and KCrP₂S₇ possess close relationship to the layered thiophosphate $M_2P_2S_6$ (M = Fe, Co, Zn, etc.). The bonding pictures of KIn P_2S_7 were studied using the electron localization function (ELF) coupled with crystal orbital Hamilton population (COHP) calculations. The intrinsically distorted [PS₄] tetrahedra and [InS₆] octahedra are made by strong covalent P-S interactions and ionic In-S interactions, respectively. Electronic structure analysis confirmed that the optical properties of KInP₂S₇ are mainly contributed to by [PS₄] tetrahedra together with small amounts of the contributions coming from [InS₆] octahedra. Magnetic measurement on mm-sized crystals of KCrP₂S₇ verified that there is an antiferromagnetic transition around 21 K, and the Cr atoms are trivalent. KInP₂S₇ is predicated to be an indirect bandgap semiconductor of 2.38 eV, which is confirmed by the UV-Vis measurement of 2.4(1) eV. KInP₂S₇ is not a type-I phase-matching material and exhibits moderate second harmonic generation (SHG) response (0.51 × AgGaS₂, sample of particle size of 100 μm). The laser damage threshold (LDT) of KInP₂S₇ is very high of 5.2 × AgGaS₂. Bandgap engineering were undergone to enhance the SHG response of KInP₂S₇. Keywords: solid state synthesis; crystal growth; antiferromagnetic transition; nonlinear Citation: Cropek, C.; Nguyen, V.; Chhetri, S.K.; Hu, J.; Guo, S.; Wang, J. Synthesis, Crystal and Electronic Structures, Nonlinear Optical Properties, and Magnetic Properties of Two Thiophosphates: KInP₂S₇ and KCrP₂S₇. Crystals 2022, 12, 1505. https://doi.org/10.3390/ cryst12111505 Academic Editors: Mingjun Xia and Lijuan Liu Received: 22 September 2022 Accepted: 19 October 2022 Published: 22 October 2022 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). # 1. Introduction Thiophosphates, which are constructed by phosphorus and sulfur atoms, have attracted growing interests due to important applications such as nonlinear optical applications [1–16], ion conductors [17–26], hydrogen evolution [27,28], and photocurrent response [29]. The chemical flexibility of thiophosphates accounts for their fruitful applications. The chemical flexibility originates from flexible crystal structures spanning from three dimensional (3D) frameworks [25,30], two-dimensional layered structures [31], and one-dimensional chain structures [32]. Phosphorus and sulfur elements share many similar properties such as low melting points, high volatile nature and easily form homoatomic bonds, etc. There exist significant different properties between phosphorus and sulfur, for example, electron configuration and electronegativity. The phosphorus atoms are surrounded by four sulfur atoms forming a tetrahedron, which are interconnected via the sharing of apex sulfur atoms, homoatomic P-P bonds, or homoatomic S-S bonds to form various $[P_xS_y]$ motifs [1–16]. The flexible $[P_xS_y]$ motifs, interacting with metals, generate the flexible structures of thiophosphates [1–16]. Crystals **2022**, 12, 1505 2 of 10 An acentric thiophosphate group, AIIIP₂S₇ (A = K, Rb, Cs; III = V, Cr, In) [33–37] has attracted our attention due to their interesting structures and the presence of both transition metals and main group elements within one system. The trivalent transition metals V^{3+} and Cr^{3+} possess unpaired *d*-electrons, which introduces magnetic properties into the AIIIP₂S₇ family. The crystal structures of AIIIP₂S₇ were studied by few groups. To the best of our knowledge, there were no systemic study of synthesis, electronic structure, bonding pictures, and nonlinear optical properties of the AIIIP₂S₇ family, reported. A previous study found interesting magnetic properties of $KV_{1-x}Cr_xP_2S_7$ (X = 0, 0.75, 1), where KBr was utilized as a transport agent and a source of K [37]. In this work, we selected KInP₂S₇ and KCrP₂S₇ from the AIIIP₂S₇ family as our study objectives. A systematic study of synthesis, electronic structure, bonding pictures, and nonlinear optical properties of KInP₂S₇ are presented in this work. A detailed magnetic study of KCrP₂S₇, based on crystals grown from solid state reactions, were carried out, which resulted in the findings of the presence of an antiferromagnetic transition around 21 K. KInP₂S₇ was found as an indirect semiconductor of a bandgap of 2.38 eV and 2.4(1) eV, supported by tight-binding calculations and UV-Vis measurements, respectively. The Nonlinear optical properties of KInP₂S₇ were also measured in this work. The electronic structure and bonding picture studies of KInP₂S₇ were also studied in this work. #### 2. Materials and Methods #### 2.1. Synthesis All starting materials were used as received without further processing, except for the cutting of solid metals: Potassium metal (Thermo Fisher Scientific, Waltham, MA, USA, 99.5%, indium shot metal basis (Thermo Fisher Scientific, MA, USA, 99.9%), chromium powder (Sigma-Aldrich, St. Louis, MO, USA, 99.5%), phosphorus powder (Alfa Aesar, Ward Hill, MA, USA, 99.5%), sulfur powder (Thermo Fisher Scientific, MA, USA, 99.5%). These reactants were stored in an argon-filled glovebox. Moisture and oxygen levels are maintained below 0.5 ppm. All preparations were done in a glovebox and sealed under a vacuum. All quartz ampoules were sealed under 100 mTorr. #### 2.1.1. KCrP₂S₇ Single Crystal Growth 0.4000 g of reactants were loaded into a 9 mm inner-diameter carbonized silica ampoule at a stoichiometric ratio of K:Cr:P:S = 1:1:2:7. Potassium was rolled in pre-weighed chromium powder before adding to the ampoule. After sealing, these reactants were loaded into a programmable muffle furnace. The reactants were heated from room temperature to 125 °C in 10 h, dwelled for 10 h, heated up to 700 °C in 10 h, dwelled for 96 h, and then cooled to room temperature in 24 h. High quality large black needles were obtained. Formation of KCrP₂S₇ was verified using powder X-ray diffraction (*vide infra*). ### 2.1.2. KInP₂S₇ 0.5000~g total of reactants were loaded into a 9 mm inner-diameter carbonized silica ampoule at a stoichiometric ratio of K:In:P₂S₅:S = 1.2:1:1:2, and in that order. P₂S₅ was grown as a single phase via heating stoichiometric ratio of P and S at 350 °C for 24 h. Ampoules were capped using parafilm and then pumped out of the glovebox for sealing. The ampules were sealed to an inner-ampoule length of about 8.3 cm. After sealing the ampoules, they were placed vertically in a programmable muffle furnace and separated, by about 2.5 cm, in individual ampoule holders held in a homemade quartz holder setup. The reactants were heated from room temperature to 125 °C in 10 h, dwelled for 10 h, heated up to 650 °C in 10 h, dwelled for 96 h, ramped down for 24 h to room temperature. A second annealing process was necessary to improve the phase purity. Amber single crystals and an amber colored mass was obtained. Formation of KInP₂S₇ was verified using powder X-ray diffraction (Figure S1). KInP₂S₇ and KCrP₂S₇ were stable in dry air for a few weeks. Within a high moisture environment, KInP₂S₇ and KCrP₂S₇ would slowly decompose into amorphous products. Crystals 2022, 12, 1505 3 of 10 #### 2.2. Powder X-ray Diffraction Powder X-ray diffraction data were collected at room temperature using a Rigaku Mini Flex VI diffractometer with Cu-K α radiation (λ = 1.5406 Å) in the range 2 θ = 10 $^{\circ}$ -80 $^{\circ}$, at a scan step of 0.04 $^{\circ}$ with ten seconds exposure time. #### 2.3. UV-Vis Measurements Diffuse-reflectance spectra were recorded at room temperature by a PERSEE-T8DCS UV-Vis spectrophotometer equipped with an integration sphere in the wavelength range of 230–850 nm. The reflectance data, R were recorded and converted to the Kubelka-Munk function, $f(R) = (1 - R)^2(2R)^{-1}$. The Tauc plots, $(KM \times E)^2$ and $(KM \times E)^{1/2}$, were applied to estimate direct and indirect bandgaps, respectively. #### 2.4. Second Harmonic Measurements Using the Kurtz and Perry method [38], powder SHG responses of KInP $_2$ S $_7$ compound were investigated by a Q-switch laser (2.09 µm, 3 Hz, 50 ns) with various particle sizes, including 38.5–54, 54–88, 88–105, 105–150, and 150–200 µm. Homemade AgGaS $_2$ was selected as the reference. The lab-synthesized AgGaS $_2$ crystals were ground to the same size range as KInP $_2$ S $_7$. The LDTs of the title compounds were evaluated on powder samples (150–200 µm) with a pulsed YAG laser (1.06 µm, 10 ns, 10 Hz). The judgment criterion is as follows: with increasing laser energy, the color change of the powder sample is constantly observed by an optical microscope to determine the damage threshold. To adjust different laser beams, an optical concave lens is added to the laser path. The damaged spot is measured by the scale of the optical microscope. #### 2.5. TB-LMTO-ASA Calculations The density of states (DOS), partial density of states (PDOS), band structure, crystal orbital Hamilton population (COHP), and electron localization function (ELF) of KInP₂S₇ are calculated using the tight binding-linear muffin tin orbitals-atomic sphere approximation (TB-LMTO-ASA) program [39,40]. The Barth-Hedin exchange potential was employed for the LDA calculations [39]. The radial scalar-relativistic Dirac equation was solved to obtain the partial waves. The basis set used contained K (4s), In (5s, 5p, 5d) P (3s, 3p) and S (3s, 3p) orbitals, and was employed for a self-consistent calculation, with downfolded functions of K (4p, 3d), In (4f, 5d), P (3d) and S (3d). The density of states and band structures were calculated after converging the total energy on a dense k-mesh of KInP₂S₇ (16 × 16 × 16 points with 2064 irreducible k-points). #### 2.6. Magnetic Properties Measurements Temperature dependence of magnetic susceptibility and isothermal magnetization measurements were performed by using the ACMSII option of a physical properties measurement system (PPMS). #### 3. Results and Discussion #### 3.1. Synthesis and Crystal Growth To reduce the chance of incorporating foreign elements, a high temperature solid state synthetic method was preferred in this study. Due to the high reactive nature of potassium metals, the bottom of silica tubes was protected by amorphous carbon. Large mm-sized single crystals of KCrP₂S₇ were collected as shown in Figure 1 inset. The powder X-ray diffraction results confirmed the single-phase nature of KCrP₂S₇ as shown in Figure 1. The large KCrP₂S₇ crystals were manually selected and cleaved for magnetic measurements (*vide infra*). Pure samples of KInP₂S₇ were also collected after a high temperature solid state reaction (Figure S1). The crystals of KInP₂S₇ did not grow as large as the KCrP₂S₇. The final products of KInP₂S₇ are a mixture of KInP₂S₇ small crystals and polycrystalline powder chunks. Crystals 2022, 12, 1505 4 of 10 **Figure 1.** Powder X-ray diffraction results of KCrP₂S₇, the insert shows the optical microscope photo of selected KCrP₂S₇ crystals. The crystals were manually cut and selected for properties measurements. #### 3.2. Crystal Structures KCrP₂S₇ is isostructural to KInP₂S₇, which both crystallizes in the LiFeAs₂O₇ structure type and the acentric C2 (no.5) space group [35]. The acentric nature of KInP₂S₇ is confirmed by SHG measurements (*vide infra*). To simplify the discussion, KInP₂S₇ is selected to present the structural chemistry. The structure of KInP₂S₇ is summarized in Figure 2b,d. KInP₂S₇ possesses clear layered features, which is constructed by two-dimensional (2D) [InP₂S₇]⁻ slabs sandwiched by K⁺ cations. The detailed view of 2D [InP₂S₇]⁻ slab is shown in Figure 2d. The 2D [InP₂S₇]⁻ slab is built by [InS₆] octahedra and [P₂S₇] units. The [InS₆] octahedra are interconnected to the [P₂S₇] units via sharing edges and vertices. The [P₂S₇] units are made by two [PS₄] tetrahedra via sharing one apex sulfur atom. Each In atom is in the center of a distorted octahedron with the In-S distance falling into the range of 2.581–2.698 Å [35]. The P-S distances within [PS₄] tetrahedra are 2.005–2.137 Å, which are comparable to many thiophosphates such as α-Ba₂P₂S₆ (1.99(2)–2.04(2) Å) [15], β-Ba₂P₂S₆(2.017(2)–2.028(2) Å) [15], Pb₂P₂S₆(2.011(19)–2.040(18) Å) [15], K₂BaP₂S₆ (1.958(17)–2.066(15) Å) [41], KSbP₂S₆ (1.962(1)–2.077(1) Å) [42], KBiP₂S₆ (1.961(3)–2.059(3) Å) [43], Pb₃P₂S₈ (2.031–2.065 Å) [44], etc. **Figure 2.** (a) Ball-stick structure of $Fe_2P_2S_6$ viewed along [010] direction, (b) ball-stick structure of $KInP_2S_7$ viewed along [100] direction, (c) a detailed view of $[FeP_2S_3]$ layers within $Fe_2P_2S_6$ viewed along [101] direction, (d) a detailed view of $[InP_2S_7]^-$ layer within $KInP_2S_7$ viewed along [101] direction. Fe: orange, P: black, S: yellow, K: green, In: pink. Crystals 2022, 12, 1505 5 of 10 One interesting point here would be the structure relationship between KInP₂S₇ and $M_2P_2S_6$ (M = Mg, Mn, Fe, Co, Ni, Zn, Cd, Pb, Sn or mixed occupancy of two metals) systems as shown in Figure 2 [31,45–54]. The M₂P₂S₆ system has emerged as an important system due to their 2D layered crystal structure coupled with highly tunable chemical properties via mixing various metals within the crystal lattice [31,45–54]. KInP₂S₇ shows quasi-layered features as shown in Figure 2b. Using $Fe_2P_2S_6$ as an example to present the structure of the $M_2P_2S_6$ system, which is shown in Figure 2a,c. The Fe₂P₂S₆ is constructed by neutral [Fe₂P₂S₆] slabs, which are constructed by [FeS₆] octahedron and [P₂S₆] motifs. Within the asymmetric unit cell of Fe₂P₂S₆, there are two independent Fe atomic positions. With leaving one Fe atomic position vacant and replacing another Fe atomic position by In atoms, the neutral [Fe₂P₂S₆] slabs were changed to [InP₂S₆] slabs. The P-P homoatomic bonds are broken with incorporation of In atoms, which results in the oxidation states for P changing from 4+ to 5+. One additional sulfur atom is incorporated in to [InP₂S₆] slabs to link $[PS_4]$ tetrahedra, which forms $[InP_2S_7]^-$ slabs. Please notice, each $[InS_6]$ octahedral was shifted along [010] direction about $\frac{1}{4}$ b distance. The negatively charged [InP₂S₆]⁻ slabs are compensated by inserting K⁺ cations. The trivalent In atoms within KInP₂S₇ can be replaced by isovalent transition metals such as Cr³⁺ and V³⁺, which introduce potential magnetic application into this system. #### 3.3. Bonding Pictures of KInP₂S₇ The AIIIP₂S₇ (A = K, Rb, Cs; III = V, Cr, In) family crystallizes in acentric C2(no. 5) space group. The basic building units for KInP₂S₇ are intrinsically distorted $[PS_4]$ tetrahedron and $[InS_6]$ octahedron. The P-S distances within $[PS_4]$ tetrahedra are 2.005–2.137 Å. The bonding picture studies shows the covalent bonding nature of P-S interactions (Figure 3a). There are obvious attractors located between the P and S atoms. The covalent P-S interactions exhibit strong bonding characters with —ICOHP of 5.738 eV/bond for 2.05 A P-S interactions. (Figure 3b). The P-S interactions were revealed to play an important role for contributing to the optical properties of KInP₂S₇ (vide infra). The distorted [InS₆] octahedron is shown in Figure 3c. The central In atom is surrounded by four In-S interactions of 2.58 Å and two elongated In-S interactions of 2.70 Å, namely a 4 + 2 coordination environment. The two elongated 2.70 Å In-S interactions are located at the axial position and equatorial position, respectively. The COHP calculation (Figure 3b) and ELF (Figure S2) calculation indicated strong ionic interaction nature of In-S interactions. The calculated –ICOHPs for 2.58 Å In-S interactions and 2.70 Å In-S interactions are 1.939 eV/bond and 1.355 eV/bond, respectively. The distorted [InS₆] octahedron contribute less than that of distorted [PS₄] tetrahedron to the total optical properties of KInP₂S₇ (vide infra). **Figure 3.** (a) 3D isosurfaces of the ELF for a [PS₄] tetrahedral within KInP₂S₇ with η = 0.75, P: gray, S: yellow. (b) COHP analyses of selected interactions within KInP₂S₇. (c) The [InS₆] octahedron with bond distances labeled. P: gray, In: pink, S: yellow. Crystals 2022, 12, 1505 6 of 10 # 3.4. Magnetic Properties of $KCrP_2S_7$ The layered crystal structure coupled with flexible chemical properties of the AIIIP₂S₇ (A = K, Rb, Cs; III = V, Cr, In) family indicate the potential broad applications such as magnetic properties and optical applications and the interface between them. Hence, we measured the magnetic properties of high quality KCrP₂S₇ crystals (Figure 1 inset). Figure 4a shows the zero-field cooling (ZFC) and field cooling (FC) temperature dependene of the magnetic susceptibility of a KCrP₂S₇ single crystal measured under a magnetic field of 1 T employed within the ab plane. A clear peak is observed at 21 K, which should be attribute to an antiferromagnetic transition because of the overlaping of the ZFC and FC data and a neagtive Weiss temperature of -50 K from fitting the data to the modied Curie-Weiss law (Figure 4a). The antiferromagnetic state is also consistent with the linear field dependence in the low field region of the isothermal magnetization, as shown in Figure 4b. At T = 2 K, a metamagnetic spin-flop transtion is observed around 3 T, which is suppressed up on increasing temeprature and disappears above the magnetic ordering temeprature (Figure 4b). Such spin-flop transition is not observed under an out-of-plane magnetic field. (Figure 4b, inset). These observations agree well with the antiferromagnetic ground state with an inplane easy axis of the Cr³⁺ moment. Similar scenario has also been observed in other layered magnetic materials such as NiPS₃ [55]. The effective magnetic moment μ_{eff} estimated from the Curie constant of the fits are 3.80 μ_{B} , which agrees well with the theoretical values of trivalent Cr^{3+} (3.87 μ_B). A previous study of $KCrP_2S_7$ crystals grown by KBr also found an antiferromagnetic transition at 17 K [37]. The calculated μ_{eff} with employing H//c* is 3.95 μ_B [37]. In this work, high quality crystals were grown by solid state chemistry method, which eliminated the possibility of incorporation of foreign elements. The trivalent M³⁺ is also supported by the electron-precise nature of KInP₂S₇, where In is also trivalent (vide infra). **Figure 4.** (a) Temperature dependence of dc magnetic susceptibility of selected KCrP₂S₇ crystals measured in a field of 1 T employed parallel to the ab plane (H//ab). The red solid lines indicate the fit to the modified Curie-Weiss law. (b) Field dependence of isothermal magnetization (M) of KCrP₂S₇ at different temperatures, measured under H//ab. Inset: isothermal magnetization at 5 K with both in-plane (H//ab) and out-of-plane magnetic fields. #### 3.5. Electronic Structures of KInP₂S₇ Since the trivalent nature of III metals are within the AIIIP₂S₇ (A = K, Rb, Cs; III = V, Cr, In) family, the charge-balanced formula $(A^+)(III^{3+})(P^{5+})_2(S^{2-})_7$ can be established by assigning a formal charge of 1+ to the alkali metals, 5+ to the P atoms, and 2– to the sulfur atoms. The charge-balanced nature of KInP₂S₇ was verified by TB-LMTO-ASA calculations (Figure 5) and UV-Vis measurements (*vide infra*). KInP₂S₇ is predicated to be an indirect bandgap semiconductor with the top of valance band and the bottom of conduction band located at the *A* points and the Λ points, respectively. The energy gap separating the conduction band and the valence band is 2.38 eV, which is comparable to Crystals 2022, 12, 1505 7 of 10 the experimentally measured value of 2.4(1) eV (vide infra). The top of the valance band is mainly contributed by S 3p orbitals (Figure 5b) together with very small contribution from the In 5s and 5p orbitals. There is no accountable contribution from P 3p orbitals and K 4s orbitals at the bottom of the top of valence band. The S 3p orbitals and the P 3p orbitals significantly contribute to the bottom of the conduction band, where very small amounts are contributed are from the In 5s and 5p orbitals and K 4s orbitals. Hence, we can anticipate that the optical properties of $KInP_2S_7$ are mainly contributed by $[PS_4]$ tetrahedra units coupled with certain contribution from the $[InS_6]$ octahedra. **Figure 5.** (a) Calculated band structure and (b) DOS of KInP₂S₇. #### 3.6. Linear and Nonlinear Optical Properties of KInP₂S₇ KCrP₂S₇ is estimated to have a very small bandgap with the black appearance of the crystals. Hence, the optical properties were mainly carried on KInP₂S₇. The bandgap of KInP₂S₇ was estimated by UV-Vis measurements. The experimentally measured value is 2.4(1) eV (Figures S3 and S4), which agrees well with our theory study of 2.38 eV. KInP₂S₇ was predicated by L. Kang et al. to possess moderate SHG effects ($18 \times \text{KDP}$) [2]. Our experiments verified this predication as shown in Figure S5. KInP₂S₇ does not exhibit type-I phase-matching behavior, where the SHG intensity increases first then decreases with particle size increasing. For KInP₂S₇ sample of particle size of 100 μm, the SHG intensity of KInP₂S₇ is about $0.51 \times AgGaS_2$. Notice that, the quality of crystals may affect the SHG response [45]. KInP₂S₇ exhibited impressively high LDT of 5.2 × AgGaS₂ (Table S1), which may originate from its high bandgap. More study is required to understand the high LDT of KInP₂S₇., The optical properties of KInP₂S₇ are dominantly contributed by [PS₄] tetrahedra. Hence, a future bandgap engineering possibility is to modify the [PS₄] tetrahedron, in example, by introducing As atoms or Sb atoms to replace P atoms so to suppress the bandgap and enhance SHG response [56]. To further understand the optical properties of KInP₂P₇, a DFT calculation is undergoing [57–59]. #### 4. Conclusions Two structurally known thiophosphates, $KInP_2S_7$ and $KCrP_2S_7$, were revisited in this work. Single phases and crystals of $KInP_2S_7$ and $KCrP_2S_7$ were grown by high temperature solid state reactions. $KCrP_2S_7$ is isostructural to $KInP_2S_7$, which features a layered structure. $KInP_2S_7$ and $KCrP_2S_7$ possess a close relationship to the layered thiophosphate $M_2P_2S_6$, where the divalent metals within $M_2P_2S_6$ are replaced by In^{3+} or Cr^{3+} and break down the P-P interactions. The K cations were inserted between $[MP_2S_7]^-_{M=Cr}$ or In to compensate the charge and fill the space. Magnetic measurement on mm-sized crystals of $KCrP_2S_7$ verified the antiferromagnetic transition around 21K and the trivalent nature of Cr atoms. The bonding pictures of $KInP_2S_7$ were studied by ELF coupled with COHP calculations. The intrinsically distorted $[PS_4]$ tetrahedra and $[InS_6]$ octahedra are made by strong covalent P-S interactions and ionic In-S interactions, respectively. $KInP_2S_7$ is predicated to be an indirect bandgap semiconductor of 2.38 eV, which is confirmed by the UV-Vis measurement of 2.4(1) eV. Electronic structure analysis confirmed that the main contributing factor to Crystals 2022, 12, 1505 8 of 10 the optical properties of KInP₂S₇ are [PS₄] tetrahedra while small amounts of contribution are from [InS₆] octahedra. KInP₂S₇ is not a type-I phase-matching materials and exhibits moderate SHG response (0.51 \times AgGaS₂, sample of particle size of 100 μ m). The LDT of KInP₂S₇ is very high at 5.2 \times AgGaS₂. Bandgap engineering were undergone to enhance the SHG response of KInP₂S₇. **Supplementary Materials:** The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cryst12111505/s1, Room temperature powder X-ray diffraction data (Figure S1), ELF calculation (Figure S2), UV-Vis data (Figure S3), Tauc plots (Figure S4), SHG measurements (Figure S5), LDT measurement results (Table S1). **Author Contributions:** C.C. and V.N.: Methodology, Validation; S.K.C. and J.H.: Resources and Investigation; S.G.: Resources; J.W.: Data curation, Formal analysis, Funding acquisition, Supervision, Writing—original draft, Writing—review and editing. All authors have read and agreed to the published version of the manuscript. **Funding:** This research was funded by NASA's support and award number No. 80NSSC22M0028. Work at the University of Arkansas (magnetic property study) is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences program under Grant No. DE-SC0022006. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. **Acknowledgments:** J.W. would like to thank Kui Wu at Hebei University for helping on LDT measurement. Conflicts of Interest: The authors declare no conflict of interest. # References - Li, Z.; Jiang, X.; Zhou, M.; Guo, Y.; Luo, X.; Wu, Y.; Lin, Z.; Yao, J. Zn₃P₂S₈: A Promising Infrared Nonlinear-Optical Material with Excellent Overall Properties. *Inorg. Chem.* 2018, 57, 10503–10506. [CrossRef] [PubMed] - 2. Kang, L.; Zhou, M.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. Metal Thiophosphates with Good Mid-Infrared Nonlinear Optical Performances: A First-Principles Prediction and Analysis. *J. Am. Chem. Soc.* **2015**, *137*, 13049–13059. [CrossRef] [PubMed] - 3. Anema, A.; Grabar, A.; Rasing, T. The Nonlinear Optical Properties of Sn₂P₂S₆. Ferroelectrics **1996**, 183, 181–183. [CrossRef] - 4. Hu, Q.; Ruan, K.; Wang, Y.; Ding, K.; Xu, Y. Synthesis and Nonlinear Optical Properties of New Gallium Thiophosphate Rb₂Ga₂P₂S₉. *New J. Chem.* **2019**, *43*, 12468–12474. [CrossRef] - 5. Chen, M.-M.; Zhou, S.-H.; Wei, W.; Ran, M.-Y.; Li, B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. RbBiP₂S₆: A Promising IR Nonlinear Optical Material with a Giant Second-Harmonic Generation Response Designed by Aliovalent Substitution. *ACS Mater. Lett.* **2022**, *4*, 1264–1269. [CrossRef] - 6. Fan, Y.-H.; Jiang, X.-M.; Liu, B.-W.; Li, S.-F.; Guo, W.-H.; Zeng, H.-Y.; Guo, G.-C.; Huang, J.-S. Phase Transition and Second Harmonic Generation in Thiophosphates Ag₂Cd(P₂S₆) and AgCd₃(PS₄)S₂ Containing Two Second-Order Jahn-Teller Distorted Cations. *Inorg. Chem.* **2017**, *56*, 114–124. [CrossRef] - 7. Li, Z.; Zhang, S.; Huang, Z.; Zhao, L.-D.; Uykur, E.; Xing, W.; Lin, Z.; Yao, J.; Wu, Y. Molecular Construction from AgGaS₂ to CuZnPS₄: Defect-Induced Second Harmonic Generation Enhancement and Cosubstitution-Driven Band Gap Enlargement. *Chem. Mater.* 2020, 32, 3288–3296. [CrossRef] - 8. Li, Z.; Zhang, S.; Xing, W.; Guo, Y.; Li, C.; Lin, Z.; Yao, J.; Wu, Y. Mixed-Metal Thiophosphate CuCd₃PS₆: An Infrared Nonlinear Optical Material Activated by Its Three-in-One Tetrahedra-Stacking Architecture. *J. Mater. Chem. C* **2020**, *8*, 5020–5024. [CrossRef] - 9. Zhou, M.; Kang, L.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. Midinfrared Nonlinear Optical Thiophosphates from LiZnPS₄ to AgZnPS₄: A Combined Experimental and Theoretical Study. *Inorg. Chem.* **2016**, *55*, 3724–3726. [CrossRef] - 10. Feng, J.; Hu, C.-L.; Li, B.; Mao, J.-G. LiGa₂PS₆ and LiCd₃PS₆: Molecular Designs of Two New Mid-Infrared Nonlinear Optical Materials. *Chem. Mater.* **2018**, 30, 3901–3908. [CrossRef] - 11. Li, M.-Y.; Ma, Z.; Li, B.; Wu, X.-T.; Lin, H.; Zhu, Q.-L. HgCuPS₄: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure. *Chem. Mater.* **2020**, *32*, 4331–4339. [CrossRef] - 12. Chu, Y.; Wang, P.; Zeng, H.; Cheng, S.; Su, X.; Yang, Z.; Li, J.; Pan, S. Hg₃P₂S₈: A New Promising Infrared Nonlinear Optical Material with a Large Second-Harmonic Generation and a High Laser-Induced Damage Threshold. *Chem. Mater.* **2021**, *33*, 6514–6521. [CrossRef] Crystals 2022, 12, 1505 9 of 10 13. Huang, X.; Yang, S.-H.; Li, X.-H.; Liu, W.; Guo, S.-P. Eu2P2S6: The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold. *Angew. Chem. Int. Ed.* **2022**, *61*, e202206791. [CrossRef] [PubMed] - 14. Feng, J.-H.; Hu, C.-L.; Xu, X.; Li, B.-X.; Zhang, M.-J.; Mao, J.-G. AgGa₂PS₆: A New Mid-Infrared Nonlinear Optical Material with a High Laser Damage Threshold and a Large Second Harmonic Generation Response. *Chem.-Eur. J.* **2017**, 23, 10978–10982. [CrossRef] [PubMed] - 15. Ji, B.; Sarkar, A.; Wu, K.; Swindle, A.; Wang, J. A2P2S6 (A = Ba and Pb): A Good Platform to Study the Polymorph Effect and Lone Pair Effect to Form an Acentric Structure. *Dalton Trans.* **2022**, *51*, 4522–4531. [CrossRef] - 16. Liu, B.-W.; Zeng, H.-Y.; Jiang, X.-M.; Wang, G.-E.; Li, S.-F.; Xu, L.; Guo, G.-C. [A₃X] [Ga₃PS₈] (A = K, Rb; X = Cl, Br): Promising IR Non-Linear Optical Materials Exhibiting Concurrently Strong Second-Harmonic Generation and High Laser Induced Damage Thresholds. *Chem. Sci.* **2016**, *7*, 6273–6277. [CrossRef] - 17. Krauskopf, T.; Culver, S.P.; Zeier, W.G. Local Tetragonal Structure of the Cubic Superionic Conductor Na₃PS₄. *Inorg. Chem.* **2018**, 57, 4739–4744. [CrossRef] - 18. Krauskopf, T.; Culver, S.P.; Zeier, W.G. Bottleneck of Diffusion and Inductive Effects in Li₁₀Ge_{1-x}Sn_xP₂S₁₂. *Chem. Mater.* **2018**, *30*, 1791–1798. [CrossRef] - 19. Duchardt, M.; Neuberger, S.; Ruschewitz, U.; Krauskopf, T.; Zeier, W.G.; der Günne, J.S.A.; Adams, S.; Roling, B.; Dehnen, S. Superion Conductor Na_{11.1}Sn_{2.1}P_{0.9}Se₁₂: Lowering the Activation Barrier of Na⁺ Conduction in Quaternary 1–4–5–6 Electrolytes. *Chem. Mater.* **2018**, *30*, 4134–4139. [CrossRef] - 20. Kaup, K.; Lalère, F.; Huq, A.; Shyamsunder, A.; Adermann, T.; Hartmann, P.; Nazar, L.F. Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li_{1+2x}Zn_{1-X}PS₄. *Chem. Mater.* **2018**, *30*, 592–596. [CrossRef] - 21. Bernges, T.; Culver, S.P.; Minafra, N.; Koerver, R.; Zeier, W.G. Competing Structural Influences in the Li Superionic Conducting Argyrodites $\text{Li}_6\text{PS}_{5-x}\text{Se}_x\text{Br}$ ($0 \le x \le 1$) upon Se Substitution. *Inorg. Chem.* **2018**, *57*, 13920–13928. [CrossRef] [PubMed] - 22. Duchardt, M.; Ruschewitz, U.; Adams, S.; Dehnen, S.; Roling, B. Vacancy-Controlled Na⁺ Superion Conduction in Na₁₁Sn₂PS₁₂. *Angew. Chem.* **2018**, *130*, 1365–1369. [CrossRef] - 23. Fan, Y.-H.; Zeng, H.-Y.; Jiang, X.-M.; Zhang, M.-J.; Liu, B.-W.; Guo, G.-C.; Huang, J.-S. Thiophosphates Containing Ag⁺ and Lone-Pair Cations with Interchiral Double Helix Show Both Ionic Conductivity and Phase Transition. *Inorg. Chem.* **2017**, *56*, 962–973. [CrossRef] [PubMed] - 24. Dietrich, C.; Weber, D.A.; Culver, S.; Senyshyn, A.; Sedlmaier, S.J.; Indris, S.; Janek, J.; Zeier, W.G. Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li₂P₂S₆. *Inorg. Chem.* **2017**, *56*, 6681–6687. [CrossRef] - 25. Kraft, M.A.; Culver, S.P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W.G. Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li₆PS₅X (X = Cl, Br, I). *J. Am. Chem. Soc.* **2017**, 139, 10909–10918. [CrossRef] - 26. Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R. Superionic Conductors: Li10pd [Sn_ySi_{1-y}] 1pdP2À DS12 with a Li₁₀GeP₂S₁₂-Type Structure in the Li₃PS₄-Li₄SnS₄-Li₄SiS₄ Quasi-Ternary System. *Chem. Mater.* **2017**, 29, 5858–5864. [CrossRef] - 27. Wu, T.; Stone, M.L.; Shearer, M.J.; Stolt, M.J.; Guzei, I.A.; Hamers, R.J.; Lu, R.; Deng, K.; Jin, S.; Schmidt, J.R. Crystallographic Facet Dependence of the Hydrogen Evolution Reaction on CoPS: Theory and Experiments. *ACS Catal.* **2018**, *8*, 1143–1152. [CrossRef] - 28. Zhang, X.; Luo, Z.; Yu, P.; Cai, Y.; Du, Y.; Wu, D.; Gao, S.; Tan, C.; Li, Z.; Ren, M.; et al. Lithiation-Induced Amorphization of Pd₃P₂S8 for Highly Efficient Hydrogen Evolution. *Nat. Catal.* **2018**, *1*, 460–468. [CrossRef] - 29. Itthibenchapong, V.; Kokenyesi, R.S.; Ritenour, A.J.; Zakharov, L.N.; Boettcher, S.W.; Wager, J.F.; Keszler, D.A. Earth-Abundant Cu-Based Chalcogenide Semiconductors as Photovoltaic Absorbers. *J. Mater. Chem. C* **2012**, *1*, 657–662. [CrossRef] - 30. Neuberger, S.; Culver, S.P.; Eckert, H.; Zeier, W.G.; Schmedt auf der Günne, J. Refinement of the crystal structure of Li₄P₂S₆ using NMR crystallography. *Dalton Trans.* **2018**, 47, 11691–11695. [CrossRef] - 31. Cheng, M.; Lee, Y.-S.; dos Reis, R.; Iyer, A.; Chica, D.; Kanatzidis, M.; Dravid, V. Structural and Chemical Analysis of Mixed Cation Antiferromagnetic Layered Metal Chalcophosphate FeCoP₂S₆. *Microsc. Microanal.* **2021**, 27, 140–143. [CrossRef] - 32. Usman, M.; Smith, M.D.; Klepov, V.V.; zur Loye, H.-C. One-Dimensional Quaternary and Penternary Alkali Rare Earth Thiophosphates Obtained via Alkali Halide Flux Crystal Growth. *Cryst. Growth Des.* **2019**, *19*, 5648–5657. [CrossRef] - 33. Korotkov, A.S. Dependence of the Appearance of Crystal Acentricity on the Chemical Composition of Complex Inorganic Compounds and the Prediction of New Thiosilicates and Thiophosphates. *J. Electron. Mater.* **2020**, *49*, 4882–4891. [CrossRef] - 34. Gutzmann, A.; Näther, C.; Bensch, W. CsVP₂S₇. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, i6–i8. [CrossRef] - 35. Kopnin, E.; Coste, S.; Jobic, S.; Evain, M.; Brec, R. Synthesis and Crystal Structure Determination of Three Layered-Type Thiophosphate Compounds KMP₂S₇ (M = Cr, V, In). *Mater. Res. Bull.* **2000**, *35*, 1401–1410. [CrossRef] - 36. Kim, K.; Na, J.; Yun, H. The Two-Dimensional Thiophosphate CsCrP₂S₇. *Acta Crystallogr. Sect. E Struct. Rep. Online* **2010**, *66*, i65. [CrossRef] [PubMed] - 37. Sekizawa, K.; Sashida, M.; Takano, Y.; Takahashi, Y.; Takase, K. Magnetic Properties and Specific Heat of KV_{1-x}Cr_xP₂S₇. *J. Magn. Magn. Mater.* **2004**, 272–276, E597–E598. [CrossRef] - 38. Kurtz, S.K.; Perry, T.T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. *J. Appl. Phys.* **1968**, *39*, 3798–3813. [CrossRef] Crystals 2022, 12, 1505 10 of 10 39. Tank, R.; Jepsen, O.; Burkhardt, A.; Andersen, O.K. *The Program TB-LMTO-ASA*, Version 4.7; Max-Planck-Institut für Festkörperforschung: Stuttgart, Germany, 1999. - 40. Von Barth, U.; Hedin, L. A Local Exchange-Correlation Potential for the Spin Polarized Case. i. *J. Phys. C Solid State Phys.* **1972**, *5*, 1629–1642. [CrossRef] - 41. Nguyen, V.; Ji, B.; Wu, K.; Zhang, B.; Wang, J. Unprecedented Mid-Infrared Nonlinear Optical Materials Achieved by Crystal Structure Engineering, a Case Study of (KX)P₂S₆ (X = Sb, Bi, Ba). *Chem. Sci.* **2022**, *13*, 2640–2648. [CrossRef] - 42. Manriquez, V.; Galdámez, A.; León, D.R.; Garland, M.T. Crystal structure of potassium antimony hexathiodiphosphate, KSbP₂S₆. *Z. Für Krist.-New Cryst. Struct.* **2003**, 218, 435–436. [CrossRef] - 43. Manriquez, V.; Galdámez, A.; León, D.R.; Garland, M.T.; Jiménez, M. Crystal structure of potassium bismuth hexathiodiphosphate, KBiP₂S₆. *Z. Für Krist.-New Cryst. Struct.* **2003**, *218*, 151–252. [CrossRef] - 44. Ji, B.; Guderjahn, E.; Wu, K.; Syed, T.H.; Wei, W.; Zhang, B.; Wang, J. Revisiting Thiophosphate Pb₃P₂S₈: A Multifunctional Material Combining a Nonlinear Optical Response and Photocurrent Response. *Phys. Chem. Chem. Phys.* **2021**, 23, 23696–23702. [CrossRef] [PubMed] - 45. Klingen, W.; Eulenberger, G.; Hahn, H. Über Hexathio- und Hexaselenohypodiphosphate vom Typ M₂^{II}P₂X₆. *Naturwissenschaften* **1968**, 55, 229–230. [CrossRef] - Jörgens, S.; Mewis, A. Die Kristallstrukturen von Hexachalcogeno-Hypodiphosphaten des Magnesiums und Zinks. Z. Für Anorg. Allg. Chem. 2004, 630, 51–57. [CrossRef] - 47. Liu, Q.; Zhou, W.; Gao, C.; Hu, T.; Zhao, X. Synthesis and Second-Order Optical Nonlinearity of DAMS/Mn2P2S6 Intercalated Materials by Ion Exchange Method. *Chem. Phys. Lett.* **2009**, 477, 388–391. [CrossRef] - 48. Rao, R.R.; Raychaudhuri, A.K. Magnetic Studies of a Mixed Antiferromagnetic System Fe_{1-x}Ni_xPS₃. *J. Phys. Chem. Solids.* **1992**, 53, 577–583. [CrossRef] - 49. Klingen, W.; Eulenberger, G.; Hahn, H. Uber die Kristallstrukturen von Fe₂P₂Se₆ und Fe₂P₂Se₆. Z. *Anorg. Allg. Chem.* **1973**, 401, 97–112. [CrossRef] - 50. Prouzet, E.; Ouvrard, G.; Brec, R. Structure Determination of ZnPS₃. Mater. Res. Bull. 1986, 21, 195–200. [CrossRef] - 51. Klingen, W.; Eulenberger, G.; Hahn, H. Über Hexachalkogeno-hypodiphosphate vom Typ M2P2X6. *Naturwissenschaften* **1970**, 57, 88. [CrossRef] - 52. Becker, R.; Brockner, W.; Schäfer, H. Kristallstruktur Und Schwingungsspektren Des Di-Blei-Hexathiohypodiphosphates Pb₂P₂S₆/Crystal Structure and Vibrational Spectra of Pb₂P₂S₆. *Z. Für Nat. A* **1983**, *38*, 874–879. [CrossRef] - 53. Lifshitz, E.; Francis, A.H. Magnetic Resonance and Electronic Spectroscopy of M₂P₂S₆ Intercalation Compounds. In *Chemical Physics of Intercalation*; NATO ASI Series; Legrand, A.P., Flandrois, S., Eds.; Springer: Boston, MA, USA, 1987; pp. 425–431. [CrossRef] - 54. Bhowmick, A.; Bal, B.; Ganguly, S.; Bhattacharya, M.; Kundu, M.L. Investigation of the Layered Compound Fe0.5Cd0.5PS3. *J. Phys. Chem. Solids.* **1992**, 53, 1279–1284. [CrossRef] - 55. Basnet, R.; Wegner, A.; Pandey, K.; Storment, S.; Hu, J. Highly sensitive spin-flop transition in antiferromagnetic van der Waals material MPS3 (M = Ni and Mn). *Phys. Rev. Mater.* **2021**, *2021*. *5*, 064413. [CrossRef] - 56. Cicirello, G.; Wu, K.; Zhang, B.B.; Wang, J. Applying Band Gap Engineering to Tune the Linear Optical and Nonlinear Optical Properties of Noncentrosymmetric Chalcogenides La₄Ge₃Se_xS_{12-x}(x = 0, 2, 4, 6, 8, 10). *Inorg. Chem. Front.* **2021**, 8, 4914–4923. [CrossRef] - 57. Reshak, A.H.; Abbass, N.M.; Bila, J.; Johan, M.R.; Kityk, I. Noncentrosymmetric Sulfide Oxide MZnSO (M = Ca or Sr) with Strongly Polar Structure as Novel Nonlinear Crystals. *J. Phys. Chem. C.* **2019**, 123, 27172–27180. [CrossRef] - 58. Ji, B.; Pandey, K.; Harmer, C.P.; Wang, F.; Wu, K.; Hu, J.; Wang, J. Centrosymmetric or Noncentrosymmetric? Transition Metals Talking in $K_2TGe_3S_8(T = Co, Fe)$. *Inorg. Chem.* **2021**, *60*, 10603–10613. [CrossRef] - 59. Bardelli, S.; Ye, Z.; Wang, F.; Zhang, B.; Wang, J. Synthesis, Crystal and Electronic Structures, and Nonlinear Optical Properties of Y₄Si₃S₁₂. Z. Anorg. Allg. Chem. **2022**, 648, e202100. [CrossRef]