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Abstract: Two thiophosphates, KInP2S7 and KCrP2S7, were structurally characterized without in-
vestigating any optical properties. Herein in this work, KInP2S7 and KCrP2S7 were revisited to
investigate their optical and magnetic properties, respectively. Pure polycrystalline samples and
crystals of KInP2S7 and KCrP2S7 were grown by high temperature solid state reactions, where
mm-sized crystals of KCrP2S7 were collected. KCrP2S7 is isostructural to KInP2S7, which features
a layered structure. KInP2S7 and KCrP2S7 possess close relationship to the layered thiophosphate
M2P2S6 (M = Fe, Co, Zn, etc.). The bonding pictures of KInP2S7 were studied using the electron
localization function (ELF) coupled with crystal orbital Hamilton population (COHP) calculations.
The intrinsically distorted [PS4] tetrahedra and [InS6] octahedra are made by strong covalent P-S
interactions and ionic In-S interactions, respectively. Electronic structure analysis confirmed that
the optical properties of KInP2S7 are mainly contributed to by [PS4] tetrahedra together with small
amounts of the contributions coming from [InS6] octahedra. Magnetic measurement on mm-sized
crystals of KCrP2S7 verified that there is an antiferromagnetic transition around 21 K, and the Cr
atoms are trivalent. KInP2S7 is predicated to be an indirect bandgap semiconductor of 2.38 eV, which
is confirmed by the UV-Vis measurement of 2.4(1) eV. KInP2S7 is not a type-I phase-matching material
and exhibits moderate second harmonic generation (SHG) response (0.51 × AgGaS2, sample of
particle size of 100 µm). The laser damage threshold (LDT) of KInP2S7 is very high of 5.2 × AgGaS2.
Bandgap engineering were undergone to enhance the SHG response of KInP2S7.

Keywords: solid state synthesis; crystal growth; antiferromagnetic transition; nonlinear

1. Introduction

Thiophosphates, which are constructed by phosphorus and sulfur atoms, have at-
tracted growing interests due to important applications such as nonlinear optical ap-
plications [1–16], ion conductors [17–26], hydrogen evolution [27,28], and photocurrent
response [29]. The chemical flexibility of thiophosphates accounts for their fruitful appli-
cations. The chemical flexibility originates from flexible crystal structures spanning from
three dimensional (3D) frameworks [25,30], two-dimensional layered structures [31], and
one-dimensional chain structures [32]. Phosphorus and sulfur elements share many similar
properties such as low melting points, high volatile nature and easily form homoatomic
bonds, etc. There exist significant different properties between phosphorus and sulfur,
for example, electron configuration and electronegativity. The phosphorus atoms are sur-
rounded by four sulfur atoms forming a tetrahedron, which are interconnected via the
sharing of apex sulfur atoms, homoatomic P-P bonds, or homoatomic S-S bonds to form
various [PxSy] motifs [1–16]. The flexible [PxSy] motifs, interacting with metals, generate
the flexible structures of thiophosphates [1–16].
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An acentric thiophosphate group, AIIIP2S7 (A = K, Rb, Cs; III = V, Cr, In) [33–37]
has attracted our attention due to their interesting structures and the presence of both
transition metals and main group elements within one system. The trivalent transition
metals V3+ and Cr3+ possess unpaired d-electrons, which introduces magnetic properties
into the AIIIP2S7 family. The crystal structures of AIIIP2S7 were studied by few groups. To
the best of our knowledge, there were no systemic study of synthesis, electronic structure,
bonding pictures, and nonlinear optical properties of the AIIIP2S7 family, reported. A
previous study found interesting magnetic properties of KV1−xCrxP2S7 (X = 0, 0.75, 1),
where KBr was utilized as a transport agent and a source of K [37]. In this work, we selected
KInP2S7 and KCrP2S7 from the AIIIP2S7 family as our study objectives. A systematic study
of synthesis, electronic structure, bonding pictures, and nonlinear optical properties of
KInP2S7 are presented in this work. A detailed magnetic study of KCrP2S7, based on
crystals grown from solid state reactions, were carried out, which resulted in the findings
of the presence of an antiferromagnetic transition around 21 K. KInP2S7 was found as an
indirect semiconductor of a bandgap of 2.38 eV and 2.4(1) eV, supported by tight-binding
calculations and UV-Vis measurements, respectively. The Nonlinear optical properties of
KInP2S7 were also measured in this work. The electronic structure and bonding picture
studies of KInP2S7 were also studied in this work.

2. Materials and Methods
2.1. Synthesis

All starting materials were used as received without further processing, except for the
cutting of solid metals: Potassium metal (Thermo Fisher Scientific, Waltham, MA, USA,
99.5%, indium shot metal basis (Thermo Fisher Scientific, MA, USA, 99.9%), chromium
powder (Sigma-Aldrich, St. Louis, MO, USA, 99.5%), phosphorus powder (Alfa Aesar,
Ward Hill, MA, USA, 99.5%), sulfur powder (Thermo Fisher Scientific, MA, USA, 99.5%).
These reactants were stored in an argon-filled glovebox. Moisture and oxygen levels are
maintained below 0.5 ppm. All preparations were done in a glovebox and sealed under a
vacuum. All quartz ampoules were sealed under 100 mTorr.

2.1.1. KCrP2S7 Single Crystal Growth

0.4000 g of reactants were loaded into a 9 mm inner-diameter carbonized silica am-
poule at a stoichiometric ratio of K:Cr:P:S = 1:1:2:7. Potassium was rolled in pre-weighed
chromium powder before adding to the ampoule. After sealing, these reactants were loaded
into a programmable muffle furnace. The reactants were heated from room temperature
to 125 ◦C in 10 h, dwelled for 10 h, heated up to 700 ◦C in 10 h, dwelled for 96 h, and
then cooled to room temperature in 24 h. High quality large black needles were obtained.
Formation of KCrP2S7 was verified using powder X-ray diffraction (vide infra).

2.1.2. KInP2S7

0.5000 g total of reactants were loaded into a 9 mm inner-diameter carbonized silica
ampoule at a stoichiometric ratio of K:In:P2S5:S = 1.2:1:1:2, and in that order. P2S5 was
grown as a single phase via heating stoichiometric ratio of P and S at 350 ◦C for 24 h.
Ampoules were capped using parafilm and then pumped out of the glovebox for sealing.
The ampules were sealed to an inner-ampoule length of about 8.3 cm. After sealing the
ampoules, they were placed vertically in a programmable muffle furnace and separated, by
about 2.5 cm, in individual ampoule holders held in a homemade quartz holder setup. The
reactants were heated from room temperature to 125 ◦C in 10 h, dwelled for 10 h, heated up
to 650 ◦C in 10 h, dwelled for 96 h, ramped down for 24 h to room temperature. A second
annealing process was necessary to improve the phase purity. Amber single crystals and
an amber colored mass was obtained. Formation of KInP2S7 was verified using powder
X-ray diffraction (Figure S1). KInP2S7 and KCrP2S7 were stable in dry air for a few weeks.
Within a high moisture environment, KInP2S7 and KCrP2S7 would slowly decompose into
amorphous products.
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2.2. Powder X-ray Diffraction

Powder X-ray diffraction data were collected at room temperature using a Rigaku
Mini Flex VI diffractometer with Cu-Kα radiation (λ = 1.5406 Å) in the range 2θ = 10◦–80◦,
at a scan step of 0.04◦ with ten seconds exposure time.

2.3. UV-Vis Measurements

Diffuse-reflectance spectra were recorded at room temperature by a PERSEE-T8DCS
UV-Vis spectrophotometer equipped with an integration sphere in the wavelength range of
230−850 nm. The reflectance data, R were recorded and converted to the Kubelka-Munk
function, f (R) = (1 − R)2(2R)−1. The Tauc plots, (KM × E)2 and (KM × E)1/2, were applied
to estimate direct and indirect bandgaps, respectively.

2.4. Second Harmonic Measurements

Using the Kurtz and Perry method [38], powder SHG responses of KInP2S7 compound
were investigated by a Q-switch laser (2.09 µm, 3 Hz, 50 ns) with various particle sizes,
including 38.5–54, 54–88, 88–105, 105–150, and 150–200 µm. Homemade AgGaS2 was
selected as the reference. The lab-synthesized AgGaS2 crystals were ground to the same
size range as KInP2S7. The LDTs of the title compounds were evaluated on powder samples
(150−200 µm) with a pulsed YAG laser (1.06 µm, 10 ns, 10 Hz). The judgment criterion is as
follows: with increasing laser energy, the color change of the powder sample is constantly
observed by an optical microscope to determine the damage threshold. To adjust different
laser beams, an optical concave lens is added to the laser path. The damaged spot is
measured by the scale of the optical microscope.

2.5. TB-LMTO-ASA Calculations

The density of states (DOS), partial density of states (PDOS), band structure, crystal or-
bital Hamilton population (COHP), and electron localization function (ELF) of KInP2S7 are
calculated using the tight binding-linear muffin tin orbitals-atomic sphere approximation
(TB-LMTO-ASA) program [39,40]. The Barth-Hedin exchange potential was employed for
the LDA calculations [39]. The radial scalar-relativistic Dirac equation was solved to obtain
the partial waves. The basis set used contained K (4s), In (5s, 5p, 5d) P (3s, 3p) and S (3s, 3p)
orbitals, and was employed for a self-consistent calculation, with downfolded functions
of K (4p, 3d), In (4f, 5d), P (3d) and S (3d). The density of states and band structures were
calculated after converging the total energy on a dense k-mesh of KInP2S7 (16 × 16 × 16
points with 2064 irreducible k-points).

2.6. Magnetic Properties Measurements

Temperature dependence of magnetic susceptibility and isothermal magnetization
measurements were performed by using the ACMSII option of a physical properties
measurement system (PPMS).

3. Results and Discussion
3.1. Synthesis and Crystal Growth

To reduce the chance of incorporating foreign elements, a high temperature solid state
synthetic method was preferred in this study. Due to the high reactive nature of potassium
metals, the bottom of silica tubes was protected by amorphous carbon. Large mm-sized
single crystals of KCrP2S7 were collected as shown in Figure 1 inset. The powder X-ray
diffraction results confirmed the single-phase nature of KCrP2S7 as shown in Figure 1. The
large KCrP2S7 crystals were manually selected and cleaved for magnetic measurements
(vide infra). Pure samples of KInP2S7 were also collected after a high temperature solid
state reaction (Figure S1). The crystals of KInP2S7 did not grow as large as the KCrP2S7.
The final products of KInP2S7 are a mixture of KInP2S7 small crystals and polycrystalline
powder chunks.
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Figure 1. Powder X-ray diffraction results of KCrP2S7, the insert shows the optical microscope photo of
selected KCrP2S7 crystals. The crystals were manually cut and selected for properties measurements.

3.2. Crystal Structures

KCrP2S7 is isostructural to KInP2S7, which both crystallizes in the LiFeAs2O7 structure
type and the acentric C2 (no.5) space group [35]. The acentric nature of KInP2S7 is confirmed
by SHG measurements (vide infra). To simplify the discussion, KInP2S7 is selected to
present the structural chemistry. The structure of KInP2S7 is summarized in Figure 2b,d.
KInP2S7 possesses clear layered features, which is constructed by two-dimensional (2D)
[InP2S7]−slabs sandwiched by K+ cations. The detailed view of 2D [InP2S7]− slab is shown
in Figure 2d. The 2D [InP2S7]− slab is built by [InS6] octahedra and [P2S7] units. The
[InS6] octahedra are interconnected to the [P2S7] units via sharing edges and vertices. The
[P2S7] units are made by two [PS4] tetrahedra via sharing one apex sulfur atom. Each
In atom is in the center of a distorted octahedron with the In-S distance falling into the
range of 2.581–2.698 Å [35]. The P-S distances within [PS4] tetrahedra are 2.005–2.137 Å,
which are comparable to many thiophosphates such as α-Ba2P2S6 (1.99(2)–2.04(2) Å) [15], β-
Ba2P2S6(2.017(2)–2.028(2) Å) [15], Pb2P2S6(2.011(19)–2.040(18) Å) [15], K2BaP2S6 (1.958(17)–
2.066(15) Å) [41], KSbP2S6 (1.962(1)–2.077(1) Å) [42], KBiP2S6 (1.961(3)–2.059(3) Å) [43],
Pb3P2S8 (2.031–2.065 Å) [44], etc.
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Figure 2. (a) Ball-stick structure of Fe2P2S6 viewed along [010] direction, (b) ball-stick structure of
KInP2S7 viewed along [100] direction, (c) a detailed view of [FeP2S3] layers within Fe2P2S6 viewed
along [101] direction, (d) a detailed view of [InP2S7]− layer within KInP2S7 viewed along [101]
direction. Fe: orange, P: black, S: yellow, K: green, In: pink.
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One interesting point here would be the structure relationship between KInP2S7 and
M2P2S6 (M = Mg, Mn, Fe, Co, Ni, Zn, Cd, Pb, Sn or mixed occupancy of two metals)
systems as shown in Figure 2 [31,45–54]. The M2P2S6 system has emerged as an important
system due to their 2D layered crystal structure coupled with highly tunable chemical
properties via mixing various metals within the crystal lattice [31,45–54]. KInP2S7 shows
quasi-layered features as shown in Figure 2b. Using Fe2P2S6 as an example to present the
structure of the M2P2S6 system, which is shown in Figure 2a,c. The Fe2P2S6 is constructed
by neutral [Fe2P2S6] slabs, which are constructed by [FeS6] octahedron and [P2S6] motifs.
Within the asymmetric unit cell of Fe2P2S6, there are two independent Fe atomic positions.
With leaving one Fe atomic position vacant and replacing another Fe atomic position by In
atoms, the neutral [Fe2P2S6] slabs were changed to [InP2S6]− slabs. The P-P homoatomic
bonds are broken with incorporation of In atoms, which results in the oxidation states for P
changing from 4+ to 5+. One additional sulfur atom is incorporated in to [InP2S6]− slabs to
link [PS4] tetrahedra, which forms [InP2S7]- slabs. Please notice, each [InS6] octahedral was
shifted along [010] direction about 1

4 b distance. The negatively charged [InP2S6]− slabs
are compensated by inserting K+ cations. The trivalent In atoms within KInP2S7 can be
replaced by isovalent transition metals such as Cr3+ and V3+, which introduce potential
magnetic application into this system.

3.3. Bonding Pictures of KInP2S7

The AIIIP2S7 (A = K, Rb, Cs; III = V, Cr, In) family crystallizes in acentric C2
(no. 5) space group. The basic building units for KInP2S7 are intrinsically distorted
[PS4] tetrahedron and [InS6] octahedron. The P-S distances within [PS4] tetrahedra are
2.005–2.137 Å. The bonding picture studies shows the covalent bonding nature of P-S inter-
actions (Figure 3a). There are obvious attractors located between the P and S atoms. The
covalent P-S interactions exhibit strong bonding characters with −ICOHP of 5.738 eV/bond
for 2.05 Å P-S interactions. (Figure 3b). The P-S interactions were revealed to play an im-
portant role for contributing to the optical properties of KInP2S7 (vide infra). The distorted
[InS6] octahedron is shown in Figure 3c. The central In atom is surrounded by four In-S
interactions of 2.58 Å and two elongated In-S interactions of 2.70 Å, namely a 4 + 2 coor-
dination environment. The two elongated 2.70 Å In-S interactions are located at the axial
position and equatorial position, respectively. The COHP calculation (Figure 3b) and ELF
(Figure S2) calculation indicated strong ionic interaction nature of In-S interactions. The cal-
culated –ICOHPs for 2.58 Å In-S interactions and 2.70 Å In-S interactions are 1.939 eV/bond
and 1.355 eV/bond, respectively. The distorted [InS6] octahedron contribute less than that
of distorted [PS4] tetrahedron to the total optical properties of KInP2S7 (vide infra).
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3.4. Magnetic Properties of KCrP2S7

The layered crystal structure coupled with flexible chemical properties of the AIIIP2S7
(A = K, Rb, Cs; III = V, Cr, In) family indicate the potential broad applications such as
magnetic properties and optical applications and the interface between them. Hence,
we measured the magnetic properties of high quality KCrP2S7 crystals (Figure 1 inset).
Figure 4a shows the zero-field cooling (ZFC) and field cooling (FC) temperature dependene
of the magnetic susceptibility of a KCrP2S7 single crystal measured under a magnetic field
of 1 T employed within the ab plane. A clear peak is observed at 21 K, which should
be attribute to an antiferromagnetic transition because of the overlaping of the ZFC and
FC data and a neagtive Weiss temperature of −50 K from fitting the data to the modied
Curie-Weiss law (Figure 4a). The antiferromagnetic state is also consistent with the linear
field dependence in the low field region of the isothermal magnetization, as shown in
Figure 4b. At T = 2 K, a metamagnetic spin-flop transtion is observed around 3 T, which
is suppressed up on increasing temeprature and disappears above the magnetic ordering
temeprature (Figure 4b). Such spin-flop transition is not observed under an out-of-plane
magnetic field. (Figure 4b, inset). These observations agree well with the antiferromagnetic
ground state with an inplane easy axis of the Cr3+ moment. Similar scenario has also been
observed in other layered magnetic materials such as NiPS3 [55]. The effective magnetic
moment µeff estimated from the Curie constant of the fits are 3.80 µB, which agrees well
with the theoretical values of trivalent Cr3+ (3.87 µB). A previous study of KCrP2S7 crystals
grown by KBr also found an antiferromagnetic transition at 17 K [37]. The calculated µeff
with employing H//c* is 3.95 µB [37]. In this work, high quality crystals were grown by
solid state chemistry method, which eliminated the possibility of incorporation of foreign
elements. The trivalent M3+ is also supported by the electron-precise nature of KInP2S7,
where In is also trivalent (vide infra).
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3.5. Electronic Structures of KInP2S7

Since the trivalent nature of III metals are within the AIIIP2S7 (A = K, Rb, Cs;
III = V, Cr, In) family, the charge-balanced formula (A+)(III3+)(P5+)2(S2−)7 can be established
by assigning a formal charge of 1+ to the alkali metals, 5+ to the P atoms, and 2− to the
sulfur atoms. The charge-balanced nature of KInP2S7 was verified by TB-LMTO-ASA
calculations (Figure 5) and UV-Vis measurements (vide infra). KInP2S7 is predicated to
be an indirect bandgap semiconductor with the top of valance band and the bottom of
conduction band located at the A points and the Λ points, respectively. The energy gap
separating the conduction band and the valence band is 2.38 eV, which is comparable to
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the experimentally measured value of 2.4(1) eV (vide infra). The top of the valance band
is mainly contributed by S 3p orbitals (Figure 5b) together with very small contribution
from the In 5s and 5p orbitals. There is no accountable contribution from P 3p orbitals
and K 4s orbitals at the bottom of the top of valence band. The S 3p orbitals and the P 3p
orbitals significantly contribute to the bottom of the conduction band, where very small
amounts are contributed are from the In 5s and 5p orbitals and K 4s orbitals. Hence, we can
anticipate that the optical properties of KInP2S7 are mainly contributed by [PS4] tetrahedra
units coupled with certain contribution from the [InS6] octahedra.
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3.6. Linear and Nonlinear Optical Properties of KInP2S7

KCrP2S7 is estimated to have a very small bandgap with the black appearance of the
crystals. Hence, the optical properties were mainly carried on KInP2S7. The bandgap of
KInP2S7 was estimated by UV-Vis measurements. The experimentally measured value is
2.4(1) eV (Figures S3 and S4), which agrees well with our theory study of 2.38 eV. KInP2S7
was predicated by L. Kang et al. to possess moderate SHG effects (18 × KDP) [2]. Our
experiments verified this predication as shown in Figure S5. KInP2S7 does not exhibit type-
I phase-matching behavior, where the SHG intensity increases first then decreases with
particle size increasing. For KInP2S7 sample of particle size of 100 µm, the SHG intensity
of KInP2S7 is about 0.51 × AgGaS2. Notice that, the quality of crystals may affect the
SHG response [45]. KInP2S7 exhibited impressively high LDT of 5.2 × AgGaS2 (Table S1),
which may originate from its high bandgap. More study is required to understand the
high LDT of KInP2S7., The optical properties of KInP2S7 are dominantly contributed by
[PS4] tetrahedra. Hence, a future bandgap engineering possibility is to modify the [PS4]
tetrahedron, in example, by introducing As atoms or Sb atoms to replace P atoms so to
suppress the bandgap and enhance SHG response [56]. To further understand the optical
properties of KInP2P7, a DFT calculation is undergoing [57–59].

4. Conclusions

Two structurally known thiophosphates, KInP2S7 and KCrP2S7, were revisited in this
work. Single phases and crystals of KInP2S7 and KCrP2S7 were grown by high temperature
solid state reactions. KCrP2S7 is isostructural to KInP2S7, which features a layered structure.
KInP2S7 and KCrP2S7 possess a close relationship to the layered thiophosphate M2P2S6,
where the divalent metals within M2P2S6 are replaced by In3+ or Cr3+ and break down the P-
P interactions. The K cations were inserted between [MP2S7]−M = Cr or In to compensate the
charge and fill the space. Magnetic measurement on mm-sized crystals of KCrP2S7 verified
the antiferromagnetic transition around 21K and the trivalent nature of Cr atoms. The
bonding pictures of KInP2S7 were studied by ELF coupled with COHP calculations. The
intrinsically distorted [PS4] tetrahedra and [InS6] octahedra are made by strong covalent
P-S interactions and ionic In-S interactions, respectively. KInP2S7 is predicated to be an
indirect bandgap semiconductor of 2.38 eV, which is confirmed by the UV-Vis measurement
of 2.4(1) eV. Electronic structure analysis confirmed that the main contributing factor to
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the optical properties of KInP2S7 are [PS4] tetrahedra while small amounts of contribution
are from [InS6] octahedra. KInP2S7 is not a type-I phase-matching materials and exhibits
moderate SHG response (0.51 × AgGaS2, sample of particle size of 100 µm). The LDT of
KInP2S7 is very high at 5.2 × AgGaS2. Bandgap engineering were undergone to enhance
the SHG response of KInP2S7.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12111505/s1, Room temperature powder X-ray diffraction
data (Figure S1), ELF calculation (Figure S2), UV-Vis data (Figure S3), Tauc plots (Figure S4), SHG
measurements (Figure S5), LDT measurement results (Table S1).
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