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Abstract: A straightforward one-pot route for the synthesis of a new 4-phenyl-1,2,5,6-tetraazafluoranthen-
3(2H)-one is reported form the direct hydrazinolysis of triketo ester and hydrazine hydrate in
ethanol. 4-Phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one was subjected to aza-Michael addition and
N-alkylation on reaction with a set of alkylating agents in the presence of K2CO3. Hydrazinolysis of
4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one ester to hydrazide and conversion of hydrazide to
thiosemicarbazide were successful. X-Ray single crystals analysis and 1H, 13C NMR were used for
unambiguous structure confirmation. The O . . . H, N . . . H, C . . . N and C . . . C in 2, and the N . . .
H, C . . . N, C . . . C, C . . . O and H . . . H interactions in 6 are the most important in the molecular
packing based on Hirshfled analysis. Moreover, the presence of short C . . . C and C . . . N contacts in
both compounds revealed the presence of π–π stacking interactions.

Keywords: fluoranthenes; polycyclic aromatic heterocycles; aza-Michael addition; N-alkylation;
Hirshfeld Analyses

1. Introduction

Polycyclic aromatic heterocycles are a class of chemicals include multi-ring aromatic
compounds. In particular, fluoranthenes [1–3] are an example of four fused aromatic hetero-
cycles which recentlyreceived a lot of attention, because this core structure has remarkable
applications such as organic electronics [4]. Fluoranthene is a building block which was
found in many natural products, for example, daldinone E (fungus Daldinia sp.) [5], and
hortein (which is a fungus Hortaea werneckii associated with the sponge Aplysina aero-
phoba) [6]. In a different application of fluoranthenes which was discovered as fluorescent
probe (FLUN-550) is a new class of live cell permeant, nontoxic, selective staining and
intracellular lipid droplets quantifications based fluoranthenes [7].

Design and synthesis of new substituted of fluoranthenes have been gaining a lot of
interest in the last decade. The synthetic roads for this interesting scaffold reported in the
literatures though transition metal mediated [8–19] or Diels–Alder reactions [20–23].

Indeed, the palladium compound, Pd2(dba)3 (20 mol%) was employed as active
catalyst for the reaction between 1,8-dichloronaphthalenes and arylboronic acid at elevated
temperature (up to 175 ◦C) to afford the fluoranthenes derivatives [24]. Another approach
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that utilized the Pd-catalyst system was achieved for the synthesis of fluoranthenes which
proceeded via three steps based on the inter- and intramolecular C-H arylation [25].

The Suzuki−Miyaura reaction also is considered one of the synthetic protocols for
the synthesis of fluoranthenes derivatives initiating form 1,8-diiodonaphthalene in the
presence of palladium catalysts [26]. Koutentis et al. also explored the chemistry of this
interesting scaffold which synthesized the aza-analogues by the oxidative and non-oxidative
cyclization approach [27]. Other approaches employed the silica sulphuric acid: a reusable
solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under
solvent-free conditions [28].

Recently, Boraei et al. have demonstrated a green and straightforward method for
the synthesis of tatraazafluoranthenones starting from ninhydrin and ethyl acetoacetate
(β-ketoesters) in water as a green solvent [29].

In this article, we are validating the application of our previous published method
and used other β-ketoesters (ethyl benzoylacetate) and ninhydrin for the synthesis of new
tatraazafluoranthenone analogues in straightforward, one-pot free catalyst route (Figure 1).
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Figure 1. Retro-synthesis of the fluoranthenes.

2. Materials and Methods

General Information
“Stuart Melting Point apparatus [SMP10], Bibby Scientific Ltd., (Wilmington, DE, USA)

was used for measuring melting points in open capillaries and were uncorrected. Monitor-
ing of reactions progress was done using TLC Merck aluminum-precoated silica gel plates
(60 Å, F254). Product spot visualization was achieved using UV light. NMR spectra were
detected using Bruker spectrometer at 400 MHz for 1H NMR and at 100 MHz for 13C NMR
calibrated by (TMS, 0 ppm) as internal standard” (Supplementary Materials).

Synthesis of Ethyl 2-(2-hydroxy-1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-3-oxo-3-
phenylpropanoate (1)

This compound was synthesized and characterized according to the reported proce-
dures [30,31].

Synthesis of 4-Phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one (2)
A mixture of triketo ester 1 [6.4 g, 18.2 mmol] and hydrazine hydrate [3.0 mL] was

heated under refluxed in ethanol [10.0 mL] until ppt appeared (about 0.5–1 our). The
reaction mixture cooled to room temperature and the formed solid was filtered, dried, and
recrystallized from DMF/EtOH.

Yield (3.0 g, 55%), m.p. >300 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 13.22 (s, 1H), 8.23
(d, J = 6.3 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.9 Hz, 2H), 7.69–7.68 (m, 2H),
7.55–7.54 (m, 3H); 13C NMR (100 MHz, DMSO-d6) δ 158.1, 157.9, 157.1, 145.0, 137.3, 135.8,
135.7, 132.9, 131.7, 130.6, 130.4, 128.2, 127.6, 123.8, 123.1, 118.9; Elemental analysis (CHN)
calculated for [C18H10N4O]: C, 72.48, H, 3.38, N, 18.78, O, 5.36 found C, 72.61, H, 3.42,
N, 18.65.

Michael Addition procedure
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A mixture of Michael donor 2 (0.6 g, 2.0 mmol) and Michael acceptor-acrylonitrile
(0.12 g, 2.2 mmol) was refluxed in ethanol (10.0 mL) containing Et3N (0.31 mL, 2.2 mmol)
for 6 h. The mixture was cooled, the solid was filtered, and recrystallized from ethanol.

3-(3-Oxo-4-phenyl-1,2,5,6-tetraazafluoranthen-2(3H)-yl)propanenitrile (3)
Yield (0.55 g, 77%), m.p. 229–230 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.26 (s, 1H),

8.02 (s, 1H), 7.91 (s, 2H), 7.72 (s, 2H), 7.57 (s, 3H), 4.46 (s, 2H), 3.06 (s, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 158.1, 157.2, 156.7, 144.7, 137.3, 135.5, 133.1, 132.2, 130.6, 130.4,
128.1, 127.2, 124.0, 123.4, 118.9, 118.2, 48.3, 16.9; Elemental analysis (CHN) calculated for
[C21H13N5O]: C, 71.79; H, 3.73; N, 19.93, O, 4.55 found C, 71.81; H, 3.83; N, 19.71.

Alkylation procedure
A mixture of tetraazafluoranthen-3(2H)-one 2 (0.6 g, 2.0 mmol) and K2CO3 (0.3 g, 2.2 mmol),

in equal volumes of dry acetone/DMF (10 mL) was stirred for one hour, then alkyl halide
(2.2 mmol) was added portion wise, and the reaction mixture was left on stirring overnight
(the reaction is monitored by TLC and reflux is fixed if reaction did not complete). Then,
the solvent was removed, water was added for complete precipitation and the formed solid
was collected by filtration, dried, and recrystallized from EtOH or DMF/EtOH.

2-Allyl-4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one (4)
Yield (0.54 g, 79%), m.p. 190–191 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.34–8.26 (m, 1H),

7.99–7.98 (m, 3H), 7.66–7.54 (m, 5H), 6.13–6.04 (m, 1H), 5.37 (d, J = 17.2 Hz, 1H), 5.30
(d, J = 10.2 Hz, 1H), 4.91 (d, J = 5.9 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 158.1, 157.5,
156.3, 144.7, 137.3, 135.5, 134.8, 132.2, 131.8, 131.4, 130.5, 130.3, 128.0, 126.8, 124.00, 123.0,
119.1, 117.6, 55.6; Elemental Analysis calculated for [C21H14N4O]: C, 74.54; H, 4.17; N, 16.56,
O, 4.73 found C, 74.69; H, 4.30; N, 16.61.

2-Benzyl-4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one (5)
Yield (0.64 g, 83%), m.p. 224–225 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.24 (s, 1H),

8.00 (s, 1H), 7.88 (s, 2H), 7.69 (s, 2H), 7.55 (s, 3H), 7.39 (s, 2H), 7.31 (d, J = 19.8 Hz, 3H),
5.41 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 158.2, 157.3, 156.8, 144.8, 137.4, 137.2, 135.7,
132.9, 132.0, 130.6, 130.3, 128.9, 128.1, 127.9, 127.3, 123.9, 123.3, 118.4, 56.0; Elemental
Analysis calculated for [C25H16N4O]: C, 77.30; H, 4.15; N, 14.42, O, 4.12 found C, 77.43; H,
4.21; N, 14.31.

2-Pentyl-4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one (6)
Yield (0.45 g, 61%), m.p. 116–117 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.29–8.28 (m,

1H), 7.99–7.97 (m, 3H), 7.65–7.54 (m, 5H), 4.29 (t, J = 7.5 Hz, 2H), 1.95–1.74 (m, 2H),
1.41–1.40 (m, 4H), 0.93 (t, J = 6.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 158.1, 157.5, 156.4,
144.2, 137.2, 135.7, 134.9, 132.2, 131.3, 130.4, 130.3, 128.0, 126.6, 124.0, 122.8, 117.5, 53.4, 28.9,
28.5, 22.4, 14.0; Elemental analysis (CHN) calculated for [C23H20N4O]: C, 74.98; H, 5.47; N,
15.21, O, 4.34 found C, 75.11; H, 5.63; N, 15.30.

Ethyl 2-(3-oxo-4-phenyl-1,2,5,6-tetraazafluoranthen-2(3H)-yl)acetate (7)
Yield (0.63 g, 81%), m.p. 189–190 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 7.1 Hz, 2H),

7.99–7.96 (m, 3H), 7.75–7.53 (m, 4H), 4.96 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 168.0, 158.1, 157.4, 156.8, 145.3, 137.5, 135.2, 134.7, 132.3, 131.8,
130.5, 130.3, 128.0, 127.3, 124.1, 123.2, 117.6, 62.0, 52.8, 14.2; Elemental Analysis calculated
for [C22H16N4O3]: C, 68.74; H, 4.20; N, 14.58, O, 12.49 found C, 68.88; H, 4.14; N, 14.41.

Synthesis of 2-(3-Oxo-4-phenyl-1,2,5,6-tetraazafluoranthen-2(3H)-yl)acetohydrazide (8)
Tetraazafluoranthen-3(2H)-one ethyl ester 7 (0.77 g, 2.0 mmol) and hydrazine hydrate

80% (2.0 mL) was refluxed in ethanol (10 mL) for 2 hours, left to cool, the formed solid
product was collected by filtration, dried, and recrystallized from EtOH.

Yield (0.67 g, 90%), m.p. 287–288 ◦C.1H NMR (400 MHz, DMSO-d6) δ 9.26 (s, 1H),
8.30–8.27 (m, 1H), 8.04–8.02 (m, 1H), 7.90–7.87 (m, 2H), 7.74–7.72 (m, 2H), 7.62–7.51 (m, 3H),
4.81 (s, 2H), 4.31 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.3, 158.2, 156.9, 144.8, 137.3,
135.5, 133.1, 132.2, 130.6, 130.5, 128.2, 127.5, 124.0, 123.4, 118.3, 55.0; Elemental Analysis
calculated for [C20H14N6O2]: C, 64.86; H, 3.81; N, 22.69, O, 10.91 found C, 64.99; H, 3.93;
N, 22.61.
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Synthesis of 2-(2-(3-Oxo-4-Phenyl-1,2,5,6-tetraazafluoranthen-2(3H)-yl)acetyl)-N-
phenylhydrazine-1-carbothioamide (9)

To the tetraazafluoranthene-hydrazide 8 (0.74 g, 2.0 mmol) in ethanol (10 mL), phenyl
isothiocyanate (0.26 mL, 2.2 mmol) was added. The mixture was refluxed for 4 hours,
then cooled. The solid product was collected by filtration, dried, and recrystallized from
DMF/EtOH.

Yield (0.82 g, 82%), m.p. >300 1H NMR (400 MHz, DMSO-d6) δ 10.40 (s, 1H), 9.82 (s, 1H),
9.36 (brs, 1H), 8.31–8.29 (m, 1H), 8.10–7.95 (m, 1H), 7.94–7.87 (m, 2H), 7.79–7.69 (m, 2H),
7.66–7.50 (m, 3H), 7.41–7.39 (m, 2H), 7.31 (t, J = 7.8 Hz, 2H), 7.19 (t, J = 7.7 Hz, 1H),
5.03 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 181.0, 166.9, 158.1, 157.2, 157.0, 144.8, 139.3,
137.2, 135.4, 133.1, 132.2, 130.6, 128.6, 128.2, 127.2, 125.6, 124.0, 123.4, 118.0, 55.6; Elemental
Analysis calculated for [C27H19N7O2S]: C, 64.15; H, 3.79; N, 19.39; O, 6.33; S, 6.34 found C,
64.31; H, 3.71; N, 19.29; S, 6.37.

3. Results and Discussion
3.1. Chemistry

Hydrazinolysis of triketo ester 1 by hydrazine hydrate in ethanol under reflux for
0.5-1 h, fascinatingly, gave 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 2 in moderate
yield (55%) (Scheme 1). The 1H NMR displayed, in addition to the aromatic proton signals
between δ 8.23 and 7.55 ppm, a signal at δ 13.22 ppm for NH. The 13C NMR showed all
carbons between δ 158.1 and 118.9 ppm.
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Scheme 1. Synthesis of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 2.

Aza-Michael addition was explored from the addition of 2 to acrylonitrile in ethanol
and the presences of Et3N to give the Michael adduct 3 in good yield (Scheme 2). The
Michael adduct revealed two new signals at δ 4.46 and 3.06 ppm in 1H NMR and their
respective carbons appeared at δ 48.3 and 16.9 ppm in 13C NMR which strongly support
aza-Michael addition, not oxa-Michael addition.
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Alkylation of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 2 with allyl bromide,
benzyl bromide, amyl bromide, and ethyl chloroacetate was done in acetone/DMF and
use of K2CO3 as proton capturer which led to N-alkylation and formation of aza-alkylated
products 4–7 in good yields (Scheme 3). The allylated product 4 spectra demonstrated that
the allyl group protons as: The sp2 vinylic methine proton CH2=CH- appeared as multiplet
between 6.13 and 6.14 ppm, the vinylic sp2 methylene protons H2C=CH- were found as
two doublet signals, one of them at 5.37 ppm with coupling constant value 17.2 Hz for
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the trans proton, and the other was deduced at 5.30 ppm with 3J value 10.2 Hz for the cis
proton. The allylic sp3 methylene protons NCH2 was established as doublet at 4.91 ppm.
The allylic carbon atom NCH2 was detected at δ 55.6 ppm. The benzylated compound
5 showed the benzyl methylene protons as singlet at 5.41 ppm and the corresponding
benzylic methylene carbon at δ 56.0 ppm. The amylated tetraazafluoranthen-3(2H)-one
6 showed the amyl group protons at δ 4.29, 1.95–1.74, 1.41–1.40, and 0.93 ppm and the
respective amyl carbons at δ 53.4, 28.5, 22.4, and 14.0 ppm. The esterified product 7 showed
a singlet signal at 4.96 ppm for NCH2, a quartet signal at δ 4.29 ppm for OCH2, and a triplet
signal at δ 1.26 ppm for CH3. The 13C NMR displayed the carbonyl carbon of the ester
group at δ 168.0 ppm, the OCH2 at 62.0 ppm, NCH2 at δ 52.8 ppm, and CH3 at δ 14.2 ppm.
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Scheme 3. Aza-alkylation of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one2 with a set of alkylat-
ing agents.

Reaction of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one ester 7 with hydrazine
hydrate afforded the hydrazide 8 which was subjected to reaction with phenyl isothio-
cyanate in ethanol to afford the thiosemicarbazide 9 (Scheme 4). The 4-phenyl-1,2,5,6-
tetraazafluoranthen-3(2H)-one hydrazide 8 displayed the hydrazide group protons at δ 9.26
and 4.31 ppm for NH and NH2, respectively, in addition to the NCH2 protons at δ 4.81 ppm.
The 13C NMR showed the carbonyl carbon of the hydrazide group at δ 166.3 ppm and
the NCH2 methylene carbon at δ 55.0 ppm. The 4-phenyl-1,2,5,6-tetraazafluoranthen-
3(2H)-one thiosemicarbazide 9 showed the three NH protons signals at δ 10.40, 9.82, and
9.36 ppm. The respective 13C NMR detected the thiocarbonyl carbon (C=S) at δ 181.0 ppm,
the carbonyl carbon (C=O) at δ 166.9 ppm, and the NCH2 methylene carbon at δ 55.6 ppm.

3.2. X-ray Discerption of Compounds 2 and 6

The X-ray structure of 2 is presented in Figure 2A. The structure of 2 crystallized in the
orthorhombic crystal system and Pbca space group with lattice parameters: a = 12.82600(10)
Å, b = 7.80290(10) Å andc = 26.6306(2) Å, and unit cell volume of 2665.19(4) Å3 and Z = 8
(Table 1). There are four fused ring systems which are almost coplanar. The phenyl ring
attached to this fused system is twisted from its mean plan by 47.96◦Selected geometric
parameters of 2 are listed in Table 2.
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Figure 2. ORTEP of compounds 2 (A) and 6 (B).

The supramolecular structure of 2 is dominated by the N4-H4 . . . N1 hydrogen
bonding interactions leading to the hydrogen bonding polymer shown in the upper part of
Figure 2. The hydrogen bond parameters are listed in Table 3. In addition, the hydrogen
bonded chains are stacked to each other via significant amount of π–π contacts. The shortest
π–πstacking interactions are listed in Table 4. Hence, the supramolecular structure of 2
could be described by 1D hydrogen bonding polymer along the b-direction (Figure 3; upper
part) combined with π–π stacking interactions along the a-direction (Figure 3; lower part).

The X-ray structure of 6 is presented in Figure 2B. The structure of 6 crystallized in the
less symmetric monoclinic crystal system and P21/c space group with lattice parameters:
a = 5.26840(10) Å, b = 15.21900(10) Å, c = 22.7155(2)Å, α = γ = 90 while β = 93.6920(10) and
unit cell volume of 1817.54(4) Å3 and Z = 4. Selected geometric parameters of 6 are listed
in Table 2. In this case, the mean plane of the almost coplanar fused ring system and the
phenyl ring attached to it are twisted from one another by 40.66◦. The value of the twist
angle is less than that in 2. The packing in 6 is dominated by π–π stacking interactions
shown in Figure 4 and the shortest interactions between the stacked π-system are listed in
Table 4.
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Table 1. Crystal data of 2 and 6.

Identification Code 2 6

CCDC 2,129,954 2,129,955
empirical formula C18H10N4O C23H20N4O

Fw 298.30 368.43
temp (K) 120(2) K 120(2)

λ(Å) 1.54184 Å 1.54184
Cryst. Syst. Orthorhombic Monoclinic
space group Pbca P21/c

a (Å) 12.82600(10) 5.26840(10)
b (Å) 7.80290(10) 15.21900(10)
c (Å) 26.6306(2) 22.7155(2)

α, β, γ (deg) α = β = γ = 90 α = γ = 90;
β = 93.6920(10)

V (Å3) 2665.19(4) 1817.54(4)
Z 8 4

ρcalc (Mg/m3) 1.487 1.346
µ(Mo Kα) (mm−1) 0.787 0.677

No. reflns. 37,511 46,295
Unique reflns. 2802 3840

Completeness to θ = 67.684◦ 100% 100%
GOOF (F2) 1.057 1.052

Rint 0.0290 0.0377
R1

a (I ≥ 2σ) 0.0328 0.0356
wR2

b (I ≥ 2σ) 0.0958 0.0901
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

Table 2. Selected bond lengths [Å] and angles [◦] for 2.

2

O(1)-C(10) 1.2109(12)
N(1)-C(9) 1.3153(13)
N(1)-N(2) 1.3726(12)
N(2)-C(12) 1.3361(13)
N(3)-C(7) 1.3034(14)
N(3)-N(4) 1.3660(12)
N(4)-C(10) 1.4089(12)

6

O(1)-C(18) 1.2207(13)
N(1)-C(7) 1.3415(13)
N(1)-N(2) 1.3709(12)
N(2)-C(8) 1.3168(13)
N(3)-N(4) 1.3716(12)
N(3)-C(18) 1.4137(13)
N(3)-C(19) 1.4696(12)

Table 3. Hydrogen bonds for 2 [Å and ◦].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(4)-H(4)...N(1)#1 0.927(18) 1.992(18) 2.9135(12) 172.3(13)
Symmetry code: #1 x, y−1, z
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Table 4. π–π stacking for 2 and 6 [Å and ◦].

Contacts Length Contacts Length

2 6

C1 . . . C7 3.387 N2 . . . C5 3.195
C1 . . . C8 3.378 C11 . . . C8 3.344

C3 . . . C10 3.334 C12 . . . C15 3.303
C6 . . . C9 3.337 C14 . . . C18 3.301
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3.3. Analysis of Molecular Packing

Each crystal has its characteristic Hirshfeld surfaces which shed the light on the
important intermolecular interactions which play important role in the crystal stability.
In Figure 5, the different mapped surfaces of compounds 2 and 6 are summarized. The
dnorm indicated a number of red spots related to intermolecular contacts shorter than the
vdWs radii sum of the interacting atoms. In compound 2, the most important contacts are
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the O . . . H, N . . . H, C . . . N and C . . . C interactions. On the other hand, the N . . . H,
C . . . N, C . . . C, C . . . O and H . . . H interactions are the most important. Summary of
these short contacts and the corresponding interaction distances are depicted in Table 5.
The results revealed very well the presence of large number of C . . . C and C . . . N contacts
in both compounds which confirm the presence of π–π stacking interactions. Generally,
these contacts occurred at longer interaction distances in 2 compared to 6. In addition,
the red/blue triangles in the shape index and large green area in curvedness are other
evidences on the presence of π–π stacking interactions (region D in Figure 5).
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Table 5. Short contacts in compounds 2 and 6.

Contact Distance Contact Distance

2 6

N1 . . . H1 1.911 N2 . . . H13 2.446
N2 . . . H14 2.584 C5 . . . N2 3.195
O1 . . . H17 2.405 C11 . . . C8 3.344
C10 . . . N2 3.227 C12 . . . C15 3.303
C1 . . . C7 3.387 C14 . . . C18 3.301
C1 . . . C8 3.378 C15 . . . O1 3.158

C3 . . . C10 3.334 H1 . . . H1 2.108
C6 . . . C9 3.337
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On the other hand, analysis of the fingerprint plot gave a quantitative summary
for all intermolecular contacts occurred in the crystal structure of compounds 2 and 6
(Figure 6).The decomposition of the fingerprint plot gave a quantitative summary for all
contacts that occurred in the crystal structures of compounds 2 and 6 (Figure 7). It is
clear that the most frequent contacts in both compounds are the H . . . H interactions. The
percentages of H . . . H interactions are 53.6 and 32.4% in compounds 2 and 6, respectively.
The shortest H . . . H contacts in 6 are H1 . . . H1 with interaction distance of 2.108 Å. In 2,
all H . . . H contacts are significantly long and are considered of less importance compared
to compound 6. The second most frequent contacts are the C . . . H interactions which
comprised 15.9 and 23.1% from the whole interactions occurred in the crystal of 2 and 6,
respectively. In compound 2, the percentages of the important O . . . H, N . . . H, C . . . N
and C . . . C interactions are 3.5%, 13.6%, 2.2%, and 8.3%, respectively. Both O . . . H and
N . . . H contacts appeared as sharp spikes in the fingerprint plot (Figure 6). As a result,
these interactions are considered strong and play an important role in the crystal stability
of 2 and the π–π stacking interactions as well. The spikes of the N . . . H and O . . . H
interactions in 6 are less sharp, indicating weaker interactions than those that occurred in 2.
The percentages of the O . . . H, N . . . H, C . . . N and C . . . C interactions in 6 are 9.0, 15.8,
7.3, and 9.1%, respectively.
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Figure 7. All intermolecular interactions in compounds 2 and 6.

4. Conclusions

In conclusion, this manuscript introduced a direct one-pot method for obtaining 4-
phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one from triketo ester to validate the application
of our previous published method. Herein, another β-ketoester (ethyl benzoylacetate) was
used for obtaining the triketo ester which used for the synthesis of tatraazafluoranthenone.
On reaction with Michael acceptors like acrylonitrile, aza-Michael addition was produced.
Alkylation of tetraazafluoranthen-3(2H)-one in the presence of K2CO3 led to N-alkylation,
not O-alkylation, this evidence was deduced from the 13C NMR signal around 50.00 ppm
for NCH2. Hydrazinolysis of 4-phenyl-1,2,5,6-tetraazafluoranthen-3(2H)-one ester led to
hydrazide formation which is converted to thiosemicarbazide by reaction with phenyl
isothiocyanate. Different intermolecular interactions that occurred in the crystal structures
of compound 2 and 6 were analyzed using Hirshfled calculations.
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