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Abstract: Topological materials with Dirac electron systems have been extensively studied. Organic
crystalline materials form a unique group of such compounds with well-defined crystal structures.
While most organic compounds require high pressures to exhibit Dirac-cone-type band structures, the
title compound, α-STF2I3, has garnered increasing interest due to its Dirac-cone-type band structure
under ambient pressure. Various experiments have been conducted under ambient pressure; their
results can be compared with those of theoretical calculations to obtain insights into Dirac electron
systems. However, structural disorder peculiar to the STF molecules in the solid-state has prevented
any type of theoretical calculation of the states. In this study, we report a new method for calculating
intermolecular interactions in disordered systems based on the extended Hückel approximation. This
method enables band calculations, suggesting that this material is a rare example of a system close
to merging. The obtained band structure indicates that the characteristic disorder in the STF solids
distributed electrons equally on the sulphur and selenium atoms as if they belong to an imaginary
element between sulphur and selenium and are arranged without disorder.

Keywords: crystalline organic charge-transfer complexes; disordered systems; overlap integrals;
extended Hückel approximation; Dirac electrons; zero-gap semiconductors; merging of Dirac cones

1. Introduction

Recently, Dirac electron systems (DESs), which are characterised by massless rela-
tivistic electrons with speeds of 1/100–1/1000th of the velocity of light, have been widely
studied. The majority of the studies on DESs are theoretical because of the limited avail-
ability of DES materials [1–9]. Concerning the general molecular systems, the electronic
structures including those under high pressure are calculated by DFT methods [10–12]. Al-
though DESs were initially found in graphene [13,14] and some inorganic compounds [15],
those found in organic compounds [16] possess clear advantages over their inorganic
counterparts. For example, most organic DESs are found in bulk systems with well-defined
crystal structures and chemical stoichiometries, whereas inorganic DESs often lack either
of these two features. However, organic DESs have some disadvantages; for example,
most become DES only under high pressure [17–20], unlike inorganic DESs. Performing
detailed, accurate experiments and measurements (including crystal structure analyses)
at high pressures is more complicated than those at ambient pressure. In this regard,
the organic charge-transfer (CT) complex, α-STF2I3 (Figure 1; STF = bis(ethylenedithio)-
diselenadithiafulvalene), is unique as it contains Dirac electrons at ambient pressure [21–26];
that is, it possesses the advantages of both organic and inorganic DESs.
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ambient pressure [21–26]; that is, it possesses the advantages of both organic and 
inorganic DESs. 

 
Figure 1. Crystal structure of α-STF2I3. The brown, yellow, green, blank, and violet spheres denote 
C, S, Se, H, and I atoms, respectively. The double-coloured (yellow and green) atoms are disordered 
atoms between S and Se (S: Se = 50%:50%). 

All the electrical, magnetic, and optical properties of the DESs are governed by the 
intermolecular interactions between the STF molecules in α-STF2I3. In principle, 
intermolecular interactions, band structures, and various physical properties of crystalline 
materials can be calculated when all the atomic positions, namely atomic parameters, are 
known, assuming perfect three-dimensional periodic arrangements of the atoms in the 
framework of well-established band theories. However, it is challenging to calculate the 
intermolecular interactions, that is, the overlap and transfer integrals between the STF 
molecules in α-STF2I3, because all the STF molecules in this CT complex are randomly 
disordered between the two patterns shown in Figure 2. The calculations of the electronic 
structures and related quantities in the solid states require well-defined atomic 
parameters for all the atoms involved. Although DES materials with the disorder are 
seldom reported and have garnered considerable attention [27–29], the lack of the 
abovementioned calculation results has seriously hindered further studies on this CT 
complex and a clear understanding of the general DESs. 

Figure 1. Crystal structure of α-STF2I3. The brown, yellow, green, blank, and violet spheres denote C,
S, Se, H, and I atoms, respectively. The double-coloured (yellow and green) atoms are disordered
atoms between S and Se (S: Se = 50%:50%).

All the electrical, magnetic, and optical properties of the DESs are governed by the
intermolecular interactions between the STF molecules in α-STF2I3. In principle, intermolec-
ular interactions, band structures, and various physical properties of crystalline materials
can be calculated when all the atomic positions, namely atomic parameters, are known,
assuming perfect three-dimensional periodic arrangements of the atoms in the framework
of well-established band theories. However, it is challenging to calculate the intermolec-
ular interactions, that is, the overlap and transfer integrals between the STF molecules
in α-STF2I3, because all the STF molecules in this CT complex are randomly disordered
between the two patterns shown in Figure 2. The calculations of the electronic structures
and related quantities in the solid states require well-defined atomic parameters for all the
atoms involved. Although DES materials with the disorder are seldom reported and have
garnered considerable attention [27–29], the lack of the abovementioned calculation results
has seriously hindered further studies on this CT complex and a clear understanding of the
general DESs.
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We have recently proposed a tight-binding band structure of α-STF2I3 based on the 
overlapping integrals SSTF, assuming statistically averaged structures between all the 
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Appendix for details) in addition to the assumption of tSTF/eV = −10SSTF, where tSTF 
represents the corresponding transfer integrals [21]. The band structure obtained in our 
previous study was characterised by less tilted and more isotropic Dirac cones compared 
to that in the present study. 
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temperature dependence of resistivity, despite being qualitatively consistent with the 
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We have recently proposed a tight-binding band structure of α-STF2I3 based on
the overlapping integrals SSTF, assuming statistically averaged structures between all
the possible molecular arrangements at each site in the disordered crystal (Figure 3; see
Appendix A for details) in addition to the assumption of tSTF/eV = −10SSTF, where tSTF
represents the corresponding transfer integrals [21]. The band structure obtained in our
previous study was characterised by less tilted and more isotropic Dirac cones compared
to that in the present study.

Crystals 2022, 12, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 2. Two possible packing patterns of the STF molecule at a given site in α-STF2I3 (X = S or Se). 

We have recently proposed a tight-binding band structure of α-STF2I3 based on the 
overlapping integrals SSTF, assuming statistically averaged structures between all the 
possible molecular arrangements at each site in the disordered crystal (Figure 3; see 
Appendix for details) in addition to the assumption of tSTF/eV = −10SSTF, where tSTF 
represents the corresponding transfer integrals [21]. The band structure obtained in our 
previous study was characterised by less tilted and more isotropic Dirac cones compared 
to that in the present study. 

 
Figure 3. Four possible packing patterns (A–D) of the interacting pair of STF molecules at a given 
site in α-STF2I3. All four patterns should occur in the crystal with equal probability to reproduce the 
observed structure. Adapted from [21] and modified with permission. 

The calculated band structure failed to reproduce the observed anisotropic 
temperature dependence of resistivity, despite being qualitatively consistent with the 

Figure 3. Four possible packing patterns (A–D) of the interacting pair of STF molecules at a given
site in α-STF2I3. All four patterns should occur in the crystal with equal probability to reproduce the
observed structure. Adapted from [21] and modified with permission.

The calculated band structure failed to reproduce the observed anisotropic temper-
ature dependence of resistivity, despite being qualitatively consistent with the nearly
temperature-independent electrical resistivity. In this paper, we propose a new method
based on molecular orbitals (MOs) to estimate the overlap and transfer integrals in such dis-
ordered systems more clearly. More importantly, we found that solid-state STF molecules
form unique electron configurations, which are qualitatively different from those in other
disordered crystalline materials. The differences between the STF solids and other disor-
dered systems include observed qualitative differences in electrical, magnetic, spectroscopic,
and structural properties. The STF solids almost always behave as if there is no disorder in
their crystal structures. In contrast, the slightest disorder frequently alters qualitative be-
haviours compared with those of related or corresponding materials without the disorder in
common crystalline materials. To explain this fact, we propose a new idea of wavefunctions
analogous to molecular orbitals and based on the original meanings of wavefunctions.

2. Calculation Methods

Single-crystal X-ray structural analyses demonstrated that all four chalcogen atoms
(X: Figure 2) in the solid-state STF molecules possessed equal electron densities [21–26].
This trend is not only the case with conducting STF CT complexes, but also the case
with insulating STF CT complexes and even with the neutral STF molecular crystals,
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irrespective of the crystal structures and the molecular symmetries required for the positions
in the unit cells [26]. This trend is peculiar to the STF molecule in the solid-state, which
cannot be explained by the known quantum stabilisation effects, such as delocalisation
or intermolecular interactions. Such electron configurations require that all the atomic
positions and the electron densities on each X atom are fixed in each molecule, regardless
of the packing pattern. Thus, only the degrees of freedom remain in the assignment
of S and Se atoms at fixed X positions with equal electron densities. In other words,
the electron densities were averaged for all four X atoms as if the X atoms belonged to
imaginary element between sulphur and selenium. This is probably because the differences
in the atomic energy levels are sufficiently small between S and Se atoms, favouring such
averaged electron configuration. Ultimately, this configuration would lead to the reduction
of Coulombic repulsion between electrons, in addition to stabilisation due to the increased
kinetic energy of electrons. As wavefunctions for electrons are associated with electron
densities, we assumed that the wavefunction of an STF molecule (Equation (1)) in the solid
state (φSTF (MO of STF)) should be described using the two wavefunctions corresponding
to the average of the two patterns in Figure 2.

φSTF =
1√
2

φ1 +
1√
2

φ2 (1)

where suffixes 1 and 2 denote the different patterns shown in Figure 2. To equally distribute
the electrons on the X atoms in the STF molecules, both coefficients must be equal, that
is, 1/

√
2 if Equation (1) is normalised and if the cross-terms are ignored. The cross-terms

between φ1 and φ2 are ignored because the two orientations (φ1 and φ2) never coincide
at a given site for a single STF molecule. In other words, such an averaged electron
configuration does not involve the exchange or oscillating movement between the S and Se
nuclei in the STF molecules. Equation (1) describes the electronic configuration of the X
atoms in Figure 2, corresponding to the imaginary element between S and Se. Notably, it
appears that Equation (1) describes the interaction between the two states or the fluctuation
originating from the quantum interference between the two states. However, this is not the
case. As we will see by substituting atomic orbitals in Equation (1), a “conjugate” equation,
that is, a state corresponding to Equation (2) does not describe the electronic configuration
of the solid STF molecules (Equation (6)).

φSTF
′ =

1√
2

φ1 −
1√
2

φ2 (2)

All the wavefunctions below are assumed to be normalised. We use the same coeffi-
cients even after altering the expression, except when it is misleading.

The molecular orbital φi (i = 1, 2) was substituted into Equation (1) through a linear
combination of atomic orbitals, ϕj,

φi = ∑
j

cj ϕj (3)

where cj and ϕj denote the coefficient and atomic orbital of atom j, respectively. For example,
ϕH designates the 1s orbital of a hydrogen atom. For j = C (carbon), ϕj should describe one
of the C 1s, C 2s, C 2px, C 2py, and C 2pz orbitals. Note that all the atomic positions, except

for the X atoms,
→
rj , and electron densities on all the atoms in an STF molecule are common

between φ1 and φ2.
The molecular orbitals φi (i = 1, 2) obtained in this way are as follows:

φ1 = ∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bS ϕS

(→
rk

)
+ ∑

l
cSe ϕSe

(→
rl

)
(4)

φ2 = ∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bSe ϕSe

(→
rk

)
+ ∑

l
cS ϕS

(→
rl

)
(5)
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where suffixes j, k, and l indicate the atomic positions in the STF molecule. Suffix Y
indicates atoms other than X atoms in the STF molecule. Notably, the first terms in
Equations (4) and (5) are identical. Meanwhile, the coordinates

→
rk and

→
rl for S and Se

atoms indicate the X atoms on the left and right sides of each STF molecule, respectively.
Accordingly, the two equations of φ1 and φ2 are identical, except for the coordinates

→
rk

and
→
rl for S and Se atoms (the position vectors in real space for X atoms), respectively. By

substituting Equations (4) and (5) in Equation (2), we obtain

φSTF
′ = 1√

2
φ1 − 1√

2
φ2

= 1√
2

{
∑
k

bS ϕS

(→
rk

)
+ ∑

l
cSe ϕSe

(→
rl

)}
− 1√

2

{
∑
k

bSe ϕSe

(→
rk

)
+ ∑

l
cS ϕS

(→
rl

)} (6)

which evidently does not describe the electronic configuration required for the solid
STF molecules.

By substituting Equations (4) and (5) in Equation (1), we obtain

φSTF = 1√
2

{
∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bS ϕS

(→
rk

)
+ ∑

l
cSe ϕSe

(→
rl

)}

+ 1√
2

{
∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bSe ϕSe

(→
rk

)
+ ∑

l
cS ϕS

(→
rl

)}

= 1√
2

{
∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bS ϕS

(→
rk

)
+ ∑

l
cS ϕS

(→
rl

)}

+ 1√
2

{
∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bSe ϕSe

(→
rk

)
+ ∑

l
cSe ϕSe

(→
rl

)}
(7)

Therefore,

φSTF =
1√
2

φ(X=S) +
1√
2

φ(X=Se) (8)

where φ(X=S) and φ(X=Se) represent the following MOs, respectively.

φ(X=S) = ∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bS ϕS

(→
rk

)
+ ∑

l
cS ϕS

(→
rl

)
(9)

φ(X=Se) = ∑
j

aY ϕY

(→
rJ

)
+ ∑

k
bSe ϕSe

(→
rk

)
+ ∑

l
cSe ϕSe

(→
rl

)
(10)

In short, φ(X=S) and φ(X=Se) are molecular orbitals, assuming that all the X atoms in
Figure 2 should be either S or Se atoms with identical atomic positions, respectively. As
such, the wavefunctions (MOs) of disordered solid-state STF molecules can be described
by the equal contributions of the MOs of φ(X=S) and φ(X=Se), as shown in Equation (8).

Next, we discuss the electron densities of the STF sites in the solid state using
Equation (8). The contribution of MO, φSTF, to the electron densities of a given STF site in a
solid state is described as follows:

2
∫
|φSTF|2dV = 2

∫ ( 1√
2

φ(X=S) +
1√
2

φ(X=Se)

)∗( 1√
2

φ(X=S) +
1√
2

φ(X=Se)

)
dV

=

(∫ ∣∣∣φ(X=S)

∣∣∣2dV +
∫ ∣∣∣φ(X=Se)

∣∣∣2dV
)

+
(∫

φ∗(X=Se)φ(X=S)dV +
∫

φ∗(X=S)φ(X=Se)dV
) (11)
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where the integral is calculated over the entire space. The coefficient “2” is required by spin
multiplicity. Thus, by noting that φSTF, φ(X=S), and φ(X=Se) are normalised,

2 = 2 +
(∫

φ∗(X=Se)φ(X=S)dV +
∫

φ∗(X=S)φ(X=Se)dV
)

Then, ∫
φ∗(X=Se)φ(X=S)dV +

∫
φ∗(X=S)φ(X=Se)dV = 0 (12)

In other words,∫
|φSTF|2dV =

1
2

(∫ ∣∣∣φ(X=S)

∣∣∣2dV +
∫ ∣∣∣φ(X=Se)

∣∣∣2dV
)

(13)

Equation (13) indicates that the electron densities of disordered STF molecules can
be described by the average of the electron densities of the φ(X=S) and φ(X=Se) eigenstates,
consistent with the observations.

The discussion thus far indicates that intermolecular interactions between disordered
STF molecules in the solid state can be described by replacing the wavefunction of STF, φSTF,
with an average of the wavefunctions of φ(X=S) and φ(X=Se) (Equation (8)). In disordered
STF CT complexes, one can similarly calculate the overlap (S) and transfer (t) integrals
between STF molecules based on Equation (8). The overlap (SSTF) and transfer (tSTF)

integrals between two STF molecules located at
→
R1 and

→
R2, respectively, are:

SSTF =
∫

φSTF ∗ (
→
R1)φSTF(

→
R2)dV

=
∫ ( 1√

2
φ(X=S)(

→
R1) +

1√
2

φ(X=Se)(
→
R1)

)∗(
1√
2

φ(X=S)(
→
R2)

+ 1√
2

φ(X=Se)(
→
R2)

)
dV (∵ Equation (8))

≈ 1
2

{∫
φ(X=S) ∗ (

→
R1)φ(X=S)(

→
R2)dV +

∫
φ(X=Se) ∗ (

→
R1)φ(X=Se)(

→
R2)dV

}
= 1

2

{
S(X=S) + S(X=Se)

}
,

(14)

where
S(X=S) =

∫
φ(X=S) ∗ (

→
R1)φ(X=S)(

→
R2)dV (15)

S(X=Se) =
∫

φ(X=Se) ∗ (
→
R1)φ(X=Se)(

→
R2)dV (16)

If the cross terms are ignored (Equation (17)):∫
φ∗(X=Se)(

→
R1)φ(X=S)(

→
R2)dV +

∫
φ∗(X=S)(

→
R1)φ(X=Se)(

→
R2)dV = 0 (17)

The validity for Equation (17) is discussed after deriving the transfer integrals. Similarly,

tSTF =
∫

φSTF ∗
(→

R1

)
ĤφSTF

(→
R2

)
dV

= 1
2

{
E(X=S)S(X=S) + E(X=Se)S(X=Se)

}
+ 1

2

{
E(X=Se)

∫
φ(X=S) ∗

(→
R1

)
φ(X=Se)

(→
R2

)
dV

+E(X=S)
∫

φ(X=Se) ∗
(→

R1

)
φ(X=S)

(→
R2

)
dV
}

(∵ Equation(14))

(18)



Crystals 2022, 12, 346 7 of 14

where E(X = S) and E(X = Se) are the energies of the orbitals of interest, for example, the
HOMO. Below, we limit our discussion to the HOMO of an STF molecule, which dominates
the physical properties of α-STF2I3.

Ĥφ(X=S) = E(X=S)φ(X=S), Ĥφ(X=Se) = E(X=Se)φ(X=Se), (19)

Therefore, Equation (18) is further altered to

tSTF =
1
2

{
t(X=S) + t(X=Se)

}
, (20)

where
t(X=S) = E(X=S)S(X=S), t(X=Se) = E(X=Se)S(X=Se) (21)

and we approximated

E(X=Se)

∫
φ(X=S) ∗

(→
R1

)
φ(X=Se)

(→
R2

)
dV + E(X=S)

∫
φ(X=Se) ∗

(→
R1

)
φ(X=S)

(→
R2

)
dV ≈ 0 (22)

E(X=Se) ≈ E(X=S) = −10 (eV) (23)

3. Results and Discussion

The obtained SSTF overlap integrals are listed in Table 1. Figure 4 shows the interacting
pairs of the STF molecules corresponding to the SSTF values in Table 1.

Table 1. Estimated overlap integrals (SSTF × 103/dimensionless) in α-STF2I3. HOMO-HOMO
overlaps between adjacent STF radical cations.

Pairs (a) X = Se X = S X = Se or S (50%)

g1 +9.0 −19.7 −5.35
g2 −8.50 −17.9 −13.2
g3 +2.2 −11.7 −4.75
h1 +31.8 −25.9 +2.95
h2 −33.7 −25.3 −29.5
h3 −15.0 −13.3 −14.15
h4 +6.8 −8.6 −0.9

(a) For the interacting STF pairs in the unit cell, see Figure 4. The extended Hückel parameters utilised in the
calculations are reported in [21]. For reference, the values of S(X = Se) and S(X = S) are listed in Table 1.

The validities of Equations (17) and (22) were not proven in this general discussion.
However, the derived parameters, SSTF (Table 1) and tSTF, semi-quantitatively reproduced
the observed electrical properties. In contrast, those based on our former estimation [21]
failed to reproduce them even qualitatively. Namely, the anisotropy in conductivity in the ab-
plane was observed as σb > σa [22], which probably agrees with the contour plot of E1 − E2
in this study (Figure 5b), exhibiting an oval elongated approximately in the ka-direction.
Note that the ratio between the anisotropic conductivities in the ab-plane is proportional
to the ratio between the square of the velocities in the corresponding directions [30]. In
our previous method, we did not consider the details of the molecular orbitals shown in
Equations (4)–(7). We simply averaged all the terms appearing in Equations (14) and (18)
between the four interacting patterns (Figure 3). Consequently, the obtained overlap SSTF
and transfer tSTF integrals in our previous study gave the contour plot of E1 − E2, exhibiting
an oval elongated approximately in the kb-direction [21], which qualitatively contradict the
observed anisotropy in conductivity in the ab-plane. Once the overlap SSTF and transfer tSTF
integrals are obtained in this study, we can calculate a tight-binding band structure using
the model in our previous study [21]. The band structure obtained (Figure 5) is unique
and essential because it indicates that α-STF2I3 has a pair of Dirac cones close to merging.
The term “merging” implies that the Dirac electrons are close to transforming into normal
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electrons. Such cases have been extensively investigated theoretically [7,31–34]. However,
to the best of our knowledge, actual examples have never been reported. The Dirac cones
could not exhibit such a large anisotropy in resistivity, as observed, except when they are
close to merging. Accordingly, the anisotropy observed in the resistivity of α-STF2I3 was
exclusively explained by this band structure.
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independent STF molecules, two halves (I and II) and one whole (III) STF molecule. All the I and
II STF molecules possess an inversion centre on the central C=C bond, which means that atomic
positions and electron densities are the same between Patterns 1 and 2 in Figure 2 for molecules I
and II. Although molecule III does not possess an inversion centre, the atomic positions and electron
densities for X in molecule III are also identical between Patterns 1 and 2.
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newly estimated using Equation (14) (Table 1) in this study. The tight-binding model, which is
required in the band calculation using the values of tSTF, is identical to that in our previous study [21].
The obtained band structure is different from our previous study [21]. (a) Conduction and valence
bands given by E1 (upper band; 0 ≤ E1 ≤ 0.51 eV) and E2 (lower band; −0.15 ≤ E2 ≤ 0 eV) as the
function of wavevector k = (ka, kb). The lattice constant of the square lattice is taken as unity. The
energy (eV) is measured from the chemical potential µ. The two bands contact with each other at the
Dirac points (ka/π, kb/π − 1) =± (0.21, −0.06) with the energy ED = 0.173 eV, which coincides with µ.
(b) Contour plot of E1 − E2 with the energy range of 0 ≤ E1 − E2 ≤ 0.51 (eV). The Dirac points exist
in the two darkest points in the orange region, which indicates 0 ≤ E1 − E2 ≤ 0.05 eV. The two Dirac
points are close to merging at one of the TRIMs (time-reversal invariant momentum) X = (0, π) since
the contour is elongated toward the X point and E1 − E2 is much smaller than that at other TRIMs.

4. Conclusions

We proposed a calculation method for intermolecular interactions in disordered sys-
tems based on the extended Hückel approximation. Despite the generally negative im-
pression of the effects of disorder on cooperative properties, the physical properties and
band structures of α-STF2I3 indicated that the fine tuning of intermolecular interactions
using disorder in organic CT complexes is an effective new method. This method enables
electron densities between S and Se atoms as if there was no disorder in the solid state,
which is otherwise impossible. The reconciliation of the established band theories with the
disordered systems has remained uninvestigated for a long time. The calculation method
proposed in this study was used to investigate the band structures of such systems in detail.
It has not only revealed that α-STF2I3 is a rare example of a system close to merging, but
also that there is a novel electronic state requiring a wavefunction of the type of Equation (1)
and the relevant assumptions.

Author Contributions: T.N. developed the approximated calculation method of overlap and transfer
integrals (Equations (1)–(23)) with discussion with Y.S. Y.S. performed the band calculation (Figure 5)
using the overlap integrals estimated by Equation (14). All authors have read and agreed to the
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Appendix A

Details of Our Previous Method of Calculation of Overlap and Transfer Integrals in α-STF2I3

According to the four possible patterns of relative orientation of the STF molecules
in an interacting pair shown in Figure 3, we consider the average of four overlap and
transfer integrals, respectively. Using the wavefunctions, φ1 and φ2, for Patterns 1 and 2,
respectively, in Figure 2, the overlap integrals for Patterns A–D in Figure 3 are described
as follows.

SA =
∫

φ2

(→
R1

)∗
φ2

(→
R2

)
dV (A1)

SB =
∫

φ1

(→
R1

)∗
φ1

(→
R2

)
dV (A2)

SC =
∫

φ2

(→
R1

)∗
φ1

(→
R2

)
dV (A3)
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SD =
∫

φ1

(→
R1

)∗
φ2

(→
R2

)
dV (A4)

where we assume the two STF molecules are located at
→
R1 and

→
R2, respectively. In this

paper, we use Equations (4) and (5) in the main text with the present notation.

φ1

(→
R0

)
= ∑

j
aY ϕY

(→
R0 +

→
rJ

)
+ ∑

k
bS ϕS

(→
R0 +

→
rk

)
+ ∑

l
cSe ϕSe

(→
R0 +

→
rl

)
(A5)

φ2

(→
R0

)
= ∑

j
aY ϕY

(→
R0 +

→
rJ

)
+ ∑

k
bSe ϕSe

(→
R0 +

→
rk

)
+ ∑

l
cS ϕS

(→
R0 +

→
rl

)
(A6)

where
→
R0 indicates the location of the STF molecule serving as the origin for atomic position

vectors in the same molecule. Based on the origin
→
R0,

→
rk and

→
rl respectively indicate the

position vectors of atoms in the STF molecule of the right-hand and left-hand side chalcogen
atoms X in the STF molecule. Similarly, the position vectors of the remaining atoms in
the STF molecule are indicated by

→
rJ . Note that replacement of the X atoms between

→
rk

and
→
rl do not change the position vectors

→
rJ , because there is an only degree of freedom

in assignment of X atoms between S or Se for an interacting pair of STF molecules, and
additionally because all the atomic positions are fixed regardless of the assignment of S/Se.

Substituting Equation (A1) by Equation (A6),

SA =
∫

φ2

(→
R1

)∗
φ2

(→
R2

)
dV

=
∫{

∑
j

aY ϕY

(→
R1 +

→
rJ

)
+ ∑

k
bSe ϕSe

(→
R1 +

→
rk

)
+∑

l
cS ϕS

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)
+ ∑

k
bSe ϕSe

(→
R2 +

→
rk

)
+∑

l
cS ϕS

(→
R2 +

→
rl

)}
dV

=
∫{

∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
dV

+
∫ {

∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
dV

+
∫ {

∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
dV

+
∫{

∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
dV

+
∫{

∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
dV

+
∫ {

∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
dV

+
∫ {

∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
dV

+
∫ {

∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
dV

+
∫ {

∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
dV

(A7)
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Similar substitutions for SB–SD give an average Savg of all the contributions from
possible patterns A–D in Figure 3.

Savg = 1
4{SA + SB + SC + SD}

= 1
4

{∫
φ2

(→
R1

)∗
φ2

(→
R2

)
dV +

∫
φ1

(→
R1

)∗
φ1

(→
R2

)
dV

+
∫

φ2

(→
R1

)∗
φ1

(→
R2

)
dV +

∫
φ1

(→
R1

)∗
φ2

(→
R2

)
dV
} (A8)

Before substituting Equations (A5) and (A6) for φ1 and φ2 in Equation (A8), i.e.,
Equations (A1)–(A4), we note

∫ [{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+

{
∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+

{
∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+

{
∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+

{
∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}]
dV = S(X=S)

(A9)

and

∫ [{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+

{
∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+

{
∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+

{
∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+

{
∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}]
dV = S(X=Se)

(A10)
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By substituting Equations (A9) and (A10) for the corresponding terms in Equation (A8),

Savg = 1
4{SA + SB + SC + SD}

= 1
4

∫ [
4

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+

{
∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+2

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+2
{

∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bS ϕS

(→
R1 +

→
rk

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+

{
∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
k

bS ϕS

(→
R2 +

→
rk

)}
+2

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
l

cS ϕS

(→
R2 +

→
rl

)}
+2
{

∑
l

cS ϕS

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+

{
∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+2

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+2
{

∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
+

{
∑
k

bSe ϕSe

(→
R1 +

→
rk

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+

{
∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
k

bSe ϕSe

(→
R2 +

→
rk

)}
+2

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
l

cSe ϕSe

(→
R2 +

→
rl

)}
+2
{

∑
l

cSe ϕSe

(→
R1 +

→
rl

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}]
dV

+ 1
4

∫
(eight cross terms between ϕS and ϕSe)dV

= 1
4

{
S(X=S) + S(X=Se)

}
+ 1

4

∫
2

{
∑
j

aY ϕY

(→
R1 +

→
rJ

)}∗{
∑
j

aY ϕY

(→
R2 +

→
rJ

)}
dV

+ 1
4

∫
(four cross terms between ϕY and ϕS)dV

+ 1
4

∫
(four cross terms between ϕY and ϕSe)dV

+ 1
4

∫
(eight cross terms between ϕS and ϕSe)dV

(A11)

Comparing Equation (A11) with Equation (14) in the main text, the difference between
our previous and present calculations lies in the coefficient of the average of S(X = S) and
S(X = Se) in addition to the contribution from the remaining terms in Equation (A11).

The differences between our previous and present values of tSTF are shown to lie
in the coefficient of the average of t(X = S) and t(X = Se) in addition to additional terms by
similar discussion. Based on the assumptions and calculations thus far, the coefficient of
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the average of t(X = S) and t(X = Se) is altered from 1/4 in Equation (A11) (in our previous
work) to 1/2 in Equation (14) (in this work).
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