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Abstract: In this paper, the behavior of exciton radiative recombination in a GaN-based triangular-
like ridge cavity is studied at room-temperature. The triangular-like ridge cavity is fabricated on a
standard-blue-LED epitaxial wafer grown on a sapphire substrate. Through the photoluminescence
(PL) and time-resolved photoluminescence (TR-PL) measurements, a clear modulation of the original
spontaneous emission is found in the microcavity, a new transition channel is observed, and the
effect is angle-dependent. Furthermore, by changing the tilt angle during angle-resolution photolu-
minescence (AR-PL), it is found that the coupling between excitons and photons in the cavity is the
strongest when tilted at 10◦. By simulation, the strong localization of photons in the top of the cavity
can be confirmed. The PL, TR-PL, and AR-PL results showed the sign of the exciton-photon coupling
in the triangular-like ridge cavity.

Keywords: exciton; cavity; InGaN; exciton-photon coupling

1. Introduction

GaN-based nitrides have achieved great success in solid state lighting because of their
wide and direct band gap properties [1]. So far, various optoelectronic devices based on
GaN-based materials have been developed. For examples, GaN-based light sources from
green to ultraviolet have been realized, and they have broad application potential in the fields
of lighting, display, biomedicine, high-density data storage, and laser application [2–4].

It has been well-known that the light emission in a semiconductor can be from either
spontaneous recombination or simulated recombination, and the excitons always play the
key role. In addition to the normal spontaneous recombination or simulated recombination,
the excitons can also couple with photons to form a new hybrid structure, which is proposed
theoretically by Hopfield in 1950s [5]. According to the strength of the coupling, it can
be divided into strong coupling and weak coupling. When the excitons and photons are
designated weak coupling, it mainly affects the radiation recombination rate of the original
spontaneous recombination. In weak coupling, the probability of photons being bonded
by excitons is extremely low, and the entire system is a dissipative system. In contrast, in
strong coupling, the probability of photons being bund by excitons is very high. Then, the
exciton-photon complex will appear and no longer follow the rule of original spontaneous
recombination. To achieve strong coupling, the probability of photons coupling with
excitons must be greater than the probability of photons escaping from the cavity. For
the solution, one is to use long-lifetime excitons, which is an easy condition for InGaN
material (with a large binding energy and relative longer exciton lifetime). The other one
is to increase the staying time of photons, which means the strong confinement of the
photons. Obviously, with a good optical cavity, photons can be effectively confined. Then,
finally, when a InGaN-based quantum wells (QW) is placed in a good optical cavity [6],
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the coupling between excitons and photons can be increased. If the coupling strength
increases further, an exciton polariton can be formed, and even reach the state of Bose–
Einstein condensate (BEC) under certain conditions. These properties have a wide range of
applications, such as ultra-low threshold polariton lasers [7–9].

Group III nitride semiconductors have a large amount of exciton binding energy
(26 meV for bulk GaN and 40 meV for narrow quantum well QW). Some studies have
indicated that GaN can achieve exciton-polariton at room-temperature in a microcavity
with double distributed Bragg reflectors (DBR) [10–12]. S. Christopoulos et al. studied the
exciton-polariton emission in a GaN microcavity. The result of a low-threshold coherent
emission was one order of magnitude smaller than that of the previously reported nitride-
based VCSEL [13]. In order to make the exciton–photon couple stronger, the restriction
on photons must be strong enough, so it is necessary to explore new high-quality optical
microcavity and easy to be realized. In the past research, different ridge-shape microcavities
have been widely used to limit the distribution of photons in strip lasers [14,15]. For
example, the common rectangular ridge microcavity can confine the light directly below
the ridge. Zhong-Kai Zhang et al. found that a narrower ridge will provide stronger optical
confinement for the lateral mode in the ridge and improve the far-field characteristics of
the device [16]. So, the ridge microcavity can be one of good candidatures, once achieving a
strong photon confinement in a desired ridge shape. Compared with the usual rectangular
ridge cavity, the triangular ridge cavity has a triangular cross section, which can furtherly
concentrate the photons on the top part of the ridge. Clearly, this is beneficial to obtain
high-efficiency photon localization in small volume.

In this paper, the triangular-like ridge cavity with InGaN/GaN MQWs inside is
fabricated. It is found that the triangular-like ridge cavity with an appropriate apex
angle can effectively confine photons, and abnormal emission signals confirm that a new
transition channel appeared in the triangular-like ridge cavity.

2. Materials and Methods

The wafer used in our experiment is a standard blue LED wafer grown on a (0001)
sapphire substrate by using the metal-organic chemical vapor deposition (MOCVD). From the
substrate, a 25 nm GaN buffer layer was first grown. Above the buffer, a 4.5-µm n-type GaN
layer was grown and followed by an 8-period InGaN/GaN (3 nm/12 nm) multiple quantum
wells (MQWs) with the In composition of 15%. Finally, 320 nm p-type GaN was grown.

The fabrication process of the triangular-like ridge cavity is as follows: first, depositing
600 nm SiO2 on the wafer surface by plasma enhanced chemical vapor deposition (PECVD,
Oxford, UK), and then transferring the device pattern to the SiO2 by photolithography and
inductively coupled plasma (ICP, Oxford, UK) etching. Finally, uncovered GaN material
was etched by ICP to form the ridge. In order to form a triangular cross-section, we mainly
used Cl2/BCl3 to etch GaN while increasing the power of the ICP, and finally obtained a
triangular-like ridge cavity with a larger sidewall inclination.

The optical properties of the triangular-like ridge cavity are measured by photolumi-
nescence (PL), time-resolved photoluminescence (TR-PL), and angle-resolved photolumi-
nescence (AR-PL). In the PL experiment, the excitation source is Mira900F femtosecond
laser (Coherent Inc., Santa Clara, CA, USA). The laser wavelength is set at 375 nm, the pulse
width is 140 fs, and the frequency is 76 MHz. The AR-PL is measured by an angle-resolved
far-field emission spectroscopy microscope system (Shanghai, China). The excitation light
source is a 405 nm semiconductor laser. The diameter of the light spot is adjusted by a
microscope objective (Olympus 100x, NJ, USA) to cover the triangular ridges. The light
emission of the triangular-like ridge cavity is also collected through the same objective
lens. The measurement angle is limited by the numerical aperture (NA = 0.9) of the mi-
croscope objective to a range of ±60◦. A fiber optic spectrometer (NOVA-EX, Shanghai,
China) scans along the Fourier plane to collect angle-resolved far-field emission spectra.
All measurements are performed at room-temperature.
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3. Results

The morphology of the triangular-like ridge cavity was observed by scanning electron
microscopy (SEM), as shown in Figure 1. Since the distance between the MQWs and the
wafer top surface is only 320 nm, the triangular ridge with a sharp top corner is not safe
to the MQWs, which has a high possibility to be destroyed by the ion bombing through
the inclined sidewall during the ICP etching. In order to ensure that the MQWs are not
damaged by ICP etching, we have fabricated a triangular-like ridge cavity with small top
flat surface about 0.9 µm wide, and the bottom side is 3.6 µm wide. The length of the ridge
is 1000 µm. To further reduce the damage caused by ICP etching, we also adopted the
low-damage etching parameters reported in our previous work [17]. For reference, part of
the wafer was protected during all process to keep original flat surface.
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Figure 1. SEM of (a) the wafer cross section and (b) the triangular-like ridge cavity.

The PL spectrum of the triangular-like ridge cavity at room-temperature is shown in
Figure 2. In Figure 2a, there are two emission peaks, located at 434 nm (P434) and 450 nm
(P450), respectively. In the low-power excitation, the intensity of P434 is relatively stronger.
As the excitation power increases, the intensity of P450 becomes higher. Meanwhile, the
peak position of P434 does not move with the increase in excitation power, but P450 show
a blue shift of 3.4 nm. It is well-known that there are many reasons for the blue-shift of the
luminescence peak with increasing excitation, including the band-filling effect of quantum
wells [18,19], and the quantum Stark effect [20,21]. Regardless, these results reflect that
P434 and P450 may be different transitions. The original of the two peaks need to be judged
in conjunction with other results, such as the full width at half maximum (FWHM) in the
following study.

We obtained the FWHM of the P450 and P434 by Lorenzian fitting, as shown in
Figure 2b. It can be seen that the P434 FWHM keeps widening with the increase in
excitation power, while the P450 FWHM is almost unchanged. According to previous
studies, for a normal recombination process, the density of photo-generated carriers in
MQWs becomes higher with the increase in the excitation power, and then involving more
energy levels into the radiation transition, which leads to the broadening of the FWHM.
Therefore, the increase in P434 FWHM with the increase in excitation power indicates that
P434 is the usual spontaneous emission from the InGaN/GaN quantum wells. However,
the P450 FWHM remains unchanged during all measurements, this indicates an unusual
transition. The carriers in the microcavity should be affected by other factors, which change
the original radiation mechanism.
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(b) the FWHM curve of P434 and P450.

In order to further investigate the difference between P434 and P450, we measured
the lifetime of P434 and P450 under different excitation powers at room temperature, one
typical result was showed in Figure 3. The data were fitted with a standard two-exponential
component model described by Equation (1):

I(t) ≈ A1 exp(−t/τ1) + A2 exp(−t/τ2) (1)

where τ1 is fast decay components, and τ2 is slow decay components [22].
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As shown in Figure 3, the black and red solid lines are the fitting curves, and the
lifetime of P450 is longer than that of P434, whatever for τ1 or τ2. At the excitation power of
P = 1.25 kW/cm2, we calculated that the τ1 of P450 is 70% higher than that of P434, further
confirming the different recombination mechanisms between P434 and P450. As discussed
in Figure 2, the behavior of FWHM has indicated that P434 is the usual spontaneous
emission from the InGaN/GaN quantum wells. The only special figure of our sample is the
ridge structure. As the simulation presented later, the top part of the ridge can accumulate
high density of the light. Thus, we can see that the different background light density may
contribute to the formation of P450, a new transition channel. This can explain the faster
growth of P450 with the increase in excitation power, i.e., the number of photons in the
ridge top part is increasing.



Crystals 2022, 12, 348 5 of 10

If the formation of P450 is depended on background light density, and the light
confinement in the ridge clearly is isotropic, then the AR-PL should reveal the difference
between the emissions from the flat area and the triangular-like ridge cavity in one wafer.
In principle, the emission from the flat area should be independence to the measure angle.
During the AR-PL measurements, the scan angle range is from 0◦ to 60◦ in 5◦ interval. The
AR-PL results are shown in Figure 4. Due to the nonuniformity and weaker excitation, the
spontaneous emission from the flat area is around 452 nm.
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From Figure 4, we can see a clear difference in the movement of the peak position with
the measurement angle. In the flat area, there is no surprise that the PL peak is constant
at different angles. However, in the triangular-like ridge cavity, the peak position of P450
first decreases and then increases as the angle increases, which shows a clear isotropic
emission. This is a clear sign of the origin of P450, which is related to the background
light field. Furthermore, we realize that the background light field cannot be uniform, and
the photon can be localized at the top with various modes. So, for the ridge cavity in our
sample, the normal measurement position may not be the best position to reveal the effect
of the photon-coupled emission, it is necessary to tilt the ridge to measure AR-PL again.
We tilt the sample to change the incident angle of the laser spot, as shown in Figure 5b. The
“tilt” measurement means that the 0◦ line passes through the side wall of the triangular
ridge, rather than perpendicular to the top surface as usual. We further explored the P450
properties at different tilt angles (θ, 5◦~20◦), as shown in Figure 5.

It can be found from Figure 5 that the peak position shows the same changing trend
under all tilt angles (θ = 5~20◦), the dash line is an eye-guide line. Although the wavelength
shift is smaller than the linewidth at different tilt angles, this does not mean that there is no
photon-exciton coupling [23,24]. The peak appearing at 410 nm is the emission from the
barrier of the MQWs, which is also observable at certain angle during the measurement. At
θ = 10◦, the peak position changes most obviously. We can obtain Figure 6a by converting
Figure 5d into photon energy. Obviously, only the peak shift of P450 can be observed. In our
AR-PL measurements, a laser spot is large enough to cover the triangular-like ridge, and
the MQWs in the ridge is close to the top surface. So, in the measurements, the excitation
of the MQWs is almost unchanged, thus the distribution of carriers is unchanged either.
Therefore, carrier diffusion has no effect on the shift. We further extracted the peak energy
of P450 at different angles through Gaussian fitting, as shown in Figure 6b. As the angle
increases, the peak energy of the P450 moves to a higher energy until about 40◦, and then
drops to the original energy at about 70◦. In InGaN material system, due to the special
properties of the material, once the photon cycle occurs, the photons at the high end of
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the emission spectrum will usually be absorbed. Therefore, when the photon recycling
effect is enhanced, the luminous peak will be red-shifted, and the luminous intensity will
decrease at the same time. However, none of these are reflected in Figure 6b, so the photon
recycling effect does not show obvious influence on the shift. Since AR-PL measurements
are conducted at constant excitation power, the shift cannot be caused by Stark shift and
phase space filling. Therefore, the shift of the P450 observed in our experiments is likely
caused by coupling with the background light field.
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Figure 5. Schematic of the AR-PL measurements (a) without and (b) with a tilt angle. The ARPL 
spectra of different tilt angles (c) θ=5° (d) θ=10° (e) θ=15° (f) θ=20°. 

It can be found from Figure 5 that the peak position shows the same changing trend 
under all tilt angles (θ = 5~20°), the dash line is an eye-guide line. Although the wave-
length shift is smaller than the linewidth at different tilt angles, this does not mean that 
there is no photon-exciton coupling [23,24]. The peak appearing at 410 nm is the emission 
from the barrier of the MQWs, which is also observable at certain angle during the meas-
urement. At θ = 10°, the peak position changes most obviously. We can obtain Figure 6a 
by converting Figure 5d into photon energy. Obviously, only the peak shift of P450 can be 
observed. In our AR-PL measurements, a laser spot is large enough to cover the triangu-
lar-like ridge, and the MQWs in the ridge is close to the top surface. So, in the measure-
ments, the excitation of the MQWs is almost unchanged, thus the distribution of carriers 
is unchanged either. Therefore, carrier diffusion has no effect on the shift. We further ex-
tracted the peak energy of P450 at different angles through Gaussian fitting, as shown in 
Figure 6b. As the angle increases, the peak energy of the P450 moves to a higher energy 
until about 40°, and then drops to the original energy at about 70°. In InGaN material 
system, due to the special properties of the material, once the photon cycle occurs, the 
photons at the high end of the emission spectrum will usually be absorbed. Therefore, 
when the photon recycling effect is enhanced, the luminous peak will be red-shifted, and 
the luminous intensity will decrease at the same time. However, none of these are reflected 
in Figure 6b, so the photon recycling effect does not show obvious influence on the shift. 
Since AR-PL measurements are conducted at constant excitation power, the shift cannot 
be caused by Stark shift and phase space filling. Therefore, the shift of the P450 observed 
in our experiments is likely caused by coupling with the background light field. 

Figure 5. Schematic of the AR-PL measurements (a) without and (b) with a tilt angle. The ARPL
spectra of different tilt angles (c) θ = 5◦ (d) θ = 10◦ (e) θ = 15◦ (f) θ = 20◦.
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Figure 6. (a) The AR-PL spectra of θ = 10◦ and (b) the experimental dispersion curve deduced from
θ = 10◦ AR-PL spectra.

There have been several reports on the exciton–photon coupling in GaN-based mi-
crocavities (double DBR planar cavity), and always show the angle-depended PL [10–12].
In those cases, the new transition is from the exciton-polariton, and the PL peak energy
behaves like a downward arch under different measurement angle. The angle-depended
PL behavior is the most important evidence for the formation of exciton-polariton. This
judgement can be used for our experiments. The results showed in Figures 3 and 6 clear
indicate the P450 is from exciton–photon coupling. However, the PL peak energy in our
sample behaves like an upward arch under different measurement angle. This can be
caused by the different optical modes in different cavities. The ridge cavity clearly has
different optical confinement from the double DBR planar cavity.

We further use Lumerical’s FDTD Solution software to simulate the optical field
distribution in the triangular-like ridge cavity. Figure 7a,b are the triangular ridge cavities
with an apex angle of 26.8◦. The vertical axis and horizontal axis of Figure 7 are the
coordinates of the triangular ridge, and the unit is µm. On the right is the electric field
intensity bar. The difference between the two structure is that Figure 7a is an ideal triangular
ridge cavity, Figure 7b is set according to the real sample structure used in our experiment. It
can be seen that both the ideal triangular ridge and our actual triangular-like ridge increase
spontaneous emission intensity. To more clearly illustrate the enhancement of spontaneous
emission by the triangular-like ridge structure, we plot the PL spectra of the flat area and
the triangular-like ridge under the same excitation power, as shown in Figure 7c. In the
measurement, the laser spot radius is 500 µm. For our triangular-like ridge, the width of
MQWs is 0.9 µm. So we calculate the actual luminous intensity ratio of the triangular-like
ridge to the flat area to be 3.5 × 103 based on the luminous intensity and effective luminous
area of the two samples. The light extraction efficiency is higher than that of the flat area
due to the special structure of the ridge. The luminous efficiency of the flat area is 5%, so the
light extraction efficiency of the ridge is at most 20 times than that of the flat area. Our actual
luminous intensity ratio is 3.5 × 103, it is clear that the luminous intensity enhancement of
the triangular-like ridge comes from the radiation enhancement. For Figure 7a, the optical
field is mainly concentrated at the top apex, and the internal optical oscillation direction
is relatively sample. However, for our actual microcavity Figure 7b, it is found that the
optical field distribution in the ridge is complexed, which complicates the original single
oscillation mode. Therefore, at different tilt angles, the incident light will match to a certain
oscillation direction, resulting in the weakening or strengthening the coupling of photons
and excitons, depending on the intensity of the corresponding optical mode. In addition,
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since the length of our triangular-like ridge is 1000 µm, the confinement of light in the
direction of the ridge is very weak, which is different from the strong confinement of DBR
microcavity. So these two factors lead to the coupling of excited states to the optical field
rather weak. Anyway, the structural complexity of our triangular-like ridge cavity is much
lower than the double DBR cavity reported previously, so if a strong coupling is achieved
in the triangular-like ridge cavity, then it is very helpful to achieve device application.
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4. Conclusions

We have observed a different exciton recombination channel from normal spontaneous
emission in the GaN-based triangular-like ridge cavity. The new channel shows clear signs
of the coupling of excitons and photons. It is found that the effect is strongest when the
triangular-like ridge cavity is inclined at 10◦. The results indicate that the strong light
confinement in the triangular-like ridge is expected to substantially achieve exciton–photon
coupling, and may be another approach to implement device applications.
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