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Abstract: Bioinformatics as a newly emerging discipline is considered nowadays a reference to
characterize the physicochemical and pharmacological properties of the actual biocompounds con-
tained in plants, which has helped the pharmaceutical industry a lot in the drug development
process. In this study, a bioinformatics approach known as in silico was performed to predict,
for the first time, the physicochemical properties, ADMET profile, pharmacological capacities, cy-
totoxicity, and nervous system macromolecular targets, as well as the gene expression profiles,
of four compounds recently identified from Centaurea tougourensis via the gas chromatography–
mass spectrometry (GC–MS) approach. Thus, four compounds were tested from the n-butanol
(n-BuOH) extract of this plant, named, respectively, Acridin-9-amine, 1,2,3,4-tetrahydro-5,7-dimethyl-
(compound 1), 3-[2,3-Dihydro-2,2-dimethylbenzofuran-7-yl]-5-methoxy-1,3,4-oxadiazol-2(3H)-one
(compound 2), 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione (compound 3), and 3-[3-Bromophenyl]-7-
chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-acridinedione (compound 4). The insilico investigation
revealed that the four tested compounds could be a good candidate to regulate the expression of key
genes and may also exert significant cytotoxic effects against several tumor celllines. In addition,
these compounds could also be effective in the treatment of some diseases related to diabetes, skin
pathologies, cardiovascular, and central nervous system disorders. The bioactive compounds of plant
remain the best alternative in the context of the drug discovery and development process.

Keywords: ADMET profile; biocompounds; bioinformatics; Centaurea tougourensis; in silico; n-
BuOH extract

1. Introduction

Bioinformatics, as a new emerging discipline, has evolved considerably over the
past few decades and now represents an important field of study, allowing researchers to
store, retrieve, organize, and analyze biological data [1]. Among these developments, a
modern computational approach, named in silico, has allowed the prediction of the chemical
and biological properties of thousands of natural and synthetic compounds, due to high
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algorithms accuracy and constantly updated databases [2]. Indeed, this approach allowed
the scientific community to gain considerable time and decrease the cost of studies related
to laboratory experiments on animals.

The in silico approach also allowed the scientific community to understand and over-
come several ambiguities related to the cerebral and cognitive aspects [3], but also to
explain some mechanisms linked to blood–brain barrier permeability and hence answer
some fundamental questions related to some pathologies that affect the brain, such as
epileptic encephalopathy, Alzheimer’s and Huntington’s diseases [4], which gives unprece-
dented credibility to this methodology, since the nervous system is well known for its
complexity. This recent methodology has also provided mandatory data for the scientific
community, helping them to understand more some phenomena related to oxidative stress,
inflammation, and even cancer [5,6].

Phytotherapy is a newly emerging discipline, considered nowadays a reference for the
elaboration process of new drugs, due in part to its accessibility, affordability, and efficacy,
especially in developing countries [7]. This natural resource has a long history and large
scale of applications, used in the past by many civilizations as a quick remedy to heal
wounds and treat various inflammatory conditions, including fevers, arthritis [8]. However,
plants are also known for their relaxation property and their ability to reduce stress and
anxiety [9]. This helps to explain why it is currently being used and recommended by
health care professionals.

In many countries, Centaurea species are prepared as an infusion due to their relaxing
property, helping people reduce stress and anxiety [10]. These plants may also improve
the digestion process and possibly support enzymatic reactions in the liver [11]. The genus
Centaurea is also known for its antioxidant, immunomodulatory, anti-inflammatory, antidi-
abetic, and antimicrobial potential [12–15]. Recent studies [16,17] showed that Centaurea
species could be able to inhibit the proliferation of several tumor celllines, which opens
the door to many therapeutic avenues. It was also reported that Centaurea species could be
useful as insecticides [18].

This study aims to predict, for the first time via in silico approach, the physicochemical
and biological properties of four compounds recently identified in the n-BuOH extract of C.
tougourensis by GC–MS analysis.

2. Materials and Methods
2.1. The Plant Material

C. tougourensis was collected at the Belezma national park in the municipality of Fesdis
(Algeria) (GPS coordinates: latitude 35.621975; longitude 6.241327) and was identified by
experts in the field from the Agronomic department of the Batna-1 University (Algeria). A
voucher specimen under the code (CT/2019/LPTPCMB) was deposited at the Laboratory
of Improvement of the Phytosanitary Protection Techniques in Mountainous Agrosystems,
Agronomy Department, Institute of Veterinary and Agricultural Sciences, University of
Batna-1-, Batna, Algeria.

2.2. Preparation of Plant Extract

The aerial parts of C. tougourensis were dried in a dry, ventilated place away from
the sun rays and then ground to obtain a fine powder. Maceration was carried out three
times with 3L EtOH–H20 (70:30) at room temperature for 3 days followed by liquid–liquid
extraction using solvents of gradual polarity (hexane, ethyl acetate, and n-butanol).

2.3. In Silico Study
2.3.1. Determination of Canonical SMILES

To predict the possible biological properties of four phytocompounds recently identi-
fied in the n-BuOH extract of C. tougourensis, two bioinformatics tools were used: Open
Babel (version 2.0.2) [19] and InDraw webserver (http://in.indraw.integle.com/, accessed
on 8 September 2021), respectively, to generate the canonical smile of each compound by in-

http://in.indraw.integle.com/
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putting their respective structures. These four compounds were, respectively, Acridin-9-amine,
1,2,3,4-tetrahydro-5,7-dimethyl- (compound 1), 3-[2,3-Dihydro-2,2-dimethylbenzofuran-7-yl]-
5-methoxy-1,3,4-oxadiazol-2(3H)-one (compound 2), 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-
dione (compound 3), and 3-[3-Bromophenyl]-7-chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-
acridinedione (compound 4).

2.3.2. Physicochemical Properties

In this test, six physicochemical parameters of the four compounds were predicted
using the online platform of SwissADME (http://www.swissadme.ch/, accessed on
13 September 2021). These tested properties were lipophility, size, polarity, insolubility,
unsaturation, and flexibility [20].

2.3.3. ADMET Profile

The pharmacokineticsand toxicity properties of the four compounds were estimated
using the new online platform of admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2,
accessed on 15 September 2021) [21]. The possible influences of these compounds were
tested on different parameters, principally, human intestinal absorption (HIA),human oral
bioavailability (HOB),blood–brain barrier (BBB) penetration, Caco-2 cells permeability,
subcellular localization, interaction with P-glycoprotein and Cytochrome P450 (CYP450),
mutagenicity, carcinogenicity, eye corrosion, eye irritation, hepatotoxicity, binding to re-
ceptors of estrogen, androgen, thyroid hormones, glucocorticoid, toxicity to the honey bee,
fish, and aquatic crustaceans, biodegradation, water-solubility, plasma protein binding,
and acute oral toxicity, as well as the median growth inhibition concentration (pIGC50) of
Tetrahymena pyriformis.

2.3.4. Pharmacological Properties

The four compounds’ potential biological activities were predicted using the PASS on-
line web server (http://way2drug.com/passonline/, accessed on 13 September 2021) [22].
This server is based on two probabilities, Pa and Pi, in which Pa represents the probability
of the compound being active and Pi represents the probability of the compound being
inactive, with values ranging from zero to one. The model type Pa > Pi was used by default
because it is the most widely accepted model for studying activities.

2.3.5. Cytotoxicity Prediction

Based on the structural formula of each compound previously obtained [23], the
possible cytotoxic effect of the four compounds on human tumor celllineswasinvestigated
using CLC-Pred (Cell Line Cytotoxicity Predictor) web services (http://www.way2drug.
com/cell-line/, accessed on 19 September 2021).

2.3.6. Gene Expression Profiles

The DIGEP Pred online server (http://www.way2drug.com/ge/, accessed on 5 Oc-
tober 2021) was used to make an insilico prediction of the four compounds’ potential
impacts on gene expression, which is primarily based on upregulation and downregulation
processes retrieved from the Comparative Toxicogenomics Database (CTD) [24]. An upreg-
ulation is a cell’s ability to increase the expression of one of its constituents in response to a
stimulus, whereas a downregulation is the opposite [25].

2.3.7. Macromolecular Targets Prediction

SwissTargetPrediction was used to estimate the most probable macromolecular targets
of a small molecule, assumed as bioactive. The prediction is founded on a combination
of 2D and 3D similarity with a library of 370,000 known actives molecules on more than
3000 proteins from different species. In this study, the macromolecules of human nervous
system were preferentially targeted in order to predict to neuroprotective effect of these
four tested compounds [26].

http://www.swissadme.ch/
http://lmmd.ecust.edu.cn/admetsar2
http://way2drug.com/passonline/
http://www.way2drug.com/cell-line/
http://www.way2drug.com/cell-line/
http://www.way2drug.com/ge/
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3. Results and Discussion
3.1. Canonical SMILES Generation

Table 1 shows the corresponding molecular formula, structure, and canonical smile of
each compound.

Table 1. Generation of the canonical smile of the four tested compounds.

Compound Molecular Formula Structure Canonical SMILES

Compound 1 C15H18N2
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As shown in Figure 1, the unsaturation and insolubility of compound 4 were con-
sidered the best among the four tested compounds. The lipophilicity of this compound
was also considerable, noting that compound 1 showed almost the same result. This
information is crucial since high lipophilicity means that these compounds could easily
cross biological membranes to bind with the corresponding receptor in order to generate
the desired pharmacological effect [27] but will also have a positive repercussion on the
pharmacokinetics and metabolism process of these compounds.

The polarity of compound 4 was the highest but in terms of flexibility; compound 2
exhibited the best results. However, a comparable flexibility was observed in compound 3.
These pieces of information are crucial, since a high polarity and flexibility properties
may increase the oral bioavailability of the compound, helping it to reach the therapeutic
site of action due to a high molecular dynamics phenomenon, which also contributes to
a nonnegligible increase of renal clearance process, and this was proved using rats and
molecular docking approach [28].
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3.3. ADMET Profile

The four compounds were evaluated for their absorption, distribution, metabolism,
excretion, and toxicity (ADMET) profile using AdmetSAR server. As shown in Table 2, the
results concerning the absorption process suggest that all compounds may be permeable
to blood–brain barrier (BBB) and most of them to Caco-2 cell. The results indicated that
these compounds could also be absorbed by the human intestine with a possible human
oral bioavailability, suggesting that the four compounds may reach their site of action,
which is beneficial in clinical trials, especially in the drug development process [29].The
permeability of these compounds to the BBB membrane can make them good candidates
for the elaboration of more effective central nervous system drugs(CNS) [30], but not good
for non-CNS drugs due to their possible side effects [31]. On the other hand, the data
showed that the four compounds could not be substrates for the P-glycoprotein (P-gp), also
excluding a possible inhibition ofP-gp activity which could mean that the compounds will
not interfere with the metabolism, half-lifetime, and clearance of drugs [32].



Crystals 2022, 12, 355 6 of 17

Table 2. Prediction of the ADMET properties and toxicity of the four tested compounds.

Parameters/Compound Compound 1 Compound 2 Compound 3 Compound 4

Absorption

Human oral bioavailability HOB+ HOB+ HOB+ HOB+

Human Intestinal Absorption HIA+ HIA+ HIA+ HIA+

Blood–Brain Barrier BBB+ BBB+ BBB+ BBB+

Caco-2 permeability Caco2+ Caco2+ Caco2+ Caco2-

P-glycoprotein Substrate Non-substrate Non-substrate Non-substrate Non-substrate

P-glycoprotein Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

Distribution and Metabolism

Subcellular localization Lysosomes Mitochondria Mitochondria Mitochondria

CYP450 3A4 substrate Non-substrate Substrate Non-substrate Substrate

CYP450 2C9 substrate Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 2D6 substrate Non-substrate Non-substrate Non-substrate Non-substrate

CYP450 3A4 inhibition Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor

CYP450 2C9 inhibition Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

CYP450 2C19 inhibition Non-inhibitor Inhibitor Non-inhibitor Non-inhibitor

CYP450 2D6 inhibition Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

CYP450 1A2 inhibition Inhibitor Non-inhibitor Non-inhibitor Inhibitor

Excretion and Toxicity

Acute Oral Toxicity Class II Class II Class III Class III

Hepatotoxicity Hepatotoxic Hepatotoxic Non-hepatotoxic Hepatotoxic

Carcinogenicity Non-carcinogens Non-carcinogens Non-carcinogens Non-carcinogens

Ames mutagenesis Mutagenic Non-mutagenic Non-mutagenic Non-mutagenic

Eye corrosion Non-corrosive Non-corrosive Non-corrosive Non-corrosive

Eye irritation Non-irritant Non-irritant Irritant Non-irritant

Honey bee toxicity Non-toxic Toxic Toxic Non-toxic

Crustacea aquatic toxicity Toxic Toxic Toxic Toxic

Fish aquatic toxicity Toxic Toxic Toxic Toxic

Estrogen receptor binding Binding Binding Binding Binding

Androgen receptor binding Binding Non-binding Non-binding Binding

Thyroid receptor binding Binding Binding Non-binding Non-binding

Glucocorticoid receptor binding Binding Binding Non-binding Binding

Biodegradation Non-biodegradable Non-biodegradable Non-biodegradable Non-biodegradable

ADMET Predicted Profile (Regression)

Water solubility (logS) −3.038 −3.82 −3.388 −3.987

Plasma protein binding (%) 1.074 0.92 0.702 1.022

Acute Oral Toxicity (kg/mol) 2.246 3.176 2.994 2.831

Tetrahymena pyriformis (pIGC50, ug/L) 1.065 1.065 0.836 1.172

In terms of distribution, the mitochondria appear to be the preferred organelles for
compounds 2, 3 and 4, but not compound 1, for which distribution seems to be more
oriented to lysosomes. This allows the emergence of the hypothesis that almost all com-
pounds could be involved in the energy metabolism process of the cells [33], helping aerobic
organisms to produce ATP by accelerating oxidative phosphorylation phenomenon [34].

Concerning the metabolism part, all tested compounds may be considered as non-
substrate for cytochrome P450 2C9, 2D6 isoforms, while compounds 2 and 4 could be
potential substrates for CYP450 3A4. It means that the influence of the compounds on the
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activity of CYP450 depends on the type of isoforms tested. It was also observed that almost
all compounds cannot inhibit CYP450 3A4, 2C9, 2C19, and 2D6 isoforms, which suggest
that our compounds may not interfere with the drug biotransformation made by CYP450
isoforms [35].

The results concerning the Ames mutagenicity suggest that compound 1 may be the
only mutagenic compound, but none of the four compounds were considered carcinogenic.
The lowest rate of acute oral toxicity was observed by compounds 1 and 2, while this
parameter was very high for compounds 3 and 4. Almost all tested compounds seem to
be hepatotoxic except compound 3. The four compounds appear to be non-corrosive to
eyes, but concerning eye irritation, only compound 1 could be considered as an irritant
agent, which suggests that these compounds could be good candidates for the elaboration
of artificial tears for dry eyes by limiting the possible corrosive and irritant effects of
other constituents of eye drops [36]. The toxicity prediction revealed that all compounds
expressed high toxicity on fish and Crustacea, while compounds 1 and 4 were considered
nontoxic to honey bees. This could mean that these compounds may be helpful for the
development process of new drugs that may effectively limit the reproduction procedure
of some harmful variety of fish such as pufferfish, considered deadly for humans due to
their potent venomous effect generated by tetrodotoxin (TTX) [37] neurotoxin. These four
tested compounds could be also effective against Xanthidaes, which is a family of Crustacea
well known for their venomous effect, generally fatal for humans due to the presence of
two neurotoxins, namely, saxitoxin and tetrodotoxin [38].

The data also revealed that compounds 1, 2, and 4 may have a high interaction with
receptors of estrogen, androgen, thyroid hormones, and glucocorticoid, which suggests that
these compounds may mimic the activity of the original hormones of these receptors [39]:
this may be a key for the elaboration of new drugs with a great affinity for receptors already
mentioned [40], or even to facilitate the interaction of drugs with these receptors via a
synergistic effect [41].

The water solubility of compound 4 was considered the lowest (−3.987) among the
tested compounds, while compound 1 exhibited the best plasma-protein-binding percent-
age (1.074%). This information isvery important since water solubility is considered as a
key parameter to achieve desired concentration of drug in systemic circulation in order to
generate the desired pharmacological response [42]. In this case, the low aqueous solubility
of compound 4 could be a major obstacle in the development of highly potent pharmaceu-
tics, since poorly water-soluble drugs often require high doses in order to reach therapeutic
plasma concentrations after oral administration [43]. On the other hand, compound 1 may
positively influence the pharmacokinetic properties and pharmacodynamics of drugs since
the diffusion of drugs in tissues depends on the binding to plasma proteins [44]. The acute
oral toxicity of compound 2 was considered the highest (3.176 kg/mol), while the median
population growth inhibition of Tetrahymena pyriformis was expressed by compound 4
(1.172 µg/L) since the toxicity of this unicellular protozoa is well known and mostly found
in polluted water, which partially explains why scientists use it as a toxic endpoint during
experiments [45]. Noting that, acute oral toxicity is considered as a crucial parameter to
determine the short-term adverse effects of a drug when administered in a single dose [46].

3.4. Pharmacological Properties

The possible biological score of each compound was investigated using the PASS
online web server. A study conducted by Druzhilovskiy et al. [47] demonstrated the
predictive effectiveness of PASS online of 32 from 33 compounds, which explains the
choice of this server. As shown in Table 3, compound 1 could be useful as calcium channel
(voltage-sensitive) activator but also as nootropic agent, with respective values of Pa = 0.703,
Pa = 0.679. It is well known that voltage-gated calcium channels are mandatory for the
initiation of many physiological events such as the secretion of hormones or the release of
neurotransmitters, by maintaining a coherent synaptic transmission [48]. A nootropic effect
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could mean that compound 1 can boost brain performance, especially memory capacity, an
important parameter of the learning process [49].

Table 3. Bioactivity prediction of the four tested compounds.

Compound Pa Pi Biological Activities

Compound 1
0.703 0.005 Calcium channel (voltage-sensitive) activator
0.679 0.047 Nootropic
0.594 0.04 Antidyskinetic

Compound 2
0.965 0.003 Antidiabetic (type 2)
0.906 0 Lipase inhibitor
0.39 0.007 Retinoprotector

Compound 3
0.864 0.013 Phobic disorders treatment
0.806 0.004 Cardiovascular analeptic
0.73 0.036 Antieczematic

Compound 4
0.926 0 Polarization stimulant
0.754 0.003 Antiprotozoal
0.426 0.04 (Plasmodium) Chemosensitizer

Pa: Probability of activity. Pi: Probability of inactivity.

It is also interesting to underline that compound 2 could be a potential antidiabetic
agent, especially against Type 2 diabetes (Pa = 0.965), to ameliorate pancreatic beta cells
function in order to reduce the abnormal elevation of blood glucose level and ameliorate
insulin sensitivity [50]. This compound may also exert a great inhibition on lipase activity
(Pa = 0.906), which may help scientists to develop new drugs to treat obesity since an
excessive activity of lipase will significantly increase gastrointestinal absorption of fats and,
in the long term, an abnormal increase in weight [51]. Compound 3 could be also a good
candidate for the treatment of phobic disorders (Pa = 0.864), making it a good candidate
in psychotherapy and in other cognitive behavioral therapy [52]. Compound 3 may also
be effective against eczema (Pa = 0.730) but also be a great cardiovascular analeptic agent
(Pa = 0.806) in order to boost heart activity to increase the blood pumping process in order
to ensure an optimal distribution of oxygen and nutrients to all parts of the body [53].
This may also help scientists to develop a more effective treatment, especially for people
suffering from valvular heart disease, cardiomyopathy, and heart failure [54]. These data
could explain the antidiabetic and neuroprotective activities of the n-BuOH extract of C.
tougourensis reported in the previous study [55,56].

The data also revealed that compound 4 may exert an important stimulation on
membrane polarization (Pa = 0.926), which is mandatory to maintain an asymmetric
organization of proteins and lipids in the plasma membrane [57]. This compound could
also exert great antiprotozoal activity against plasmodium (Pa = 0.754), since the proliferation
of this parasite is responsible for malaria, a disease widely present in the tropics regions of
Africa and Southeast Asia [58].

3.5. Cytotoxicity Prediction

Plants have demonstrated their ability to inhibit the proliferation of several tumor cell
lines over time due to their abundance of bioactive compounds, particularly flavonoids,
terpenoids, and saponins, which have a potent cytotoxic effect [59,60]. These classes of
secondary metabolites have already been identified in C. tougourensis [61]. The ability of
each compound to induce cytotoxicity on tumor cell line was investigated using CLC-Pred
server and, as shown in Table 4, data clearly indicated that the four tested compounds
expressed a moderate cytotoxic effect on the majority of cell lines evaluated in the present
study. Indeed, three compounds exerted a non-negligible cytotoxic effect against melanoma,
in which compound 2 (Pa = 0.496) and compound 3 (Pa = 0.430) were active against (M19-
MEL) cell line, while compound 4 (Pa = 0.548) was active against (SK-MEL-28) cell line.
These details are crucial because melanoma is the most dangerous type of skin cancer [62],
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and the ozone layer’s depletion makes people more vulnerable to harmful UVB sun
rays [63]. Note that the actual data reported in this study could partially explain the
remarkable photoprotective effect of the n-BuOH extract of C. tougourensis reported in the
previous study [64].

Table 4. Cytotoxicity probabilities of the four tested compounds on some tumor celllines.

Compound CellLine CellLine Full Name Tissue Tumor Type Pa Pi

Compound 1
Jurkat Acute leukemic T-cells Blood Leukemia 0.456 0.008

SK-MES-1 Squamous cell lung carcinoma Lung Carcinoma 0.411 0.016
MDA-MB-453 Breast adenocarcinoma Breast Adenocarcinoma 0.351 0.204

Compound 2
SF-295

Glioblastoma Renal carcinoma
Melanoma

Brain Glioblastoma 0.593 0.01
A498 Kidney Carcinoma 0.552 0.016

M19-MEL Skin Melanoma 0.496 0.016

Compound 3
Hs 683 Oligodendroglioma Brain Glioma 0.559 0.037

HOP-18 Non-small cell lung carcinoma Lung Carcinoma 0.505 0.01
M19-MEL Melanoma Skin Melanoma 0.43 0.028

Compound 4
SK-MEL-28 MelanomaProstate carcinoma

Lung carcinoma

Skin Melanoma 0.548 0.013
DU-145 Prostate Carcinoma 0.469 0.025

A549 Lung Carcinoma 0.456 0.074

Pa: Probability of activity. Pi: Probability of inactivity.

Compound 1 exhibited a modest cytotoxic effect against acute leukemic T-cells (Ju-
rkat) cell line (Pa = 0.456), which may show promise in the treatment of diseases related
to hematopoiesis since, in a leukemia situation, bone marrow is replaced with tumors,
which prevents the regular producing of B or T lymphocytes and may cause long-term
anemia [65,66]. Note that a negligible effect (Pa = 0.351) was exerted by compound 1
against breast adenocarcinoma (MDA-MB-453) cell line.

Compound 3 exerted a modest cytotoxic effect against oligodendroglioma (Hs 683)
and non-small-cell lung carcinoma (HOP-18) cell lines with a respective activity values of
Pa = 0.559 and Pa = 0.505. Despite the fact that non-small-cell lung carcinoma is classified
as the tenth most common cancer in the world [67], its number has increased considerably
over the last years, for example by 25% between 2014 and 2016 in Canada [68]. Recent
statistics reported that this type of cancer accounts for 80% to 85% of all lung cancers [69],
in which women have the highest rates for this type of cancer [70]. These facts highlight
the critical need for a new treatment option for this type of cancer. It is worth noting that
compound 2 was active on brain tissue, particularly against the glioblastoma (SF-295) cell
line, with a cytotoxic effect of Pa = 0.593.

3.6. Gene Expression Profiles

As shown in Table 5, the results suggest that compound 1 may exert a moderate
upregulation process on the mRNA expression of FOXO1 and ADIPOQ genes with re-
spective values of Pa = 0.708 and Pa = 0.596. These two genes are mainly involved in the
anti-diabetic process [71,72]. Indeed, the expression of the FOXO1 gene, which is mainly
orchestrated by MAP kinase pathway, will significantly contribute to the maintenance of
energy homeostasis, especially those in relation to carbohydrate metabolism, but may also
strengthen insulin sensitivity, glucose uptake, and also promote the formation of adipose
tissue and skeletal muscle [72–74]. This gene also seems to protect the keratinocytes of
skin and mucous membranes by enhancing immune system functions when promoting the
maturation and production of lymphocytes, especially type B, as well as the activation of
macrophages, neutrophils, and dendritic cells [75]. The ADIPOQ gene encodes a protein
called adiponectin, and it was reported that low plasma levels of this protein may lead
to an abnormal increase of insulin resistance, as well as lipid metabolism imbalance [76].
The expression of this gene could also stimulate the sensitivity of insulin to the varia-
tion of blood sugar level, and thus to prevent the development of possible diabetes [77].
Compound 1 may also moderately (Pa = 0.597) stimulate the expression of LST1 gene,
which may possibly modulate immune responses, especially against rubella [78,79]. On the
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other hand, compound 1 showed a moderate downregulation process on the expression
of CCR6 (Pa = 0.573), DHFR (Pa = 0.474), and BCAS3 (Pa = 0.451) genes, and this informa-
tion is very important since the overexpression of these genes is associated with several
illnesses; CCR6 with psoriasis, systemic sclerosis, rheumatoid arthritis, lupus nephritis [80],
while BCAS3 may alter neural tissue development [81] and DHFR with cerebral folate
deficiency and megaloblastic anemia that lead in the long term to the development of
severe neurologic diseases, especially brain tumors [82].

Table 5. Probable effects of the four tested compounds on the expression of some genes: mRNA-based
prediction result.

Compound Genes
(Upregulation) Pa Pi Genes

(Downregulation) Pa Pi

Compound 1
FOXO1 0.708 0.135 CCR6 0.573 0.151

LST1 0.597 0.146 DHFR 0.474 0.222
ADIPOQ 0.596 0.043 BCAS3 0.451 0.076

Compound 2
CYP3A4 0.908 0.005 BGLAP 0.627 0.047
CYP2B6 0.778 0.018 MSH5 0.502 0.134
BRMS1 0.639 0.065 TREX1 0.502 0.134

Compound 3
PBK 0.812 0.052 PLCG2 0.735 0.038

RACGAP1 0.781 0.071 SUV39H2 0.732 0.075
BRMS1 0.779 0.022 TREX1 0.725 0.065

Compound 4
REL 0.557 0.115 FABP4 0.567 0.075

TRIOBP 0.411 0.167 TAGLN 0.395 0.177
ADAMTS9 0.4 0.234 NCOA1 0.335 0.253

Pa: Probability of activity. Pi: Probability of inactivity.

Among the four tested compounds, results revealed that compound 2 could be a po-
tential molecule to upregulate the mRNA expression of CYP3A4 (Pa = 0.908) and CYP2B6
(Pa = 0.778) genes. These two genes are members of the cytochrome P450 superfamily of
enzymes and play important roles. A study carried outby Chen et al. [83] indicates that
CYP3A4 can detoxify bile acids, which gives a promising expectation for the treatment of
cholestasis. CYP2B6 is mainly expressed in the liver, and it was reported that this enzyme
can regulate the mRNA splicing and expression processes to form protein [84]. Clinically,
data collected about CYP2B6 could be considered relevant for the treatment of HIV-infected
patients [85]. A moderate downregulation process was exerted by compound 2 on them-
RNA expression of BGLAP (Pa = 0.627), MSH5 (Pa = 0.502), and TREX1 (Pa = 0.502) genes.
The overexpression of the BGLAP gene is associated with the development of pancreatic
ductal adenocarcinoma and chronic pancreatitis, and several assays, such as quantitative
RT-PCR, have already proven it [86]. The mutation of the MSH5 gene could be responsible
for premature ovarian failure [87], while mutations in the TREX1 gene are strongly linked
with Aicardi–Goutières syndrome, which is a severe encephalopathy [88].

The results also indicated that compound 3 may possibly enhance the mRNA expres-
sion of PBK (Pa = 0.812), RACGAP1 (Pa = 0.781), and BRMS1 (Pa = 0.779) genes. These
genes are very important in human physiology. Indeed, the protein encoded by the PBK
gene serves as novel target for development of new cancer immunotherapy and diagnostic
biomarker, especially to treat human bladder cancer [89], while the RACGAP1 gene is
considered as an important controller of cellular phenomena related to hematopoietic cells,
especially their growth and differentiation [90]. A recent study indicated that the BRMS1
gene is a potent metastasis suppressor, especially against breast cancer, via the regulation
of NF-κB and epidermal growth factor receptor (EGFR)-signaling pathways [91]. Note
that compound 2 showed also a non-negligible upregulation effect on the expression of
the BRMS1 gene (Pa = 0.639). On the other hand, compound 3 showed almost the same
probability to downregulate the expression of PLCG2 (Pa = 0.735), SUV39H2 (Pa = 0.732),
and TREX1 (Pa = 0.725) genes. A recent study suggests that mutations in the PLCG2 gene
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can generate an autoimmune pathology condition characterized by an abnormal inflamma-
tion throughout the body and the incapacity of the body to correctly fight infections [92].
An overexpression of this gene is associated with osteosarcoma, considered as the most
common primary bone cancer in children [93]. It was also reported that mutations in the
TREX1 gene could generate an autosomal-dominant disorder called retinal vasculopathy
with cerebral leukodystrophy (RVCL) [94].

In this study, compound 4 showed a modest upregulation on the mRNA expression
process of REL (Pa = 0.557), TRIOBP (Pa = 0.411), and ADAMTS9 (Pa = 0.400) genes.
The protein encoded by the REL gene called c-REL plays a key role in hemopoietic cells
growth, differentiation, and function, especially those of lymphocytes B and T, which
may help scientists treating certain autoimmune diseases such as psoriasis, arthritis, and
celiac disease [95,96]. On the other hand, the TRIOBP gene is mandatory to regulate cell
spreading and contraction by directly binding and stabilizing filamentous F-actin [97],
while the ADAMTS9 gene helps transport a variety of secretion from the endoplasmic
reticulum into Golgi apparatus via its own protease-independent function [98].A moderate
downregulation process was also exerted by compound 4 on the mRNA expression of
FABP4 (Pa = 0.567), while non-negligible values were recorded for TAGLN (Pa = 0.395)
and NCOA1 (Pa = 0.335) genes. Note that the FABP4 gene activity is associated with the
development of coronary restenosis [99] and liposarcoma of bone diseases [100], while the
overexpression of the TAGLN gene is associated with the development of non-small-cell
lung cancer, which is considered nowadays as the main cause of tumor mortality in the
world [101]. Finally, a study showed that there could be a link between a mutation in
NCOA1 gene and the development of rhabdomyosarcoma [102], which is a type of tumor
that affects more neonatal and young children.

3.7. Macromolecular Targets Prediction

As shown in Table 6, compound 1 seems to be the most active on the nervous system by
targeting key enzymes named acetylcholinesterase (Pa = 0.292) and butyrylcholinesterase
(Pa = 0.219) in a non-negligible way, which suggests that this compound could actively
participate in the regulation of the activity of these two enzymes known for their important
roles in cholinergic transmission by facilitating the hydrolysis of acetylcholine (ACh)
neurotransmitter [103]. On the other hand, compound 1 may also participate with other
compounds ina synergistic way to limit the activity of these enzymes, since an excessive
activity of acetylcholinesterase may lead in the long term to neurodegenerative illnesses
such as Alzheimer’s and Parkinson’s diseases [104]. A key receptor called muscarinic
acetylcholine receptor (M1) could be also targeted by this compound (Pa = 0.175), and
several studies [105,106] reported the crucial role of this receptor during learning and
memory processes, but it could also be a promising therapeutic target for the improvement
of cognitive decline in Alzheimer’s disease (AD).

Both beta amyloid A4 protein and serine/threonine protein kinase AKT may be
targeted by compound 2 but in anonsignificant manner (Pa = 0.112), while compound 3
seems to be inactive on nervous system molecules. However, it is important to underline
that compound 2 may be considered to have noticeable contribution in the elaboration
process of anti-Alzheimer’s drugs, since Beta-amyloid protein is the main component
of amyloid plaques, a protein aggregate found in neurons in certain neurodegenerative
diseases [107]. This protein would notably decrease communication between neurons due
tofilamentous aggregation in the extracellular space [108]. On the other hand, compound 2
may promote neuronal survival of the cerebellum through serine-threonine protein kinase
Akt, and researchers underlined that this enzyme cangenerate this effect via a possible
activation of insulin-like growth factor 1 (IGF-1)-signaling pathway [109].

Furthermore, the probability of compound 4 to target matrix metalloproteinase 16,
matrix metalloproteinase 12, and nitric-oxide synthase in the brain is negligible (Pa = 0.097).
Note that matrix metalloproteinase 16 is responsible for neural crest cell migration and
the emergence of multiple cell lineages in the developing avian embryo [110]. However,
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matrix metalloproteinase 12 activity may significantly compromise the integrity of the
blood–brain barrier after ischemic stroke in rats [111]. Finally, nitric-oxide synthase is
mandatory to catalyze the production of nitric oxide (NO) considered as a major component
of the signaling pathways that operate between cerebral blood vessels, neurons, and glial
cells [112].

Table 6. Nervous system macromolecular targets prediction of the four tested compounds.

Compound Target Target Class Probability

Compound 1
Acetylcholinesterase Hydrolase 0.292
Butyrylcholinesterase Hydrolase 0.219

Muscarinic acetylcholine receptor M1 Family A G protein-coupled receptor 0.175

Compound 2
Beta amyloid A4 protein Serine/threonine

protein kinase AKT
Membrane receptor 0.112

Kinase 0.112

Compound 3 NA / /

Compound 4
Matrix metalloproteinase 12 Protease 0.097
Matrix metalloproteinase 16 Protease 0.097
Nitric-oxide synthase, brain Enzyme 0.097

Probability for the query molecule—assumed as bioactive—to have this protein as target. NA: Non-active.

4. Conclusions

Various insilico tests conducted in this study revealed that certain compounds recently
identified in the n-BuOH extract of this plant could be effective in the treatment of diabetes,
cardiovascular disease, and central nervous system disorders. These compounds may also
be used to regulate the expression of certain genes in order to better prevent and treat
diseases related to immunity, cancer, and diabetes. These compounds may also have potent
cytotoxic effects on several tumor cell lines.
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