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Abstract: Sm-doped SrCl2 crystals were prepared, and the scintillation properties such as emission
spectra, decay profiles, and pulse height were investigated. Under X-ray irradiation, a broad band
can be observed at 680 nm, which indicates that the major origin is due to 5d-4f transitions of Sm2+.
The decay curve is approximated by one exponential function with a decay time of 10 µs, and the
decay time constant is typical for Sm2+. From the pulse height of 137Cs γ-rays, 0.1% Sm:SrCl2 shows
a light yield of 33,000 photons/MeV.

Keywords: scintillation; photoluminescence; near-infrared luminescence

1. Introduction

A scintillator is a material that exhibits luminescence when excited by ionizing radi-
ation and is used with a photodetector to convert emitted photons into electrical signals.
Scintillators play an important role in radiation measurements such as medicine [1,2],
resource exploration [3], security [4], astrophysics [5], and monitoring [6,7]. Conventionally,
scintillators that exhibit ultraviolet or visible luminescence, suitable for general Si-based
photodiodes or photomultiplier tubes, have mainly been developed [8–10]. On the other
hand, scintillators with near-infrared (NIR) luminescence have been attracting attention.
Wavelengths from 650 to 950 nm, called the first optical window, are transparent to water
and blood in the human body [11,12]. Hence, in vivo dosimetry during radiotherapy [13,14]
and monitoring of drug delivery [15,16] have been suggested as promising applications.
In addition, high-dose monitoring applications have been proposed. When monitoring
high-dose environments such as nuclear reactors, radiation damage to semiconductor
components hinders stable measurement. Therefore, remote monitoring using optical fiber
has been proposed, and NIR photons have an advantage due to their high transmittance for
optical fiber [17,18]. In addition, it is easy to distinguish red-NIR photons from Cherenkov
light generated in a nuclear reactor because Cherenkov light, characterized by pale light,
is known to have high light intensity in the near-ultraviolet to visible regions [19,20]. On
the other hand, in high-dose field measurements using conventional ultraviolet–visible
scintillators, Cherenkov light inhibits stable measurements.

Alkaline earth halides doped with divalent rare-earth ions, as represented by
Eu:SrI2 [21–25], exhibit high-scintillation LY and high energy resolution, and Sm2+ has been
recently attracting attention as an emission center showing red-NIR photons [26–28]. So far,
there have been few reports of radioluminescence (RL) from Sm2+-doped materials [29–34].
The properties of Sm-doped SrCl2 have not yet been clarified, despite its relatively low
deliquescence, ease of growth, and adequate bandgap energy (~5.2 eV [35]). In this study,
we focused on Sm-doped SrCl2 crystals as a red-NIR scintillator and investigated the
scintillation properties.
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2. Materials and Methods

Sm-doped SrCl2 single crystals were synthesized using a vertical Bridgman furnace
(VFK-1800, Crystal Systems, Yamanashi, Japan). The initial concentrations of tested Sm
were 0.1, 0.5, and 1%. SrCl2·6H2O (99%), SmCl3 (99.9%), and carbon powders were
vacuumed (~10 Pa) in a quartz ampoule and then sealed using a gas burner (KSA-22,
Tokyo Koshin Rikagaku Seisakusho, Tokyo, Japan). Here, the carbon powder maintains the
reduction conditions to remove residual oxygen contamination and promote the reduction
of Sm3+ → Sm2+ [36]. Then, crystal growth was performed using the Bridgman furnace
with a pulling speed of 10 mm/h. The samples were processed into smaller samples,
and the actual concentrations were determined using X-ray fluorescence (XRF) analyses
(SEA-1000A, SII, Chiba, Japan). The tested tube voltage and used filters were 50 kV with a
Pb filter, 30 kV with a Pb filter, and 15 kV with a Cr filter.

Photoluminescence (PL) properties were evaluated using spectrofluorometers (C11347
and C11367, Hamamatsu Photonics, Shizuoka, Japan). Radioluminescence (RL) spectra
under X-ray irradiation, RL decay profiles, and pulse height were measured according to a
previously reported setup [37,38]. The photomultiplier tube with a multialkali photoelectric
surface used at pulse height covered the sensitivity of 300–900 nm, and the quantum
efficiency (QE) was 18% at 520 nm and 10% at 680 nm.

3. Results and Discussion

The sizes of 0.1, 0.5, and 1% Sm:SrCl2 synthesized by the Bridgman method were
approximately 4–6 mmϕ × 10–15 mm, and they had a few cracks owing to the high pull-
down speed. For following characterizations, the samples were cut into small pieces with a
size of 2–3 mmϕ × 1 mm, and the surfaces were polished. The actual Sm concentrations
of the 0.1, 0.5, and 1% Sm:SrCl2 samples are 0.043, 0.186, and 0.315%, respectively. In all
samples, the selected pieces showed lower Sm concentrations than the initial concentrations
because of segregation. Figure 1 shows the appearance of the prepared Sm:SrCl2. The
appearance of the sample is transparent, and red luminescence is observed when irradiated
with an ultraviolet lamp (365 nm). X-ray fluorescence spectra of 0.1% Sm:SrCl2 sample with
a tube voltage of (top) 50 kV, (middle) 30 kV, and (bottom) 15 kV are shown in Figure S1.
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Figure 1. Photographs of Sm:SrCl2.

Figure 2 shows the PL 3D spectrum of the 0.1% Sm-doped sample, and the 0.1, 0.5, and
1% doped samples show QYs of 85.9%, 65.7%, and 39.4%, respectively. Under excitation
from 290 to 680 nm, a broad emission band is observed at 680 nm The spectral features are
almost the same as those in Sm:SrBr2 [28]. Figure 3 shows the PL decay profiles monitored
at 680 nm when excited at 280 nm. The obtained curves are fitted with an exponential
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function, which indicates the emission has the decay time constants of 9–11 µs. The origin
is the 5d-4f transitions of Sm2+ because the decay time constants are close to those reported
in previous studies [28]. The decrease in QY indicates concentration quenching, while the
decay does not change. The results suggest that the radiative transition rate decreases, and
the nonradiative transition rate increases as the Sm-concentration increases.
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Figure 4 shows the RL spectra of Sm:SrCl2 crystals. The samples dominantly exhibit
an emission band at 680 nm due to Sm2+. In addition, a broad emission band is observed
at 430 nm, which is due to self-trapped excitons [39]. The emission decreases with the
concentration of doped Sm. According to PL analyses, the wavelength of STE luminescence
overlaps with the absorption wavelength of Sm2+, and the absorption decreases STE
luminescence. In addition, all samples exhibit a few sharp peaks in the range from 550 to
610 nm, and the origin is the 4f-4f transitions of Sm3+. Figure 5 shows the RL decay curves
of the Sm:SrCl2 crystals. The obtained curves are approximated with one exponential
function, which indicates that the decay times are about 9 µs. The values are shorter than
PL decay, and this trend was also observed in other materials. One reason is thought to be
the interaction of numerous excited secondary electrons leading to quenching.
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Figure 6 shows the pulse height spectra of Sm:SrCl2 under 137Cs (662 keV γ-rays) expo-
sure. Ce:Y3Al5O12 was selected as a reference sample showing an RL peak at 520 nm with
an LY of 20,000 photons/MeV [40]. The light yields (LYs) of the samples were calculated as
follows: LY = 20,000 × (channelsample/channelref) × (18%/10%), calculated considering the
photoabsorption peak channel and spectral sensitivity of the used photomultiplier tube.
The LYs are 33,000 for 0.1%, 28,000 for 0.5%, and 24,000 photons/MeV for 1% Sm:SrCl2
crystals. Among the samples, the 0.1% doped sample shows the highest LY. This value is
higher than Sm:Ba0.3Sr0.7Cl2 (22,000), Sm:SrBr2 (32,000) and Eu:SrBr2 (25,000), while it is
lower than Sm, Eu:SrI2 (~40,000), Eu:SrI2 (80,000) and Yb:SrX2 (~50,000) [22,23,31,34,41].
The LYs increase with increasing QYs, and the LYs are dependent on the QYs. The trend of
the results are consistent with the Robbins and Lempicki models [42,43].
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are approximated with an exponential function, and the decay time constant is typical of
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measure γ-rays.
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