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Abstract: Pomegranate peel enriched with high value of bioactive phenolics with valuable health
benefits. However, after extraction of the phenolic compounds, diverse factors can affect their stability.
Therefore, we, herein, aimed to prepare W1/O/W2 double nanoemulsions loaded with phenolic-rich
extract from pomegranate peel in the W1 phase. Double emulsions were fabricate during a two-step
emulsification technique. Furthermore, the influence of sodium carboxymethyl cellulose (CMC) in the
outer aqueous phase was also investigated. We found that W1/O/W2 emulsions containing phenolic-
rich extract showed good physical stability, especially in the particle size, polydispersity index, zeta
potential, and creaming index. Intriguingly, high encapsulation rates of pomegranate polyphenols
>95% were achieved; however, emulsion with CMC had the best encapsulation stability during
storage. Thus, our study provides helpful information about the double nanoemulsions delivery
system for polyphenols generated from pomegranate peel, which may lead to the development of
innovative polyphenol-enriched functional foods.

Keywords: pomegranate peel; encapsulation; W1/O/W2 nanoemulsion; phenolic compounds;
physical stability; carboxymethyl cellulose

1. Introduction

Pomegranate (Punica granatum L.; Punicaceae) is a fruit-bearing deciduous shrub ex-
tensively grown in many areas such as the Middle East, Europe, and Southeast Asia [1]. The
global pomegranate production is around 8 M tons [2]. Pomegranate consumption has dra-
matically risen as people become more aware about its excellent therapeutic properties [3].
It is commonly consumed fresh or in the form of juice. Pomegranate juice manufacturing
generates vast amounts of by-products, such as seeds and peels, which cause disposal prob-
lems and environmental pollution [4]. Hence, these wastes have received great attention
from investigators.

Pomegranate peel accounts for nearly around 30 to 40% of the whole fruit weight [5].
The utilization of pomegranate peel to produce bioactive compounds leads to yield a high
value of by-products, and reduces agricultural waste and environmental problems [6].
Pomegranate peel contains large amounts of different secondary metabolites, especially
flavonoids, phenols, and hydrolyzable tannins such as catechin, gallic acid, caffeic acid,
anthocyanins, and many others [7].
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Historically, the ancient Egyptians and Indians used pomegranate peel against various
diseases such as cough, diarrhea, dysentery, ulcers, diabetes, cancer, and cardiovascular
diseases. This is because of its biological activities, e.g., antioxidant, anti-inflammatory,
antihepatotoxic, antigenotoxic, and memory-enhancing characteristics [8–10]. Furthermore,
pomegranate peel has proven its beneficial effects in treating diseases caused by free radicals
such as aging, wounds, and ulcers [11,12].

Despite the numerous health benefits of pomegranate peel extract (PPE), it is unstable
and vulnerable to oxidation, polymerization, and condensation reactions [13]. In addition,
phenolic compounds, in general, can be easily destroyed during processing and storage
due to its sensitivity to high temperatures, oxygen, and light or when exposed to the
gastrointestinal conditions, which restricts their activity and compromises their valuable
effects in health [14,15]. Moreover, when pomegranate peel phenolics are incorporated into
food, they can cause astringent flavor [16]. Furthermore, the industry currently demands
proven methods that permit the using of polyphenols, instead of free molecules for the
bioavailability [17]. Consequently, encapsulation of PPE can be an approach not only to
improve their stability [18], but also to mask astringency and bitterness [19], and improve
their bioavailability and controlled release [20,21].

Thus, emulsion-based encapsulation systems provide an attractive alternative solution
to overcome these issues. It is a valuable system to incorporate water-soluble and/or
oil-soluble bioactive compounds in functional food products [22].

Double emulsions, in general, can be emulsions inside emulsions. The 1st phase is
small spherical droplets dispersed into the 2nd phase to form a primary emulsion, and
this primary emulsion is re-dispersed as droplets into the 3rd phase to obtain the double
emulsion. There are many types of double emulsions, but the main two types are: water-
oil-water (W1/O/W2) emulsions and oil-water-oil (O1/W/O2) emulsions. The W1/O/W2
emulsions have considerable promise for food applications since most foods are constituted
of a continuous aqueous phase [23].

Double emulsions display many advantages as follows: 1. Besides their ability to
incorporate two types of bioactive compounds together in one system, the double emulsion
can be used for targeted delivery of these compounds at a controlled release rate. 2. They
can be used to prepare low-fat foods such as salad dressings, fat spreads, and cheeses with-
out affecting the sensory properties. 3. They can be used to deliver functional components
by masking their undesirable flavor or odor and protecting sensitive compounds [24].

Recently, W1/O/W2 emulsions have been used to encapsulate and protect hydrophilic
bioactive compounds such as anthocyanin [25], catechin [26], oleuropein [27], and gallic
acid [28]. They have also been used to encapsulate phenolic-rich extracts, such as mango
peel [29], olive leaf [30], grape seed [31], red dragon fruit [32], or blueberry pomace [33]. To
date, encapsulation of PPE in double emulsions has not been studied yet.

The main goal of this study was to prepare W1/O/W2 double nanoemulsions loaded
with pomegranate peel extract (PPE-DE) in the W1 phase. Non-ionic emulsifiers: “PGPR”
and “Tween 20” were used as emulsifiers in W1–O and O–W2 interfaces, respectively.
The influence of the presence of carboxymethyl cellulose (CMC) in the outer aqueous
phase (W2) was also investigated. The formulated emulsions were characterized based on
their physico-chemical properties, namely their microstructures, viscosities, zeta potentials
(ζ), mean droplet sizes, droplet size distributions, and Fourier Transform Infrared (FTIR)
spectra, in addition to the encapsulation efficiency (EE) of PPE.

2. Materials and Methods
2.1. Materials

Fresh pomegranate fruits (Punica granatum L.) Sahrawy Sp. were obtained from the
El-Obourmarket (Cairo, Egypt). Corn oil without any added antioxidants (TBHQ -ve) was
donated by Arma Food Industries Company, 10th of Ramadan city (Egypt). Gallic acid
and Folin–Ciocalteu reagentwere obtained from Sigma-Aldrich (St. Louis, MO, USA);
sodium carbonate from Surechem (Suffolk, England). Sodium carboxy methyl cellulose
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and Tween 20 were purchased from Advent company, Navi Mumbai (India); polyglyc-
erol polyricinolate (Grinsted PGPR 90 Kosher) was provided from Danisco Company
(Copenhagen, Denmark). Other chemicals (analytical grade) were purchased from El-
Gamhouria Company (Cairo, Egypt).

2.2. Preparation of Pomegranate Peel Powder

Fresh pomegranate fruits were cleaned up with tap water and dried with a cloth, and
seeds were removed. After that, peels were cut using a sharp knife into small pieces around
2 × 2 cm, and then allowed to dry in a laboratory oven with forced air circulation at 45 ◦C
for 24 h. The dried peels were ground into fine powder. Afterwards, the powder was
sieved through a 500 µm mesh and kept at −20 ◦C until analysis.

2.3. Preparation of PPE

To obtain PPE, peel powder (25 g) was extracted with 70% (v/v) EtOH solution
(500 mL). The mixture was put in a shaker incubator set at 125 rpm for 24 h in the dark at
ambient temperature. The flask was covered with aluminum foil to avoid exposure of light
during the extraction process. The extract was filtered through Whatman No.1 filter paper
after centrifugation at 3500 rpm for 15 min. A rotary evaporator was used to concentrate
the filtered extract at a temperature of 40 ◦C. Finally, the remaining extract was pre-frozen
in −80 ◦C freezer overnight, and then lyophilized in a freeze dryer at −50 ◦C for 24 h. The
resulting powder was kept at −20 ◦C for further use.

2.4. Preparations of PPE-DE

As shown in Figure 1, double W1/O/W2 nanoemulsions were fabricated according to
a method previously optimized by Velderrain-Rodriguez et al. [29], with slight changes,
as follows: In the first step, primary W1/O emulsions were comprised of corn oil (70%,
wt/wt), the internal water phase (W1) (22%, wt/wt), glycerol (3%, wt/wt) as cosurfactant,
and PGPR (5%, wt/wt) as lipophilic surfactant. Loaded W1/O emulsions were prepared
using the PPE solution (1 mg/mL) dissolved in 0.1 M NaCl solution as W1, while non-
loaded emulsion (Blank, without PPE) was prepared using 0.1 M NaCl solution as W1.
Before emulsification, glycerol and PGPR were dissolved in W1 and corn oil, respectively,
using a magnetic stirrer (60 ◦C for 5 min). W1 phase was dispersed in corn oil using a high-
speed homogenizer (Unidrive X1000D-CAT, Ballrechten-Dottingen, Germany) operated
at 6000 rpm/8 min. Subsequently, to diminish the water droplets’ particle size, W1/O
emulsions were sonicated with an Ultrasonic liquid processor (Vibra-cell, VCX-750, Sonics
& Materials, Inc., Newtown, CT, USA) for 3 min at 24 kHz frequency and 40% amplitude.
In the second step, W1/O/W2 emulsions were comprised of 25, 73, and 2% (wt/wt) of the
W1/O emulsion, external water phase (W2), and Tween 20 (as a hydrophilic surfactant),
respectively. The W2 of emulsions was comprised of 0.1 M NaCl solution which was
used to dissolve Tween 20 and CMC (0.5% wt/wt). The final W1/O/W2 emulsions were
homogenized with a high-speed homogenizer at 6000 rpm/4 min, and subsequently
sonicated for 1.5 min at a frequency of 24 kHz and 30% amplitude.

2.5. Emulsion Characterization

Physical characterization of the double emulsion encapsulating the PPE was per-
formed by measuring mean particle diameter, particle distribution, particle charge via zeta
potential, apparent viscosity, and morphological characteristics via transmission electron
microscopy (TEM).

2.5.1. Particle Size, Polydispersity Index (PDI), and ζ Potential Measurements

Dynamic light scattering (DLS) (NICOMP 380 ZLS, PSS, Santa Barbara, CA, USA) is a
method used to measure particle diameter, PDI, and ζ potential of the prepared emulsions.
Samples were analyzed using the 632 nm line of a HeNe laser as the incident light with an
angle of 90◦ and ζ potential with an external angle of 18.9◦.
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Figure 1. Shows the preparation and characterization of W1/O/W2 nanoemulsions.

2.5.2. Viscosity Measurement

Brookfield viscometer (Brookfield, WI, USA, DV-II Brookfield) was used to estimate
the viscosity of double emulsions at controlled room temperature (25 ◦C) and 250 rpm with
spindle No. 21. The viscosity value was read and reported in terms of centipoises (cp).

2.5.3. Creaming Index (CI)

Creaming of double emulsions was monitored through the storage at 4 ◦C by measur-
ing the total emulsion height (EH) and the serum layer height (SH). The following formula
was used to determine the creaming index (CI) [34]:

CI(%) = 100 × SH
EH

(1)

Creaming of the W1/O/W2 emulsion led toseparating the aqueous phase at the bottom
and the oil phase at the top, which was seen easily by the naked eye.

2.5.4. FTIR

FTIR of spectra of corn oil, PPE, CMC, double emulsion contained PPE in W1 (PPE-
DE), and double emulsion contained PPE in W1 with CMC in W2 (CMC/PPE-DE) were
recorded using the Agilent Cary 630 FTIR-spectroscopy (Santa Clara, CA, USA). Samples
were mixed with KBr powder, then pressed into a disk, and scanned in the frequency range
of 650–4000 cm−1 at ambient temperature.

2.5.5. Measurement of EE

The EE (%) of double W1/O/W2 emulsions loaded with PPE was determined as
the total phenolic content (PC) remaining in the primaryemulsions (W1/O) during the
emulsification process. The remaining PC content was determined according to Velderrain-
Rodriguez et al. [29] with slight changes. Firstly, double W1/O/W2 emulsion samples
were centrifuged (13,600× g/15 min/4 ◦C). Then, a syringe needle was used to gently
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remove the bottom aqueous layer, which was then filtered through a 0.45 mm syringe filter
to collect just water and exclude oil droplets. Thereafter, the recovered PC was measured
bythe Folin–Ciocalteu method [35]. The results (mg GAE/g emulsion) were determined
from a standard calibration curve (Figure 2). The equation below was used to calculate the
EE (%) of emulsions:

EE(%) =

[
1 − TPS − TPC

TPPPE

]
× 100 (2)

where TPs: Total GAE found in PPE-DE and CMC/PPE-DE after centrifugation; TPC: GAE
value in the Blank-DE after centrifugation; TPPPE: Total amount of GAE in the PPEdissolved
inW1 phase solution.
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2.5.6. TEM

The morphology of double W1/O/W2 emulsions was observed by TEM (JEOL GEM-
1010, Tokyo, Japan) operated at 80 kV. The W1/O/W2 emulsions were diluted 10 times
with distilled water, and the diluted emulsion was put onto carbon-coated copper grids
(CCG) and retained for 1 min at ambient conditions. Then, Whatman filter paper was used
to absorb the excess sample. The grid was stained with 2% uranyl acetate as a negative
staining agent, and was left to dry before the TEM images were captured.

2.6. Statistical Analysis

Results are shown as mean ± SD. Statistical analyses were performed during one-way
analysis of variance (ANOVA) using SPSS software (version 26); p < 0.05 was considered
significant.

3. Results and Discussion
3.1. Droplet Size Distribution and ζ Potential

The particle size Intensity-Gaussian distributions and its related indices of the W1/O/W2
nanoemulsions loading with/without PPE are shown in Figure 3 and Table 1. The results
revealed that emulsions containing phenolic compounds (PPE-DE and CMC/PPE-DE)
have a lower particle size in comparison with Blank-DE. PPE-DE achieved the smallest size
(259.2 nm); this decrease is mostly because of the surface activity of phenolic compounds,
which lowered the interfacial tension at the oil/water interface [36,37].
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Figure 3. The particle size distribution of (a) Blank W1/O/W2 emulsion (Blank-DE); (b) DE containing
pomegranate peel extract in the internal (W1) phase (PPE-DE), and (c) DE containing pomegranate
peel extract in the internal (W1) phase with carboxymethyl cellulose in the external (W2) phase
(CMC/PPE-DE).

Table 1. Particle size and polydispersity index for different double nanoemulsions.

Sample Mean
Diameter (nm)

Standard
Deviation (nm)

Chai
Square

Variation
PDI

Blank-DE 304.1 145.1 12.157 0.228
PPE-DE 259.2 137.4 1.091 0.281

CMC+PPE-DE 264.5 108.7 4.793 0.169

The PDI indicates the level of dispersion homogeneity, which ranged from 0 to 1. If this
value is close to 0, it means that the dispersion particles are homogeneous in their size. If the
PDI value > 0.5, it means the presence of non-uniform sized particles [38]. In our study, all
the W1/O/W2 emulsions exhibited monodisperse (homogeneous) particle size distribution
with PDIs less than 0.3, thus demonstrating high kinetic stability. The formulation prepared
with CMC presented the lowest PDI value (0.169). Commonly, it is presumed that the
smaller the droplet size, the more stable emulsion’s stability, especially against creaming
and sedimentation phenomena [39]. It seems that “average globule diameter and size
distribution in the multiple emulsion might be influenced by factors such as nature and
concentration of surfactants, aqueous and oil phase viscosity, oil phase composition, and
production formulation conditions”. According to Silva et al. [40], previous factors make
the comparison among studies complicated.

Zeta potential has a significant role in the physical stability of the emulsions [41].
Notably, the higher value of zeta potential (positive or negative) indicates that the emulsions
are more stable [42]. Figure 4 and Table 2 show the average value of zeta potential and its
related indices of the W1/O/W2 nanoemulsions.

Table 2. Zeta potential measurements for different double nanoemulsions.

Sample Avg. Zeta
Potential (mV)

Cell Current
(mA)

Avg. Mobility
(M. U.)

Frequency Shift
(Hz)

Blank-DE −19.41 0.09 −1.36 −2.42
PPE-DE −45.81 0.06 −3.20 −6.36

CMC/PPE-DE −25.30 0.13 −6.36 −2.85

Zeta potential values were within a range of −19.41 to −45.81 mV, and the greatest
potentials were obtained in the emulsion belonging to the PPE-DE sample, in which the
smallest particle size was also achieved, hence exhibiting higher stability than other samples.
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Generally, when the absolute value of zeta potential is more than 25 mV, emulsions are
usually considered stable [43].
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3.2. Viscosity and Creaming Index

Table 3 depicts the viscosity and CI of the W1/O/W2 nanoemulsions. The viscosity of
Blank-DE exhibited the lowest value (3.4 cP), while it was significantly increased with the
addition of phenolic-rich extract in the inner phase. This observation could be due to the in-
teraction between the phenolic compounds in PPE and Tween 20 which are absorbed at the
oil–water interface [29]. These findings are consistent with Velderrain-Rodríguez et al. [29],
who reported that the W1/O/W2 emulsions containing mango peel phenolic extract had
higher apparent viscosity as compared to control emulsion, and the W1/O/W2 emulsions
made with Tween 20 or lecithin had the highest values of apparent viscosity.

Table 3. Shows the viscosity for different double nanoemulsions.

Sample Viscosity (cP)
Creaming Index (% CI) Thermodynamical

Stability20 Days 30 Days

Blank-DE 3.4 ± 0.07 b 51.87 ± 0.98 a 57.22 ± 1.18 a Instable
PPE-DE 3.6 ± 0.10 a 1.55 ± 0.11 b 1.55 ± 0.11 b Stable

CMC/PPE-DE 3.7 ± 0.12 a 0.52 ± 0.06 b 0.52 ± 0.06 b Stable
Note: Values ± SD. Letters (a, b) mean significant differences in the same column.

In our study, the emulsion supplemented with 0.5% CMC in the outer phase was
observed to have the highest viscosity. Several previous studies indeed reported that the
addition of CMC or other biopolymers in double emulsions induced a considerable increase
of viscosity [25,44].

On the other hand, the creaming index expresses the emulsion’s stability in relation
to the separation process of the phases of an emulsion. “It is influenced by many factors
such as the difference in densities between the aqueous and oil phases, the viscosity of
the continuous phase, the interactions between the droplets of the discontinuous phase,
etc.” [45].

At the beginning, fresh W1/O/W2 nanoemulsions showed no signs of phase separa-
tion irrespective of the formulation. Posteriorly, creaming of Blank-DE increased signifi-
cantly with the storage time and reached out to 51.87 and 57.22% at 20 and 30 days, respec-
tively (Figure 5). In contrast, we observed an extreme little separation at the top in PPE-DE
and CMC/PPE-DE formulations after 20 days of storage and it remained unchanged after
30 days; in other words, emulsion stability evolved in the order, CMC/PPE-DE > PPE-DE
> Blank-DE, as shown in Table 3, which agreed with the viscous character increment dis-
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cussed previously in Section 3.2. This superior stability of emulsion containing phenolic
compounds compared to blank emulsion might be due to these phenolic compounds work-
ing as emulsifiers and forming stable emulsions. Finally, our findings were in agreement
with that reported by Ye et al. [46], who noted that integration of polysaccharides into the
continuous aqueous phase (W2) at a concentration of >0.1% avoids creaming throughthe
storage period.
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Figure 5. Digital photographs of Blank double emulsion (Blank-DE); DE containing pomegranate
peel extract in the inner (W1) phase (PPE-DE), and DE containing pomegranate peel extract in the
inner(W1) phase with CMC in the external (W2) phase (CMC/PPE-DE) at 20, 30 days.

3.3. FTIR Analysis

FTIR spectra of raw materials (CMC, PPE, and corn oil) and the prepared emulsions
(PPE-DE and CMC/PPE-DE) are presented in Figure 6.

Figure 6a is the FTIR spectra of the corn oil; the large peak at 1744 cm−1 corresponding
to absorption by carbonyl double bonds (C=O stretching) of the free fatty acids (oleic
and linoleic acids) found in corn oil [32]. Notably, the band at 3008 cm−1 is due to the
=C–H stretching vibration. The spectrum had strong band absorptions in the region of
3000–2800 cm−1 caused by C–H stretching vibrations. Methylene (–CH2–) and methyl
(–CH3) stretching vibrations occur at frequencies of 2922 and 2851 cm−1, respectively [47].
Figure 6b represents the FTIR spectrum of pomegranate peel extract. Five bands appeared
at 3321, 2355, 2124, 2001, and 1636 cm−1 are assigned to active groups. Mainly, the major
peaks were obtained at 3321 and 1636 cm−1. The 3321 cm−1 peak corresponded to -NH,
and the -OH groups and the 1636 cm−1 peak were attributed to stretching vibration of
C=C of the aromatic compounds [48]. However, the weak band at 2355 cm−1 indicates
carbonyl-specific absorption.

Figure 6c shows the FTIR spectrum of CMC, the peak at 1408 cm−1 was due to sym-
metrical stretching vibrations of COO- groups [49].The band at 2892 cm−1 corresponded
to carbon-hydrogen bond (C-H) stretching [50]. Figures 5e and 6d are the FTIR spectrum
of PPE-DE and CMC/PPE-DE, respectively. Bands at 3321, 2355, and 1636 cm−1 in Fig-
ure 6d, and peaks at 3354, 2355, and 1636 cm−1 in Figure 6e indicate that the spectrum of
pomegranate peel extract is present in the W1/O/W2 nanoemulsions, and other bands in
Figure 6d,e are similar to peaks corresponding to the triglycerides functional groups present
in the corn oil. Thus, it can be concluded from the FTIR study that the components were
present in the W1/O/W2 emulsion samples; however, the observed shift in wavenumbers
indicates a strong interaction between the emulsion components.



Crystals 2022, 12, 622 9 of 14

1 
 

 
Figure 6. FTIR spectra of (a) Corn oil; (b) pomegranate peel extract (PPE); (c) carboxymethyl cellulose;
(d) DE containing pomegranate peel extract in the internal (W1) phase (PPE-DE), and (e) DEcontaining
pomegranate peel extract in the internal (W1) phase with CMC in the external (W2) phase (CMC/PPE-
DE) scanned in mid-infrared region (wavenumbers 4000–500 cm−1).

3.4. Encapsulation Efficiency

The Encapsulation Efficiency (EE) is a significant parameter determining the effective-
ness of W1/O/W2 emulsion for retaining PPE in the internal aqueous phase. Furthermore,
it has been suggested that a higher value of encapsulation efficiency is a direct consequence
of the good stability of double emulsions [51]. Here, the initial EE of double W1/O/W2
emulsions was 96.1% for the PPE-DE, whereas it was 95.4% for those containing CMC
(Figure 7). This finding may be attributed to using the lipophilic emulsifier PGPR, which
verifies a high-water EE [52] attributable to a steric stabilization of the interfacial layer [53].
Many researchers have reported similar results; Velderrain-Rodríguez et al. [29] reported
that the double emulsion formulated using PGPR and Tween 20 as the first and second
surfactants, respectively, had the higher encapsulation efficiency (98.65 ± 1.14%) of mango
peel extract. Likewise, Aditya et al. [26] fabricated W1/O/W2 emulsions loaded with
catechin inside the internal aqueous phase using PGPR as a lipophilic emulsifier and found
that the encapsulation efficiency of catechin was 97 ± 0.3%. Wang et al. [54] found good
encapsulation efficiency (over > 95%) between PGPR and Tween 80, showed EE > 95%.

After 30 days of storage, EE slightly decreased by 6% for PPE-DE and 4.4% for
CMC/PPE-DE; the higher stability in the latter may be due to the synergistic effect that
occurred when Tween 20 and CMC were used together in W2 phase. Mohammadi et al. [30]
observed that using a hydrophilic emulsifier of WPC and pectin in the outer aqueous phase
of W/O/W emulsion has led to increasing the EE and reducing the release of PC through
storage. Matos et al. [44] also encapsulated trans-resveratrol in the W/O/W emulsion
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with a hydrophobic emulsifier (PGPR). He found that the recovery yield values were
97.84 ± 2.96% using Tween 20 and 95.14 ± 3.37% using Tween 80. The authors also sug-
gested that the system with sodium carboxymethyl cellulose leads to better encapsulation
efficiency values.
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Figure 7. Encapsulation efficiency of DE containing pomegranate peel extract in the inner (W1) phase
(PPE-DE), and DE containing pomegranate peel extract in the inner (W1) phase with CMC in the
external (W2) phase (CMC/PPE-DE).

3.5. Morphology of W1/O/W2 Nanoemulsions

TEM is an extremely useful technique that provides a deeper understanding of the
microstructure characterization of colloidal systems, such as W1/O/W2 emulsions. As
shown in Figure 8, the TEM images of the three formulations of W1/O/W2 nanoemulsions:
Blank-DE, EPP-DE, and CMC/EPP-DE show that the W1/O emulsion droplets were
uniformly distributed in the continuous phase (W2) as can be seen in the obtained images
(Figure 8a–c). This homogeneous distribution indicates the successful preparation of the
W1/O/W2 nanoemulsions. However, the reverse micelle structures inside the oil droplets
were too small to be clearly visualized with this technique [55]. It was also notedthat
the particle size distribution for all emulsions was narrow, which was consistent with the
previous PDI values obtained by DLS (Section 3.1). Furthermore, the W1/O droplets in all
formulations appeared spherical in their shape. The TEM images showed the absorption
of the hydrophilic emulsifiers used at the O–W2 interface, resulting in the formation of a
compact layer on the surfaces of the spherical oil droplets, thereby enhancing the stability
of emulsions. Besides, the images revealed that the three emulsions had individual particles
(Figure 8a–c), indicating that there was no sign of flocculation in these emulsions.

As anticipated, the particle sizes determined with TEM (Figure 8a–c) were smaller
than those obtained by the DLS instrument (Figure 3, Table 1). This difference is because
of the measurements by TEM require the emulsion to be in a dry state by air-drying. In
contrast, DLS measures the hydrodynamics of the dispersed particles [56].
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Figure 8. TEM Image of (a) Blank (Blank-DE); (b) DE containing PPE in the internal (W1) phase
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(CMC/PPE-DE).

4. Conclusions

To sum up, a food-grade W1/O/W2 emulsions system was effectively fabricated to
encapsulate the natural bioactive compounds extracted from pomegranate peel through a
two-step emulsification method. The phenolic-rich inner aqueous phase (W1) was emul-
sified in corn oil with PGPR as a hydrophobic emulsifier, while the oil droplets of the
double W1/O/W2 emulsion were stabilized with Tween 20 as a hydrophilic emulsifier.
The formulated emulsions loaded with PPE, both with or without CMC, were more stable
with smaller particle size and PDI than the blank emulsion. Moreover, these emulsions
exhibited excellent initial encapsulation efficiency and phenolics retention during storage.
Nevertheless, the emulsion with CMC showed the highest stability compared to the emul-
sion without CMC. The FTIR spectra showed that the PPE and the other ingredients were
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presented in the emulsion, while the TEM images showed that the prepared emulsions had
good morphology.

Thus, our work suggests that the W1/O/W2 emulsion system can be used as an
applicable and effective method to encapsulate phenolic-rich extract from pomegranate
peel. Therefore, the release and bioavailability characteristics of double emulsions loaded
with phenolic-rich extract from pomegranate peel are recommended for future work.
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