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Abstract: Two new multicomponent crystals consisting of 3,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-
pyrazole-1-carbothioamide (1) with 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (2) and with dimethyl-
formamide (DMF), both in 1:1 ratio, prepared and structurally characterized. The occurrence of 1
in different crystal structures enabled a comparison of hydrogen bonding contacts between the two
structures as well as with the known structure of pure 1. The backbone of molecule 1 was similar in
the structures but the orientation of the methoxy groups varied. Molecule 1 was involved in various
combinations of the possible hydrogen bonding contacts, including N-H ... O=C, N-H ... OMe,
and N-H ... S. Both N-H hydrogens in the cocrystal (1-2) and the solvate (1-DMF) participated in
hydrogen bonding but only one hydrogen atom took part in the structure of pure 1. The S atom
accepted contacts in both the structures of pure 1 and cocrystal 1-2 but not in that of the 1-DMF
solvate. The oxygen atoms of both methoxy groups acted as acceptors in the structure of pure 1,
whereas one oxygen was involved in the 1-DMF solvate and none in cocrystal 1-2.

Keywords: synthesis; heterocycles; crystal structure; crystallization; multicomponent crystals;
1H-pyrazole-1-carbothioamide; bis(4-methoxyphenyl)prop-2-en-1-one

1. Introduction

The generation of crystalline materials with predictable molecular assembly is an
important aim of crystal engineering [1,2]. Thus, materials with desired physical and
chemical properties can be produced for beneficial application. In the organic solid state,
crystal engineering is dependent on the ability to predict and control the assembly of
molecules into the crystalline state. The mode of molecular packing is determined by
the synergy between a variety of factors which include the need for efficient packing and
optimization of electrostatic interactions. In addition, the structure can be influenced by
directional interactions, of which a well-characterized example is hydrogen bonding.

The control of molecular assembly requires a detailed understanding of the complex
relationships between intermolecular interactions in the crystalline state. A significant
amount of knowledge can be gained by analysis of accumulated empirical data. The study
of polymorphism [3,4], where a molecule or molecules crystallize in different crystal
structures, is an example. It has contributed significantly toward the accumulation of the
information required for the rationalization of intermolecular interactions [5].

Where crystallization of a molecule does not produce polymorphs but can form one or
more multicomponent crystals, more detailed information about its packing preferences
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can be derived by analysis and comparison of the pure and/or co-crystalline forms. This is
a broadening of the information landscape that is beneficial to crystal engineering. More
generally, the formation of multicomponent molecular systems is a topic of continued
interest in solid state chemistry and materials science [6-11]. A particularly active area
currently is the potential application of cocrystallization in the modification of physical
properties of pharmaceuticals [12-18].

This paper reports an investigation of multicomponent crystals containing 3,5-bis(4-
methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (1; Figure 1). The material
was obtained based on a reported procedure [19] as a precursor in the synthesis of novel
heterocycles as part of our ongoing research [20-25]. Molecule 1 contained hydrogen bond-
ing donors (N-H) and acceptors (S, O) as well as phenyl groups that could be involved
in7... mand X-H ... minteractions. It was therefore a suitable candidate for investiga-
tion of the intermolecular contacts preferred in different crystal structures. Formation of
multicomponent molecular crystals of 1 with 1,3-bis(4-methoxy-phenyl)prop-2-en-1-one (2)
and with dimethylformamide (DMF) solvent are reported. Figure 1 shows the chemical
structures of molecules 1 and 2. Both DMF and molecule 2 contained carbonyl groups
which are strong hydrogen bond acceptors, and additionally, 2 contained methoxy groups
which can also accept hydrogen bonds. While recognizing the ambiguity in the term
‘cocrystal’ [10], materials 1-2 are referred to as cocrystals and material 1-DMEF as a solvate
for ease of discussion.

50 33 21 8
H3C/ 32 34 - 22 \CH3
35 29 23 25 19

31 =
30 28 26 4
(0]
4
2

Figure 1. The molecules 1 and 2 showing the atom numbering scheme used in the discussion.

2. Materials and Methods
2.1. Synthesis and Crystallization

A mixture of chalcone 2 (0.54 g, 2.0 mmol) and thiosemicarbazide (0.32 g, 3.5 mmol) in
ethanolic sodium hydroxide (0.22 g, 5.5 mmol; 20 mL) was refluxed for 12 h. The mixture
was poured into ice water (100 mL) with continuous stirring for an hour and left at 20 °C
overnight. The solid produced was filtered, washed with ethanol, and dried to give a
mixture of 1 and 2. Cocrystallization of the mixture produced 1:1 cocrystals of 1 and 2.
The mixture was purified by column chromatography using a mixture of ethyl acetate
and petroleum ether 40-60 °C (5:1 by volume) followed by crystallization from DMF to
give 1 and 2 in pure forms. Compound 1. Mp 164-165 °C (lit. 165.2 °C [19]. 'H NMR
(500 MHz, DMSO-dg): 3.40 (m, 2H, pyrazoline-H), 3.71 (s, 3H, OCH3), 3.73 (s, 3H, OCH3),
5.80 (d, ] = 11.5 Hz, 1H, pyrazoline-H), 6.82 (d, ] = 8.6 Hz, 2H, Ar), 6.92-7.00 (m, 4H, Ar),
7.70 (d, ] = 8.6 Hz, 2H, Ar), and 7.91 (s, exch., 2H, NH,). 3C NMR (125 MHz, DMSO-dy):
40.4, 55.6, 55.9, 62.8, 114.3, 114.7, 123.9, 127.2, 129.4, 135.6, 155.5, 158.7, 161.8, and 176.3.
Compound 2. Mp 102-103 °C (lit. 99-103 °C [26]). 'H NMR (500 MHz, DMSO-ds): 3.78
(s,3H, OCHj3), 3.83 (s, 3H, OCH3), 6.98 (d, ] =8.6 Hz, 2H, Ar), 7.04 (d, ] =9.6 Hz, 2H, Ar), 7.65
(d,J=16.2Hz,1H),7.79 (d, ] = 16.2, 1H), 7.81 (d, | = 8.6 Hz, 2H, Ar), and 8.12 (d, ] = 9.6 Hz,
2H, Ar). 13C NMR (125 MHz, DMSO-de): 55.9, 56.1, 114.5, 114.9, 120.1, 128.0, 131.1, 131.3,
131.7,143.6, 161.8, 163.6, and 187.8.

2.2. Crystal Structure Determination

Data for cocrystal 1-2 and 1-DMF solvate were recorded at 296 K on an Agilent Super-
Nova Dual Atlas single crystal diffractometer with mirror monochromated Mo radiation.
Structure solution calculations were performed using SHELXS [27] and refinement by
SHELXL [28]. Anisotropic displacement parameters were used for non-hydrogen atoms
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during refinement. A riding model was used for hydrogen atoms with idealized geometry
and Uiso set to 1.2 or 1.5 times the value of Ueg for the atom to which they are bonded.
HFIX 43 was used for hydrogens bonded to sp? hybridized carbon atoms and HFIX 137
for methyl hydrogens. HFIX 93 was used for N-H hydrogens. The dataset for 1-DMF was
noticeably weak particularly at high angles and the DMF solvent molecule was disordered.
The DMF site was refined with two components with occupancies 0.854(3) and 0.146(3).
The crystal structures of 1-DMF and 1-2 were deposited in the CSD with reference numbers
CCDC 2167760 and 2167761 (Supplementary Material).

2.3. Electrostatic Potentials and Hirshfeld Surface Calculations

The input files for electrostatic potential calculation were prepared using Avogadro [29].
The calculation was performed using RHF/631G(dp) basis set in Gamess [30] and analyzed
using Macmolplot [31]. The Hirshfeld surface was generated using CrystalExplorerl?7 [32].

3. Results and Discussion

The crystal structure of pure 1 was previously reported (monoclinic, C2/c) [19]. This,
along with cocrystal 1-2 and 1-DMF solvate, enabled a comparison of the intermolecular
interactions of 1 in different crystal environments. The structures of two polymorphs of 2
have also been reported (orthorhombic, P2,2;2; [33,34] and Pc [35]).

3.1. Crystal Structure of Cocrystal 1-2

The crystal structure of cocrystal 1-2 was triclinic, PI (Table 1). The material was a 1:1
cocrystal of molecules of 1 and 2 (Figure 2a). Molecule 1 comprised two phenyl rings A (C2-
C7) and C (C12—C17) as well as a pyrazolyl ring B (N1, N2, C8, C9, and C10). In cocrystal
1-2, rings A and B were essentially coplanar as shown by the small twist angle (3.38(21))
between them (Table 2). In the molecule, both methoxy groups (C1, O1) and (C18, O2) were
essentially coplanar with the phenyl rings they were bonded to (the torsion angles were
below 8°, Table 1). The pyrazolyl ring was in envelop conformation with C10 out of the least
squares plane of the rest of the atoms by 0.278 (4) A. The methane-thioamide group (S1, C11,
and N2) was coplanar with the pyrazolyl ring (torsion angle N3-C11-N2-N1 = 3.0(3))°.

Table 1. Crystal and structure refinement data for 1-2 and 1-DMF.

1-2 1-DMF
Molecular formula C18H19N3025, C17H1603 C18H19N3OZS, C3H7NO
T (K) 293(2) 293(2)
A (A) 0.71073 0.71073
Crystal system Triclinic Triclinic
Space group PI PI
a(d) 9.6162(6) 9.3300(10)
b (A) 13.2978(11) 9.4551(11)
c(A) 14.2415(11) 13.6082(13)
a (%) 70.629(7) 91.915(9)
B ) 74.519(6) 94.146(9)
v (°) 72.199(7) 115.268(11)
V (A3) 1607.8(2) 1080.0(2)
z 2 2
Calculated density (Mg m~3) 1.259 1.275
Absorption coefficient (mm™1) 0.146 0.179
F(000) 644 440
Crystal size (mm?) 0.389 x 0.105 x 0.079 0.431 x 0.179 x 0.155
Reflections collected 15,540 9197
Independent reflections 7698 5143
R(int) 0.0451 0.0206
Goodness-of-fit on F? 1.028 1.061
R1 (I>20(1)) 0.0633 0.0517
wR2 (I>20(I)) 0.1369 0.1189
R1 (all data) 0.1434 0.0785
wR2 (all data) 0.1817 0.1392

Max/Min residual densities (e A~3) 0.17/-0.25 0.19/-0.24
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Figure 2. (a): The molecules of 1 and 2 in cocrystal 1-2 showing anisotropic displacement ellipsoids
drawn at 50% probability level and (b): a segment of the structure of 1-2 showing intermolecular contacts.
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Table 2. Selected geometrical parameters.
Molecule 1 1-2 1-DMF lit. 1 [19]
Ring twist angle (°)
A/B 3.38(21) 4.73(14) 6.48
B/C 77.59 (11) 83.30(6) 84.41
Max deviation from ring B plane/ A 0.278(4) 0.373(3) 0.357
Torsion angle (°)

C1-01-C2-C7 0.88 (50) 179.85(19) 179.48
C16-C15-02-C18 7.69 (46) 4.06(33) 0.70
C17-C12-C10-N2 17.47 (35) 15.13(24) 26.80

Molecule 2 1-2 lit. 2 [33] lit. 3 [35]
Ring twist angle (°)
D/E 5.14(3) 4.29 57.58
Torsion angle (°)
C19-03-C20-C25 2.66 (46) 170.65 178.66
C35-05-C32-C31 2.50 (47) 170.57 174.76

In the crystal, molecule 2 was essentially planar with a maximum deviation from the
least-squares plane of 0.191(4) A. The same planarity in the molecule was also observed
in the structure of one polymorph of pure 2 (lit. 2 in Table 2) [35]. The difference between
the molecule in cocrystal 1-2 and in this pure form, however, is in the orientation of
both methoxy groups which were rotated by ca 180° relative to the O—C(phenyl) bonds
(Table 2, torsion angles C19-03-C20-C25 and C35-0O5-C32-C31). Molecule 2 in the other
polymorph (lit. 2) was not planar, with a twist angle of 57.58° between the rings.

In cocrystal 1-2, intermolecular hydrogen bonding contacts with geometry (N3-H3A
... 04=1322°N3... 05=3.159(3) A and N3-H3B ... S1=154.8°,N3... S1 =3.412(2) A)
occurred as shown in Figure 2b. C-H ... m interactions with H-to-ring-centroid contact
distances of ca 3 A also occurred in the structure.

3.2. Crystal Structure of Solvate 1I-DMF

The crystal structure of the 1-DMF solvate contained molecules of 1 and DMF in a 1:1
ratio (Figure 3a). The DMF site was disordered with two components with occupancies
of 0.854(3) and 0.146(3). The twist angles between rings A, B, and C were similar to those
observed for molecule 1 in the structure of cocrystal 1-2 (Table 2) with the largest difference
being ca 8° in the B/C twist angle. The main difference in the conformation of the molecule
of 1 was the orientation of one of the methoxy groups (C1, O1) which was still in the plane
of the phenyl group but rotated by ca. 180° about the O-C (phenyl) bond. Like in the
molecule 1 in cocrystal 1-2, ring B was in envelop conformation but the deviation from the
least squares plane of the rest of the atoms of 0.373(3) A was observed for atom C8 (i.e.,
not C10).

N-H ... O hydrogen bonding was observed between two molecules of 1 with ge-
ometry (N3-H3A ... O2=155.2°,N3... 02 =3.101(2) A) and between 1 and DMF with
geometry (N3-H3B ... O3 =171.5°,N3... O3 =2.888(5) A) as shown in Figure 3b. C-H ...
7 interaction also occurred between centro-symmetrically related molecules and involved
methylene and phenyl groups with a H-to-centroid distance of 2.851 A.
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Figure 3. (a): The asymmetric unit of the 1-DMF solvate showing the main component of the
disordered DMF solvent with anisotropic displacement ellipsoids drawn at 50% probability level and
(b): a segment of the structure of 1I-DMF showing intermolecular contacts.

3.3. Comparison of Intermolecular Contacts for Molecule 1

As already stated, the crystal structures of pure 1, as well as cocrystal 1-2 and the
1-DMF solvate, enabled a comparison of intermolecular interactions of 1 in different
crystalline environments. The electron density map surface for a molecule of 1 is shown in
Figure 4. The blue color indicates the most negative regions on the surface of the molecule.
These regions were located mainly on the oxygen and sulfur atoms of the molecule, with the
most prominent region being in the vicinity of the sulfur atom. It was no surprise, therefore,
that these atoms acted as hydrogen bond acceptors. What was notable was that the degree of
participation by different acceptors in hydrogen bonding varied from structure to structure.
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Figure 4. Electron density map for 1 with negative and positive regions represented in blue and red

colors, respectively.

The Hirshfeld surface [36] is particularly useful in analysis as it provides a visual
representation of close intermolecular contacts. Figure 5a,b show two views of the surface
for the molecule of 1 in the structure of cocrystal 1-2. The closest intermolecular contacts,
shown in red, involved the sulfur atom (which accepts an N-H ... S contact) and the two
hydrogen atoms of the amine group (which form N-H ... Sand N-H ... O contacts).
Notably, the methoxy oxygen atoms were not involved in close contact, with the N-H
group preferring to interact with the carbonyl oxygen atom of molecule 2.

Figure 5. Hirshfeld surfaces for molecule 1 in the crystal structures of (a,b): cocrystal 1-2, (c,d): 1-
DMF solvate, and (e f): pure 1.
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Figure 5¢,d show the surfaces for the molecule of 1 in the 1-DMF solvate structure.
The amine group formed a close contact (N-H ... O) with the carbonyl group of the DMF
molecule. A short contact was also observed for one methoxy oxygen (N-H ... O) but the
S atom was not involved as closely as in cocrystal 1-2.

In the structure of pure 1, one hydrogen atom of the NH; group interacted with a
methoxy oxygen atom (Figure 5e,f). The other N-H hydrogen did not form close contact
with the other methoxy oxygen and sulfur atoms, accepting C—H contacts instead.

4. Conclusions

Two new types of multicomponent crystals containing molecule 1 were obtained
and characterized. The materials were a 1:1 cocrystal of molecules 1 and 2 and a solvate
containing a 1:1 ratio of molecule 1 and DMF. Comparing the two structures with the
known structure of the pure material showed that the molecular conformations of the
backbone of 1 were generally similar, but the orientation of the methoxy groups may vary.

Thus, one of the two methoxy groups of molecule 1 assumed a different conformation
in cocrystal 1-2 relative to the structures of 1-DMF solvate and pure 1.

Examination of intermolecular contacts indicated clearly that different combinations
of the available hydrogen bonding options for molecule 1 were preferred in the three crystal
structures. The possible hydrogen bonding in the crystals included N-H ... O=C, N-H
... OMe, and N-H ... S contacts. Both N-H hydrogen atoms were involved in hydrogen
bond formation in cocrystal 1-2 and 1-DMEF solvate but only one N-H hydrogen atom took
part in pure 1. The S atoms in both the structures of pure 1 and cocrystal 1-2 participated,
but the S atom in the 1-DMEF solvate did not. Oxygen atoms of both methoxy groups took
part in bonding in pure 1, but only one was involved in the 1-DMF solvate and none in
cocrystal 1-2.

Additionally, the N-H group formed an N-H ... O hydrogen bond preferentially with
the C=0 carbonyl group rather than interacting with a methoxy oxygen or sulfur atoms, as
illustrated by cocrystal 1-2 and 1-DMF solvate.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/ cryst12050663/s1, 1H and 13C NMR spectra, CIFs and checkcif reports for compounds 1 and 2.
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