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Abstract: Metal-organic frameworks (MOFs), whose definition has been regularly debated, are a sub-
class of coordination polymers (CPs) which may feature both an overall 3D architecture and some de-
gree of porosity. In this context, MOFs based on lanthanides (Ln-MOFs) could find many applications
due to the combination of sorption properties and magnetic/luminescent behaviors. Here we report
rare examples of 3D Ln-CPs based on anilate linkers, obtained under solvothermal conditions using a
heteroleptic strategy. The three compounds of formula [Yb2(µ-ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)3

(1), [Er2(µ-ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)4 (2) and [Eu2(µ-ClCNAn)2(µ-F4BDC)(H2O)6] (3) have
been characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and optical mea-
surements. Structural characterization revealed that compounds 1 and 2 present an interesting MOF
architecture with extended rectangular cavities which are only filled with water molecules. On the
other hand, compound 3 shows a much more complex topology with no apparent cavities. We discuss
here the origins of such differences and highlight the crucial role of the Ln(III) ion nature for the
topology of the CP. Compounds 1 and 2 now offer a playground to investigate the possible synergy
between gas/solvent sorption and magnetic/luminescent properties of Ln-MOFs.

Keywords: metal-organic framework; lanthanides; chlorocyananilate; tetrafluoroterephtalate

1. Introduction

Coordination polymers (CPs) and metal-organic frameworks (MOFs) are important
classes of molecular materials in solid-state and coordination chemistry. However, if the
prime definition of a CP was the non-molecular assembly of metal centers through organic
linkers by covalent and/or ionic bonds, the CPs/MOFs terminology remained confusing for
decades [1]. Even though it was widely accepted that MOFs are a sub-class of CPs [2], the
discrimination criteria for MOFs was unclear. From the survey proposed by Öhrström et al.
about the definition of a MOF (mostly described as “a network with frames”) [1] as well
as the definition given by James (structures “which exhibit porosity”) [3], and based on
MOFs properties that are often associated with gas sorption, it seems now approved that
a MOF should exhibit a 3D structure with some degree of porosity. Among them, CPs or
MOFs based on rare earth metals, especially lanthanide(III) ions (hereafter called Ln-CPs
or Ln-MOFs), were especially investigated for magnetic [4] and/or luminescence proper-
ties [5–7], but also adsorption [8], sensing properties [9,10], and more recently circularly
polarized luminescence [11]. The more flexible coordination numbers and geometries
of Ln(III) ions compared to transition metal ions make the prediction of Ln-CPs archi-
tectures challenging. Crystal structures topologies and dimensionalities can indeed be
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affected by synthetic conditions, the presence of coordinated solvent molecules [12], and
the choice of the organic linker [13], but also by the nature of the Ln(III) ion [14]. Most of
the ligands used are carboxylates derivatives due to their hard base behavior [2]. Among
them, oxalate [15], succinate [16] and some other aliphatic linkers were used [17], but most
of the reported examples contain aromatic linkers such as squarate [18,19], 1,4-benzene-
dicarboxylate (usually called terephthalate) [20], 1,3,5-benzene-tricarboxylate [21] or more
extended π-conjugated linkers [22,23], and more recently imidazole [24–26], pyridine [27]
or pyrimidine-based bridging ligands [28]. Alternatively, derivatives of 2,5-dihydroxy-
1,4-benzoquinone, usually called anilates, have been extensively used in the last decade
to prepare CPs with either transition metal ions [29,30] or lanthanides [31]. The choice
of the anilate linker could afford interesting magnetic properties due to the presence of
magnetic exchange interactions through the bis-bidentate ligand and the redox ability of
the anilate. On the other hand, the good antenna effect of the anilate linkers has shown
to be efficient especially for near-infrared (NIR) emitting Ln(III) ions [32]. Most examples
of Ln(III)-anilate compounds previously reported are 2D coordination polymers [33]. In-
deed, while several examples of 3D coordination polymers based on transition metal ions
and anilate linkers have been reported [34–36], only three publications have described
3D Ln(III)-anilate compounds [37–39]. However in 2D CPs, the structural versatility was
already observed depending either on the nature of the Ln(III) ion or the choice of the
solvent, ranging from (4,3) topology with square cavities to (6,3) topology with either
strongly distorted rectangular cavities or more regular hexagonal cavities [40]. In order to
promote higher dimensionalities of the extended network, one strategy consists in using
multiple linkers and thus create additional connections between metal centers. A repre-
sentative example was reported by Wang et al. with the 3D CP of formula [Ln(tpbz)(tdc)]
(Ln = Sm, Eu, Tb) obtained by the use of both 4-(2,2′:6′,2”-terpyridin-4′-yl)benzoate (tpbz)
and 2,5-thiophenedicarboxylate (tdc) [13]. One less conventional example was reported
by the team of Wu, where hydrolysis of DMF could induce the formation of formate
(fa) ligands followed by the crystallization of Ln-CPs of formula [Ln(tpa)(fa)] (Ln = Eu,
Gd, Tb; tpa = terephthalate). In these series of compounds, 2D Ln-formate layers were
further connected by tpa linkers to form an overall 3D network [41]. As part of our
research endeavor on anilate Ln-CPs, we applied herein the multiple linkers strategy,
hereafter called heteroleptic strategy, in order to afford 3D Ln-CPs based on the anilate
ligands. We thus selected the 3-chloro-6-cyano-2,5-dihydroxy-1,4-benzoquinone (chloro-
cyananilate, ClCNAn2−) and 2,3,5,6-tetrafluoroterephtalate (F4BDC2−, Scheme 1) [42,43]
bridging ligands since the use of these two linkers already allowed some of us to obtain
heteroleptic 2D Ln-CPs [44,45]. In this work, we have been able to crystallize in a highly
reproducible manner, under solvothermal conditions, the 3D compounds of formula [Yb2(µ-
ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)3 (1), [Er2(µ-ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)4 (2)
and [Eu2(µ-ClCNAn)2(µ-F4BDC)(H2O)6] (3). Crystal structures determinations reveal that
in compounds 1 and 2 the 3D network is made by six-membered rings with regular rect-
angular shape and presence of large extended cavities, therefore 1 and 2 can be described
as Ln-MOFs, while compound 3 presents a dense and more complex architecture with no
apparent voids, highlighting the influence of the Ln(III) on the nature of the Ln-CP.
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Scheme 1. Structures of the bridging ligands used in this work.

2. Materials and Methods
2.1. Materials

Reagents were purchased from Zentek (TCI) and used without further purification.
KHClCNAn was synthesized as previously reported [46].

2.2. Synthesis

Compounds 1, 2, and 3 were synthesized via hydrothermal approach. A 80 mL Teflon-
lined stainless-steel autoclave reactor with a mixture of Ln(NO3)3 xH2O (LnIII = YbIII, ErIII

and EuIII) (0.3 mmol), KHClCNAn (0.15 mmol), H2F4BDC (0.15 mmol), NaOH (0.45 mmol)
and water (40 mL) was heated at 100 ◦C for 48 h. After cooling to room temperature, red
crystals suitable for X-ray diffraction analysis were obtained.

2.3. X-ray Crystallography

Single crystals of compounds 1, 2, and 3 were mounted on glass fiber loops using
a viscous hydrocarbon oil to coat the crystal and then transferred directly to the cold
nitrogen stream. Data collection were performed on an Agilent Supernova with Cu-Kα

(λ = 1.54184 Å). The structures were solved by direct methods with the SIR97 program and
refined all F2 values with the SHELXL-2016/4 program using the WinGX graphical user
interface. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were
placed in calculated positions and refined isotropically with a riding model. A summary of
the crystallographic data and the structure refinement is given in Table S1. CCDC 2170833-
2170835 contain the supplementary crystallographic data for the paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre. Powder X-ray
diffraction was performed on a D8 Advance diffractometer from Bruker.

2.4. Thermogravimetric Analysis (TGA)

A TGA Q500 from TA Instruments was used for TGA under a nitrogen flow of
40 mL·min−1 at atmospheric pressure. A total of 10 mg of 1, 4 mg of 2 and 8 mg of 3 was
placed on a platinum crucible, and measurements were performed in the temperature
range 25–1000 ◦C at a heating rate of 20 ◦C min−1.

2.5. Vibrational and Optical Spectroscopy Measurements

Fourier-transform infrared spectroscopy (FT-IR) was performed on KBr pellets and
collected with a Bruker Equinox 55 FT-IR spectrometer. Reflectance spectroscopy measure-
ments were performed under sample direct illumination in a dual-beam spectrophotometer
(Agilent Technologies Cary 5000 UV-Vis-NIR) equipped with a diffuse reflectance integra-
tion sphere.
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3. Results and Discussions
3.1. Synthesis

Compounds 1, 2, and 3 were obtained by combining YbIII, ErIII and EuIII salts with both
organic linkers ClCNAn2− and F4BDC2− under hydrothermal conditions. This method
allowed to directly isolate the 3D coordination polymers as single crystals suitable for X-ray
analysis. The purity of the polycrystalline samples was confirmed by FT-IR (Figure S1)
and powder X-ray diffraction (Figures S2–S4). It should be noted that in our previous
studies [44,45], one-pot room-temperature synthesis or layering techniques were used using
the same precursor reagents and resulted in 2D coordination polymers. It thus highlights
the influence of solvothermal conditions on the crystallization of 3D structures.

3.2. Crystal Structures of [Yb2(µ-ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)3 (1) and
[Er2(µ-ClCNAn)2(µ-F4BDC)(H2O)4]·(H2O)4 (2)

Compounds 1 and 2 crystallized in the triclinic space group P-1 and are isostruc-
tural. The asymmetric units contain one independent metal ion, two half chlorocyananilate
(ClCNAn2−) ligands, one half tetrafluoroterephtalate (F4BDC2−) ligand and two coordi-
nated water molecules (Figure 1). The Yb or Er metal ion is linked to four O atoms from
ClCNAn2− bridging ligands, two O atoms from F4BDC2− and two O atoms from water
molecules. Therefore, the metal ion is eight-coordinated within a strongly distorted trigonal
prism geometry (C2v local symmetry) as shown by CShM values of 1.151 and 1.174 for Yb
and Er respectively (Figure S5) [47]. The ClCNAn2− ligand coordinates two metal ions in a
bis-bidentate mode, while the F4BDC2− ligand coordinates four metal ions in a tetradentate
mode. As a consequence of this coordination mode, one-dimensional (1D) chains of Ln(III)
connected by carboxylate groups are formed along the crystallographic a axis and show
short metal-metal distances (Yb···Yb distance of 5.07 Å, Er···Er distance of 5.11 Å). These
chains are separated by the anilate and F4BDC2− ligands with shortest distances between
metal ions of 8.64 and 9.69 Å for Yb and 8.68 and 9.69 for Er (Figure S6).
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Figure 1. Asymmetric unit in 1 (left) and 2 (right).

1 can also be described as two-dimensional (2D) metal-anilate layers running along
the (0-11) lattice plane and connected together by the F4BDC2− ligands. Indeed, the two
ClCNAn2− ligands are trans on the polyhedron, leading to an Ln(III)-ClCNAn2− 1D chain
(Figure 2). These 1D chains are connected to each other by the first bidentate carboxylate
group from the F4BDC2− ligand to form 2D layers. Finally, with the coordination of the
second carboxylate group, the F4BDC2− ligand is able to bridge the layers and form the 3D
architecture (Figure 2 and Figure S7). Along the a axis, extended rectangular cavities are
formed by the 1D anilate-based chains connected together by F4BDC2− spacers affording a
3D MOF (Figure 3). The accessible voids are calculated at 128 Å3 per cell (and per formula
unit) in 1 and 153 Å3 in 2. These cavities are filled with water solvent molecules (three per
formula unit in 1 and four per formula unit in 2 according to the SQUEEZE procedure).
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3.3. Crystal Structure of [Eu2(µ-ClCNAn)2(µ-F4BDC)(H2O)6] (3)

Compound 3 crystallized in the monoclinic space group I2/a. The asymmetric unit
contains one independent metal ion, two half ClCNAn2− ligands, one-half F4BDC2−

ligand and three water molecules (Figure 4). The Eu metal ion is linked to four O atoms
from ClCNAn2−, two O atoms from F4BDC2− and three O atoms from water molecules.
Therefore, the Eu metal ion is nine-coordinated within a strongly distorted tricapped
trigonal prism geometry (D3h local symmetry) toward a capped square antiprism (C4v),
with CShM values of 0.948 and 1.074 respectively. The metal ion is surrounded by two
ClCNAn2− ligands on opposite sides of the polyhedron and two adjacent F4BDC2− ligands,
while the three water molecules are organized in a fac manner (Figure S5). The bridging
ligands present the same coordination mode as in 1 and 2 (bis-bidentate and tetradentate
modes for ClCNAn2− and F4BDC2−, respectively). Therefore, the crystal structure can
also be described as Eu-ClCNAn2− 1D chains connected to each other by F4BDC2− ligands
leading to a 3D network (Figures 5 and 6). The carboxylate bridges lead to the shortest
Eu···Eu distances of 5.56 Å, while the ClCNAn2− linkers lead to distances between metal
ions of 8.76 and 8.90 Å. In addition, a short Eu···Eu distance of 6.30 Å can be observed
between two non-bridged metal ions (Figure S8).
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Although the three crystal structures share many features such as the metal to ligands
stoichiometry (Ln/ClCNAn2−/F4BDC2− ratio of 2/2/1) and the coordination mode of
the ligands, the resulting 3D networks present very different topologies. This first origins
from the size and coordination number of the metal ion (eight-coordinated for Yb/Er,
nine-coordinated for Eu). As a result, the two adjacent F4BDC2− ligands from the same
polyhedron lie parallel to each other in 1 and 2, while they are oriented in opposite direc-
tions in the Eu compound (Figures 7 and S5). Moreover, in 1 and 2 linear Ln(III)-carboxylate
chains run along the a direction, while in 3 the Ln(III) ions are not eclipsed along the 1D
chains (Figure 7). Therefore, in 1 and 2 all Ln(III)-anilate 1D chains lie in the (0-11) lattice
plane and the F4BDC2− in the (011) plane, leading to the formation of extended rectangular
cavities along the a axis which are filled with water solvent molecules (Figure S9). In addi-
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tion, in 3 one of the two independent half-anilate ligands presents a distortion which can be
highlighted by a non-negligible dihedral angle of around 11◦ between the plane made by
the C and O atoms from the ligand and the plane made by the Ln(III) metal center and co-
ordinated O atoms (Figure S10). On the other hand, the second half-anilate ligand is almost
coplanar to the Ln(III) metal centers. This results in the strong curvature of the extended
Ln(III)-anilate layer. Consequently, 3 is a coordination polymer showing a more complex
topology with the absence of apparent cavities and crystallization solvent molecules.
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tances of 5.56 Å, while the ClCNAn2− linkers lead to distances between metal ions of 8.76 
and 8.90 Å. In addition, a short Eu···Eu distance of 6.30 Å can be observed between two 
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Figure 5. 1D chain of Eu-ClCNAn2− connected by F4BDC2− ligands in 3. Color code: C (black), H
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3.4. Thermogravimetric Analysis (TGA)

TGA was performed on polycrystalline samples of 1, 2, and 3 (Figure S11). The
main difference between both compounds is the first loss of weight (about 4 and 6%) in
1 and 2, corresponding to the loss of between three and four water solvent molecules,
in agreement with the number of water molecules calculated in the cavities of the MOF
structures. In 3, such loss was not observed below 100 ◦C. Between 100 and 300 ◦C, 1 and
2 show an additional loss of about 6–7% of weight, which may correspond to the loss of
four coordinated water molecules. However, in 3, the 5% weight loss may correspond to
only three over the six coordinated water molecules. Above 375 ◦C, the three compounds
present an important weight loss, although this was more gradual in 1 and 2 (which is
attributed to the 3D networks collapse).

3.5. Optical Characterization

The diffuse reflectance (DR) spectra spanning through the UV-Vis-NIR spectral range
show evidence of both ClCNAn2− ligand and Yb/Er presence (Figure 8). The absorption
onset of ClCNAn2− is clearly visible below 650 nm in all compounds. At longer wave-
lengths, the spectra are dominated by Yb(III) and Er(III) absorption transitions (979 nm for
Yb(III), 1510, 971 and 790 nm for Er(III)) [44,45]. On the other hand, absorption transitions
associated to Eu(III) are not visible due to the overlap with those of ClCNAn2− organic
linker. The band at ~1450 nm in 1 and 2 was assigned to water absorption (this vibration is
a combination of symmetrical and antisymmetrical stretchings of the coordinated water
molecule) [45,48].
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4. Conclusions

Using the heteroleptic strategy, we have been able to prepare and structurally charac-
terize 3D coordination polymers based on Ln(III) ions and anilate/terephthalate bridging
ligands. Notably, the solvothermal synthetic protocol herein optimized seems to play a
role in determining the higher dimensionality (3D) and MOF architectures of the mate-
rials, especially when compared with room-temperature one-pot synthesis, which has
afforded 2D coordination polymers with the same bridging ligands and NIR-emitting
lanthanides [44,45]. The resulting crystal structure is strongly affected by the nature of the
Ln(III) ion. With Yb(III) and Er(III), the 3D architecture in 1 and 2 is based on Ln(III)-anilate
1D chains connected along the two adjacent directions by tetradentate terephthalate linkers
and eclipsed along the a direction leading to an Ln-MOF with extended rectangular cavities
and structural porosity. On the other hand, with the use of Eu, the 3D architecture of 3 is
more complex due to the curvature observed in the Ln(III)-anilate 1D chains and of the
many distinct positions of the terephthalate linkers around those chains. TGA confirmed
the stability of the 3D network up to 375 ◦C and the presence of solvent water molecules in
the MOF structure of 2. Diffuse reflectance studies have shown to be a valuable probe to
identify the presence of water in the inner coordination sphere of the Ln(III) ion [48]. In the
progress of this work, the adsorption and luminescence properties of Yb(III), Er(III) and
Nd(III) Ln-MOFs will be studied for application in sensing or molecular recognition in the
NIR region. On the other hand, we are currently exploiting the use of different Ln(III) ions,
as Dy(III) and Tb(III), to provide 3D networks with interesting magnetic properties such as
ferro/ferrimagnetism and/or single-molecule-magnet behavior.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12060763/s1. Table S1: Crystallographic data for 1–3; Figure S1:
FT-IR spectra of KHClCNAn, H2F4BDC, 1, 2 and 3 in the 2000–700 cm−1 region; Figures S2–S4:
Simulated (black) and experimental (blue) X-ray powder patterns of 1 (S2), 2 (S3) and 3 (S4); Figure S5.
Coordination environment of the metal ion in 1 and 3; Figure S6. View of the crystal structures of
1 and 2 in the ac plane highlighting the shortest Ln(III)···Ln(III) distances; Figure S7. Views of the
extended structure in 1; Figure S8. View of the crystal structure of 3 highlighting the shortest Eu···Eu
distances; Figure S9. View of the crystal structure of 1 highlighting the (011) and (0-11) lattice planes;
Figure S10. View of the Eu-anilate 1D chain of 3 highlighting the plane of the ligand (in blue) and the
plane made by the Ln metal centre and the two coordinated O atoms (in red); Figure S11. TGA of
compounds 1, 2 and 3.
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