Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys
Abstract
:1. Introduction
2. Formation and Annihilation of Micropores in Nickel-Based SX Superalloys
2.1. Formation of Micropores
2.2. Annihilation of Micropores by HIP
2.3. Influence of HIP on Mechanical Properties
2.4. Application of HIP in Additive Manufacturing of Nickel-Based Superalloys
3. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rame, J.; Utada, S.; Bortoluci Ormastroni, L.M.; Mataveli-Suave, L.; Menou, E.; Després, L.; Kontis, P.; Cormier, J. Platinum-containing new generation nickel-based superalloy for single crystalline applications. In Superalloys 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 71–81. [Google Scholar]
- Kool, G. Current and Future Materials in Advanced Gas Turbine Engines; Citeseer: University Park, PA, USA, 1994; Volume 78873. [Google Scholar]
- Zhao, Y.; Zhang, J.; Luo, Y.; Zhang, B.; Sha, G.; Li, L.; Tang, D.; Feng, Q. Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy. Acta Mater. 2019, 176, 109–122. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, J.; Zhang, W.; Shi, H.-J.; Gu, J. Effect of local recrystallized grains on the low cycle fatigue behavior of a nickel-based single crystal superalloy. Crystals 2019, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Jiang, W.; Xiao, J.; Li, K.; Lu, Y.; Zheng, W.; Zhang, S.; Lou, L. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes. J. Alloys Compd. 2019, 805, 218–228. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Shen, J.; Lu, Y.; Lou, L.; Zhang, J. Initiation of fatigue cracks in a single-crystal nickel-based superalloy at intermediate temperature. In Superalloys 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 208–217. [Google Scholar]
- Ruttert, B.; Meid, C.; Roncery, L.M.; Lopez-Galilea, I.; Bartsch, M.; Theisen, W. Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy. Scr. Mater. 2018, 155, 139–143. [Google Scholar] [CrossRef]
- Buck, H.; Wollgramm, P.; Parsa, A.; Eggeler, G. A quantitative metallographic assessment of the evolution of porosity during processing and creep in single crystal Ni-base super alloys: Eine quantitative metallographische Abschätzung der Porenentwicklung bei der Herstellung und beim Kriechen von einkristallinen Nickelbasis-Superlegierungen. Materialwissenschaft und Werkstofftechnik 2015, 46, 577–590. [Google Scholar]
- Seo, S.M.; Lee, J.H.; Yoo, Y.S.; Jo, C.Y.; Miyahara, H.; Ogi, K. A Comparative Study of the γ/γ′ Eutectic Evolution during the Solidification of Ni-Base Superalloys. Metall. Mater. Trans. A 2011, 42, 3150–3159. [Google Scholar] [CrossRef]
- Ashbrook, R.L. Directionally solidified ceramic eutectics. J. Am. Ceram. Soc. 2010, 60, 428–435. [Google Scholar] [CrossRef]
- Whitesell, H.S.; Overfelt, R.A. Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247. Mater. Sci. Eng. A 2001, 318, 264–276. [Google Scholar] [CrossRef]
- Heckl, A.; Rettig, R.; Singer, R. Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metall. Mater. Trans. A 2010, 41, 202. [Google Scholar] [CrossRef]
- Lamm, M.; Singer, R. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483. Metall. Mater. Trans. A 2007, 38, 1177–1183. [Google Scholar] [CrossRef]
- Lu, F.; Antonov, S.; Lu, S.; Zhang, J.; Li, L.; Wang, D.; Zhang, J.; Feng, Q. Unveiling the Re effect on long-term coarsening behaviors of γ′ precipitates in Ni-based single crystal superalloys. Acta Mater. 2022, 23, 117979. [Google Scholar] [CrossRef]
- Lu, F.; Li, L.; Antonov, S.; Zheng, Y.; Fraser, H.L.; Wang, D.; Zhang, J.; Feng, Q. Effect of Re on Long-Term Creep Behavior of Nickel-Based Single-Crystal Superalloys for Industrial Gas Turbine Applications. In Superalloys 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 218–227. [Google Scholar]
- Zhang, Y.; Huang, T.; Zhou, Z.; Li, M.; Tan, L.; Gan, B.; Jie, Z.; Qin, L.; Zhang, J.; Liu, L. Variation of Homogenization Pores during Homogenization for Nickel-Based Single-Crystal Superalloys. Adv. Eng. Mater. 2021, 23, 2001547. [Google Scholar] [CrossRef]
- Teng, Q.; Xie, Y.; Sun, S.; Xue, P.; Long, A.; Wu, T.; Cai, C.; Guo, J.; Wei, Q. Understanding on processing temperature-metallographic microstructure-tensile property relationships of third-generation nickel-based superalloy WZ-A3 prepared by hot isostatic pressing. J. Alloys Compd. 2022, 909, 164668. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, K.; Li, G.; Kang, J.; Gao, K.; Zhang, Z.; Gao, Y.; Fan, L.; An, L. Hot oscillating pressed FGH4096 nickel-based alloy with enhanced ductility and strength. J. Alloys Compd. 2022, 894, 162366. [Google Scholar] [CrossRef]
- Weddeling, A.; Theisen, W. Energy and time saving processing: A combination of hot isostatic pressing and heat treatment. Metal. Powder Rep. 2017, 72, 345–348. [Google Scholar] [CrossRef]
- Sergi, A.; Khan, R.H.; Attallah, M.M. The role of powder atomisation route on the microstructure and mechanical properties of hot isostatically pressed Inconel 625. Mater. Sci. Eng. A 2021, 808, 140950. [Google Scholar] [CrossRef]
- Qin, S.; Yan, L.; Zhang, X. Eliminating topologically closed-packed phases in deteriorated nickel-based superalloy by pulsed electric current. J. Alloys Compd. 2021, 862, 158508. [Google Scholar] [CrossRef]
- Bai, J.; Xing, P.; Zhang, H.; Li, X.; Liu, J.; Jia, J.; Sun, Q.; Liu, C.; Zhang, Y. Effect of tantalum on the microstructure stability of PM Ni-base superalloys. Mater. Charact. 2021, 179, 111326. [Google Scholar] [CrossRef]
- He, S.; Zhao, Y.; Lu, F.; Zhang, J.; Li, L.; Feng, Q. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States. Acta Metall. Sin. 2020, 56, 1195–1205. [Google Scholar]
- Roncery, L.M.; Lopez-Galilea, I.; Ruttert, B.; Huth, S.; Theisen, W. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy. Mater. Des. 2016, 97, 544–552. [Google Scholar] [CrossRef]
- Fritzemeier, L. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy. Superalloys 1988, 1998, 265–274. [Google Scholar]
- Zou, J.-W.; Wang, W.-X. Development and application of P/M superalloy. J. Aeronaut. Mater. 2006, 26, 244–250. [Google Scholar]
- Zhou, Y.; Zhang, Z.; Zhong, Q.; Zhao, Z. Model for healing of creep cavities in nickel-based superalloys under hot isostatic pressing. Comput. Mater. Sci. 2012, 65, 320–323. [Google Scholar] [CrossRef]
- Liu, L.J.; Xue, M.; Chen, J.Y.; Cao, L.M. Effect of Hot Isostatic Pressing on the Microstructure of Single Crystal Ni-Based Superalloy DD10. Mater. Sci. Forum 2013, 747, 772–776. [Google Scholar] [CrossRef]
- Yu, Z.; Rao, S.; Zheng, Z.; Zhao, Z. Interaction of hot isostatic pressing temperature and hydrostatic pressure on the healing of creep cavities in a nickel-based superalloy. Mater. Des. 2013, 49, 25–27. [Google Scholar]
- Guo, H.M.; Zhao, Y.S.; Zheng, S.; Xu, J.W.; Zhang, J.; Luo, Y.S.; Dong, J.X. Effect of Hot-Isostatic Pressing on Microstructure and Mechanical Properties of Second Generation Single Crystal Superalloy DD6. J. Mater. Eng. Perform. 2016, 44, 60–67. [Google Scholar]
- Luo, Y.S.; Guo, H.M.; Zhao, Y.S.; Zhang, J. Effect of Hot Isostatic Pressing on High-Temperature High Cycle Fatigue Properties of a Second Generation Single Crystal Superalloy DD6. Mater. Mech. Eng. 2016, 40, 51–118. [Google Scholar]
- Roncery, L.M.; Lopez-Galilea, I.; Ruttert, B.; Buerger, D.; Wollgramm, P.; Eggeler, G.; Theisen, W. On the effect of hot isostatic pressing on the creep life of a single crystal superalloys. Adv. Eng. Mater. 2016, 18, 1381–1387. [Google Scholar] [CrossRef]
- Chang, J.C.; Choi, C.; Kim, J.C.; Yun, Y.H. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing. J. Mater. Eng. Perform. 2003, 12, 420–425. [Google Scholar] [CrossRef]
- Ruttert, B.; Lopez-Galilea, I.; Theisen, W. An integrated HIP heat-treatment of a single crystal Ni-base superalloy. In Superalloys 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 391–399. [Google Scholar]
- Qianying, S.; Xianghui, L.I.; Yunrong, Z.; Guang, X.; Jian, Z.; Qiang, F. Formation of Solidification and Homogenisition Micropores in Two Single Crystal Superalloys Produced by HRS and LMC Processess. Acta Metall. Sin. 2012, 48, 1237–1247. [Google Scholar]
- Plancher, E.; Gravier, P.; Chauvet, E.; Blandin, J.J.; Lhuissier, P. Tracking pores during solidification of a Ni-based superalloy using 4D synchrotron microtomography. Acta Mater. 2019, 181, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Wang, D.; Xie, G.; Lu, Y.; Shen, J.; Lou, L. Recent progress in research and development of nickel-based single crystal superalloys. Acta Metall. Sin. 2019, 55, 1077–1094. [Google Scholar]
- Konter, M. A Novel Casting Process for Single Crystal Gas Turbune Components. In Superalloys 2000; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Hegde, S.; Kearsey, R.; Beddoes, J. Designing homogenization–solution heat treatments for single crystal superalloys. Mater. Sci. Eng. A 2010, 527, 5528–5538. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Dong, J.; Lou, L.; Zhang, J. Evolution of micro-pores in a single-crystal nickel-based superalloy during solution heat treatment. Metall. Mater. Trans. A 2017, 48, 2682–2686. [Google Scholar] [CrossRef]
- Karunaratne, M.; Cox, D.; Carter, P.; Reed, R. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment. In Superalloys 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 263–272. [Google Scholar]
- Anton, D.L.; Giamei, A.F. Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy. Mater. Sci. Eng. 1985, 76, 173–180. [Google Scholar] [CrossRef]
- Bokstein, B.S.; Epishin, A.I.; Link, T.; Esin, V.A.; Rodin, A.O.; Svetlov, I.L. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization. Scr. Mater. 2007, 57, 801–804. [Google Scholar] [CrossRef]
- Epishin, A.; Link, T.; Svetlov, I.L.; Nolze, G.; Neumann, R.S.; Lucas, H. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys. Int. J. Mater. Res. 2013, 104, 776–782. [Google Scholar] [CrossRef]
- Epishin, A.I.; Bokstein, B.S.; Svetlov, I.L.; Fedelich, B.; Feldmann, T.; Le Bouar, Y.; Ruffini, A.; Finel, A.; Viguier, B.; Poquillon, D. A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys. Inorg. Mater. Appl. Res. 2018, 9, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.-N.; Bor, H.-Y.; Chang, L. Effect of hot isostatic pressing on microstructure and mechanical properties of CM-681LC nickel-base superalloy using microcast. Mater. Trans. 2008, 49, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lin, X.; Chen, J.; Xue, L.; Huang, W. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater. Sci. Eng. A 2009, 504, 129–134. [Google Scholar] [CrossRef]
- Epishin, A.; Fedelich, B.; Link, T.; Feldmann, T.; Svetlov, I.L. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling. Mater. Sci. Eng. A 2013, 586, 342–349. [Google Scholar] [CrossRef]
- Bor, H.; Hsu, C.; Wei, C. Influence of hot isostatic pressing on the fracture transitions in the fine grain MAR-M247 superalloys. Mater. Chem. Phys. 2004, 84, 284–290. [Google Scholar] [CrossRef]
- Kim, M.; Chang, S.; Won, J. Effect of HIP process on the micro-structural evolution of a nickel-based superalloy. Mater. Sci. Eng. A 2006, 441, 126–134. [Google Scholar] [CrossRef]
- Reed, R.C.; Cox, D.C.; Rae, C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C. Mater. Sci. Eng. A 2007, 448, 88–96. [Google Scholar] [CrossRef]
- Paraschiv, A.; Matache, G.; Puscasu, C. The effect of heat treatment on the homogenization of CMSX-4 Single-Crystal Ni-Based Superalloy. Transp. Res. Procedia 2018, 29, 303–311. [Google Scholar] [CrossRef]
- Chittewar, S.L.; Patil, N.G. Surface integrity of conventional and additively manufactured nickel superalloys: A review. Mater. Today Proc. 2021, 44, 701–708. [Google Scholar] [CrossRef]
- Neikter, M.; Raja, D.; Balachandramurthi, A.R.; Harlin, P. Tailored ductility and strength for enhanced impact toughness of laser powder fusion built Alloy 718. J. Alloys Compd. 2021, 884, 161374. [Google Scholar] [CrossRef]
- Markanday, J.; Carpenter, M.; Jones, N.; Thompson, R.; Rhodes, S.; Heason, C.; Stone, H. Occurrence of a brass texture and elastic anisotropy in laser blown powder processed superalloy IN718. Mater. Sci. Eng. A 2021, 825, 141781. [Google Scholar] [CrossRef]
- Peng, H.; Shi, Y.; Gong, S.; Guo, H.; Chen, B. Microstructure, mechanical properties and cracking behaviour in a γ′-precipitation strengthened nickel-base superalloy fabricated by electron beam melting. Mater. Des. 2018, 159, 155–169. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater. Des. 2019, 165, 107598. [Google Scholar] [CrossRef]
- Khomutov, M.; Potapkin, P.; Cheverikin, V.; Petrovskiy, P.; Travyanov, A.; Logachev, I.; Sova, A.; Smurov, I. Effect of hot isostatic pressing on structure and properties of intermetallic NiAl–Cr–Mo alloy produced by selective laser melting. Intermetallics 2020, 120, 106766. [Google Scholar] [CrossRef]
- Lee, J.-U.; Kim, Y.-K.; Seo, S.-M.; Lee, K.-A. Effects of hot isostatic pressing treatment on the microstructure and tensile properties of Ni-based superalloy CM247LC manufactured by selective laser melting. Mater. Sci. Eng. A 2022, 841, 143083. [Google Scholar] [CrossRef]
- Deshpande, A.; Deb Nath, S.; Atre, S.; Hsu, K. Effect of post processing heat treatment routes on microstructure and mechanical property evolution of Haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM). Metals 2020, 10, 629. [Google Scholar] [CrossRef]
- Seidel, A.; Finaske, T.; Straubel, A.; Wendrock, H.; Maiwald, T.; Riede, M.; Lopez, E.; Brueckner, F.; Leyens, C. Additive manufacturing of powdery Ni-based superalloys Mar-M-247 and CM 247 LC in hybrid laser metal deposition. Metall. Mater. Trans. A 2018, 49, 3812–3830. [Google Scholar] [CrossRef]
- Sun, S.; Teng, Q.; Xie, Y.; Liu, T.; Ma, R.; Bai, J.; Cai, C.; Wei, Q. Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility. Addit. Manuf. 2021, 46, 102168. [Google Scholar] [CrossRef]
- Goel, S.; Mehtani, H.; Yao, S.-W.; Samajdar, I.; Klement, U.; Joshi, S. As-built and post-treated microstructures of an electron beam melting (EBM) produced nickel-based superalloy. Metall. Mater. Trans. A 2020, 51, 6546–6559. [Google Scholar] [CrossRef]
- Pei, C.; Yuan, H.; Li, B.; Ma, S. Anisotropic damage evolution and modeling for a nickel-based superalloy built by additive manufacturing. Eng. Fract. Mech. 2022, 268, 108450. [Google Scholar] [CrossRef]
- Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K. Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting. Mater. Charact. 2019, 153, 366–371. [Google Scholar] [CrossRef]
- Ormastroni, L.M.B.; Lopez-Galilea, I.; Pistor, J.; Ruttert, B.; Körner, C.; Theisen, W.; Villechaise, P.; Pedraza, F.; Cormier, J. Very high cycle fatigue durability of an additively manufactured single-crystal Ni-based superalloy. Addit. Manuf. 2022, 54, 102759. [Google Scholar]
- Ruttert, B.; Ramsperger, M.; Roncery, L.M.; Lopez-Galilea, I.; Körner, C.; Theisen, W. Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting. Mater. Des. 2016, 110, 720–727. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Yu, Y.; Wang, D.; Lin, F. Review on Additive Manufacturing of Single-crystal Nickel-based Superalloys. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Ramsperger, M.; Singer, R.F.; Körner, C. Microstructure of the nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Metall. Mater. Trans. A 2016, 47, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Meid, C.; Dennstedt, A.; Ramsperger, M.; Pistor, J.; Ruttert, B.; Lopez-Galilea, I.; Theisen, W.; Körner, C.; Bartsch, M. Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting. Scr. Mater. 2019, 168, 124–128. [Google Scholar] [CrossRef]
- Tucho, W.M.; Cuvillier, P.; Sjolyst-Kverneland, A.; Hansen, V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 2017, 689, 220–232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; He, S.; Li, L. Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys. Crystals 2022, 12, 805. https://doi.org/10.3390/cryst12060805
Zhao Y, He S, Li L. Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys. Crystals. 2022; 12(6):805. https://doi.org/10.3390/cryst12060805
Chicago/Turabian StyleZhao, Yunsong, Siliang He, and Longfei Li. 2022. "Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys" Crystals 12, no. 6: 805. https://doi.org/10.3390/cryst12060805
APA StyleZhao, Y., He, S., & Li, L. (2022). Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys. Crystals, 12(6), 805. https://doi.org/10.3390/cryst12060805