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Abstract: Sulphonamide motif is found extensively in numerous chemotherapeutic drug candidates,
it acts by stopping the production of folate inside the bacterial cell. Current research has established
the synthesis and characterization of new bioprecursor prodrugs of sulfadiazine. The first prodrug,
3, was synthesized via the coupling of diazonium salt of sulfadiazine with ethyl acetoacetate in
AcONa at 0 ◦C. The second prodrug, sulfadiazine-pyrazole, 5, was furnished via cyclocondensation
of the hydrazono derivative, 3, and 2-pyridyl hydrazine, 4. The generated data from the X-ray analysis
is interpreted and refined to obtain the crystal structure of the target compound, 5. Density functional
theory (DFT) method was used to calculate the optimized geometrical parameters, electronic state
(HOMO–LUMO), and the electronic properties. Moreover, Hirshfeld analysis revealed that the most
important contributions to the crystal packing of the prodrug 5 are H···H, O···H and H···C contacts.

Keywords: bioprecursor prodrug; sulfadiazine; computational studies; Hirshfeld

1. Introduction

Sulfonamides inhibit bacterial folate biosynthesis and have been extensively used as
broad-spectrum antimicrobials for decades, making use of the different metabolic pathways
of microbial and human cells. Nonetheless, bacteria invariably develop resistance to any
introduced therapy and only drug combinations, currently used in clinic, can effectively
combat the multidrug-resistant (MDR) [1]. Inherent and developed resistance modes of
bacteria to antibiotics are problems in the design of new drugs. In the era of bacterial
resistance, a prodrug strategy can be employed that requires bacterium-specific enzymes to
release the active drug at the infection site. Therefore, targeting the prodrugs to a specific
enzyme has potential as a selective drug delivery system in microbial chemotherapy [2,3].
Additionally, prodrugs may enhance the pharmacological activity or pharmacokinetic
properties of a parent drug molecule.

The azo group/sulphonamide hybrid structure was the first well-organized chemother-
apeutic agent that could be applied efficiently for the treatment of infections caused by
bacteria in humans. Prontosil (I, Figure 1) was recognized as a bioprecursor to the active
compound, sulfanilamide, possibly metabolized by azoreductases released either in the
liver or by gut microbiota [4,5]. Azoreductases are flavoenzymes that have been distin-
guished in a range of prokaryotes and eukaryotes [6]. Gaffer et al. [7] explored the synthetic
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methodology of new amino-thiazolylazo-sulphonamide (II). The synthesized dyes were
investigated for their anti-bacterial and anti-fungal activities against Gram-positive and
Gram-negative bacteria, as well as a fungi (C. albicans).
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Figure 1. Feature similarities between leads I, II and target compound. 

As a continuation to our research on sulfa drugs [9–11], our current research focus is 
on sulfadiazine [12], a model scaffold to discover new sulfadiazine bioprecursors. Herein, 
novel models have been designed which feature similarities between our target com-
pounds and lead compounds, as clarified in Figure 1. They are synthesized and charac-
terized by microanalytical analyses, 1HNMR and 13CNMR. Particularly, sulfadia-
zine-pyrazole prodrug 5 is further investigated via X-ray single crystal diffraction which 
provides the screening, testing, and complete data collection. Furthermore, density func-
tional methods (DFT) will be applied to achieve a valuable understanding of the elec-
tronic and molecular properties of the target 5. 
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Sulfadiazine (2-sulfanilamidopyrimidine) is used to a large extent for the elimination
of bacteria that cause urinary tract infections. It is also used in combined therapy with
pyrimethamine and folinic acid for the treatment of some parasitic diseases such as malaria
and toxoplasmosis. Silver sulfadiazine is an efficient prescription for burn and wounds
treatment [1]; in addition, it has been prescribed for treating bacterial infections, e.g., otitis
media, encephalitis, and severe meningococcal meningitis, besides its role as a prophylactic
treatment for rheumatic fever. Sulfadiazine targets the dihydropetroate synthase (DHPS),
producing a bacteriostatic effect, with a wide spectrum against most Gram-positive and
many Gram-negative organisms [1,8].

As a continuation to our research on sulfa drugs [9–11], our current research focus is
on sulfadiazine [12], a model scaffold to discover new sulfadiazine bioprecursors. Herein,
novel models have been designed which feature similarities between our target compounds
and lead compounds, as clarified in Figure 1. They are synthesized and characterized
by microanalytical analyses, 1HNMR and 13CNMR. Particularly, sulfadiazine-pyrazole
prodrug 5 is further investigated via X-ray single crystal diffraction which provides the
screening, testing, and complete data collection. Furthermore, density functional methods
(DFT) will be applied to achieve a valuable understanding of the electronic and molecular
properties of the target 5.

2. Materials and Instrumentations
2.1. Materials and Equipments

All materials and instruments are given in Supplementary materials.

2.2. Synthesis of (E)-4-(2-(3-Methyl-5-oxo-1-(pyridin-2-yl)-1H-pyrazol-4(5H)-ylidene)
hydrazinyl)-N-(pyrimidin-2-yl)benzenesulfonamide (5)

Synthesis of compound 3 was performed according to the method reported in the
literature as described in Supplementary materials [12]. Then, a solution of the hydrazino
3 (1.0 mmol) in absolute EtOH (10 mL), 2-hydrazinopyridine 4 (1.2 mmol) was added,
and the mixture was then allowed to reflux for 8 h, before the formed precipitate was
collected by filtration, recrystallized from EtOH to create pale yellow crystals, (270 mg,
62%), m.p = 292–294 ◦C 1HNMR (500 MHz, DMSO-d6) δH: 13.03 (bs, 1H, N-H), 11.81(bs,
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1H, N-H), 8.47 (d, J = 4.5 Hz, 2H, Ar-H), 8.41 (d, J = 3.0 Hz, 1H, Ar-H), 7.98 (d, J = 9.0 Hz,
2H, Ar-H), 7.87 (t, J = 8.5 Hz, 1H, Ar-H), 7.78 (d, J = 8.0 Hz, 1H, Ar-H), 7.70 (d, J = 9.0 Hz,
2H, Ar-H), 7.22 (t, J = 7.5 Hz, 1H, Ar-H), 7.01 (t, J = 6.5 Hz, 1H, Ar-H), 2.23 (s, 3H, CH3);
13C NMR (125 MHz, DMSO-d6) δC: 158.9, 157.3, 156.9, 149.8, 149.4, 148.9, 145.4, 138.9, 136.5,
129.9, 121.7, 116.3, 114.5 (Ar-C), 12.2 (CH3); Anal. Calcd. for C19H16N8O3S: C, 52.29; H,
3.70; N, 25.67; Found C, 52.47; H, 3.91; N, 25.42.

2.3. X-ray Structure Analyses

The accomplished utilizing of 5 was determined using the method described in Sup-
plementary data [13–16]. The crystal data are given in Table 1. Analysis of the crystal
packing was accomplished utilizing using Crystal Explorer 17.5 program [17].

Table 1. Data of the Crystal 5.

5

CCDC 2179179
empirical formula C19H16N8O3S

fw 436.46
temp (K) 120(2) K

λ (Å) 1.54184 Å
cryst syst Monoclinic

space group C2/c
a (Å) 21.8909(2) Å
b (Å) 11.45860(10) Å
c (Å) 15.77880(10) Å

β (deg) 99.0430(10)◦

V (Å3) 3908.74(6) Å3

Z 8
ρcalc (Mg/m3) 1.483 Mg/m3

µ (Mo Kα) (mm−1) 1.839 mm−1

No. reflections. 33705
Unique reflns. 4133

Completeness to θ = 67.684◦ 99.9%
GOOF (F2) 1.054

Rint 0.0241
R1

a (I ≥ 2σ) 0.0368
wR2

b (I ≥ 2σ) 0.1045
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

2.4. Computational Methods

All theoretical details are described in Supplementary materials [18–20].

3. Results and Discussion
3.1. Chemistry

The facile synthetic protocol was performed for preparation of new sulfadiazine pro-
drug 5 (Scheme 1). Reaction of the sulfadiazine 1 with the solution of NaNO2 to accomplish
the diazotization step at 0 ◦C at pH = 2–3 afforded the corresponding diazonium salt 2 as
a clear solution. The coupling of 2 with the previously prepared carbanion salt of ethy-
lacetoacetate at 0 ◦C gave the desired hydrazono-ethylacetoacetate 3. Confirmation of the
correct structure 3 was accomplished by the spectroscopic analysis where 1HNMR provided
two separate peaks at δH: 11.72 and 11.53 ppm correspond to two N-H protons, as well as
two non-homotopic protons signals at 4.26 and 1.22 ppm representing two types of ethyl
protons. Furthermore, the singlet signal at δH: 2.38 revealed to CH3CO; 13CNMR spectra of
3 showed two different types of C=O at δC: 194.5 and 162.7 beside two different signals
at δC 25.7, 14.1 ppm revealed to carbons of two non-homotopic CH3. Cyclocondensation
of the prodrug 3 with 2-hydrazinopyridine 4 was accomplished by heating in absolute
EtOH affording the desired sulfadiazinepyrazolo prodrugs derivative 5. Confirmation of
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the correct structure of the sulfonamide 5 was accomplished by the spectroscopic analysis
where 1HNMR gave characteristic signals at δH: 13.03 and 11.81 ppm revealed to two
different sets of NH protons beside one signals in the aliphatic region at δH: 2.23 ppm
representing to CH3 also 13C NMR of 5 showed 3 types of carbonyl carbons at δC: 158.9, as
well one signal in aliphatic region at δC 12.2 ppm corresponded to CH3 carbons.
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Scheme 1. Synthesis of the target prodrugs 3 and 5.

3.2. The Description of X-ray Structure of 5

The X-ray structure of 5 shown in Figure 2A agreed very well with its spectral data. It
crystallized in the monoclinic C2/c space group. There are eight molecules per unit cell and
one molecular unit as an asymmetric formula. The unit cell parameters are a = 21.8909(2) Å,
b = 11.45860(10) Å, c = 15.77880(10) Å, β = 99.0430(10)◦ and V = 3908.74(6) Å3. Selected
geometric parameters are depicted in Table 2. The pyridyl and the five membered rings are
connected to one another by C(5)-N(2) bond where both rings are twisted from one another
by only 6.45◦. On the other hand, the phenyl moiety is found twisted further from the five
membered ring mean plane. The twist angle in this case is 23.30◦.

The molecular structure of 5 is stabilized by the N(5)-H(5)···O(1) intramolecular
H-bond while the crystal is packed in by the N(6)-H(6)···N(3) intermolecular H-bond
(Figure 2B). The donor–acceptor distance is 2.793(2) and 2.932(2) Å, respectively (Table 3).
The packing of these molecular units showed a 1D hydrogen bonding polymer extended
along the a-direction (Figure 2C).
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Table 2. Selected geometric parameters [Å and ◦] for 5.

Atoms Distance Atoms Distance

S(1)-O(3) 1.4264(11) N(1)-C(1) 1.341(2)
S(1)-O(2) 1.4330(11) N(2)-C(6) 1.3857(18)
S(1)-N(6) 1.6338(13) N(2)-C(5) 1.407(2)
S(1)-C(13) 1.7600(15) N(2)-N(3) 1.4113(18)
O(1)-C(6) 1.232(2) N(3)-C(8) 1.302(2)
N(1)-C(5) 1.3377(19) N(4)-C(7) 1.309(2)

Atoms Angle Atoms Angle

O(3)-S(1)-O(2) 118.70(7) C(5)-N(1)-C(1) 116.22(15)
O(3)-S(1)-N(6) 110.78(7) C(6)-N(2)-C(5) 128.94(14)
O(2)-S(1)-N(6) 103.46(7) C(6)-N(2)-N(3) 111.73(13)
O(3)-S(1)-C(13) 108.38(7) C(5)-N(2)-N(3) 119.17(12)
O(2)-S(1)-C(13) 109.69(7) C(8)-N(3)-N(2) 107.33(12)
N(6)-S(1)-C(13) 104.95(7) C(7)-N(4)-N(5) 118.00(16)

Table 3. Hydrogen bonds for prodrug 5 [Å and ◦].

D–H···A d(D–H) d(H···A) d(D···A) <(DHA)

N(5)-H(5)···O(1) 0.816(17) 2.162(17) 2.793(2) 134.3(15)
N(6)-H(6)···N(3)#1 0.89(2) 2.15(2) 2.932(2) 146.6(19)

Symm. Code: #1 x + 1/2, −y + 1/2, z + 1/2.

3.3. Hirshfeld Surface Analysis

The Hirshfeld calculation is a simple and accurate tool for the finding the different
atom–atom contacts in the crystal structure. Hence, decomposition of the different inter-
molecular contacts in the crystal structure of 5 was performed using Hirshfeld calculations.
The resulting Hirshfeld maps are presented in Figure 3. There are different levels of inter-
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molecular contacts as indicated from the presence of red, white, and blue regions in the
dnorm map.
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Figure 3. Hirshfeld surfaces of prodrug 5.

Analysis of these interactions using fingerprint plot is given in Figure 4. The fingerprint
area gave the percentages of all intermolecular interactions in the crystal structure of 5.
Presentation for these interactions and the percentages for all contacts in 5 is shown in
Figure 5. The percentages of the H···H, H···C, N···H, and O···H interactions are 36.4, 12.2,
17.3, and 16.9%, respectively. It is worth noting that the N···H and O···H contacts have
small interaction distances (Table 4). In addition, the presence of π–π stacking interactions
is revealed by the presence of short C1···C15 contact (3.211 Å) and the presence of red/blue
triangles in the shape index map and flat green area in curvedness (Figure 3).

Table 4. Short contacts in 5.

Contact Distance Contact Distance

O(3) . . . H3A 2.354 O(2) . . . H(12) 2.396
O(3) . . . H18 2.530 N(7) . . . H(15) 2.397
O(2) . . . H19 2.360 N(1) . . . H(6) 2.430
O(1) . . . H17 2.218 N(3) . . . H(6) 2.048
O(3) . . . H9B 2.473 C(1) . . . C(15) 3.211
O(2) . . . H19 2.360
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3.4. DFT Studies

The minimum energy structure of 5 is shown in Figure 6. Its overlay with the X-ray
geometry is shown in the same figure. Generally, there is structural matching between both
structures and also good correlations between the optimized and X-ray geometric parame-
ters (Figure 7) which reveal these observations very well (Table S1, Supporting information).

Natural charges of 5 shown in Figure 8 indicate that the O, N, and most of C-atoms
are electronegative. The O-sites have charges ranging from −0.6363 to −0.9475 e where the
most negative oxygen sites are those for the sulphonyl group. The corresponding S-atom is
the most electropositive (2.3582 e). Regarding carbon atoms, C39 (0.5956 e) which is bonded
to three nitrogen atoms and the carbonyl carbon (0.6173 e) is the most electropositive carbon
site. In contrast, all the H-atoms are charged positively where the H46 (0.4409 e) and H47
(0.4617 e) are the most positive hydrogen sites. Presentation of electrostatic potential (MEP)
is shown in Figure 9. The molecule has a net dipole moment of 4.9143 D.
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Among electronic parameters which play an important role are the HOMO and LUMO
levels. These molecular orbitals are shown in Figure 9. It is clear that both are distributed
over the π-system of the molecule. Hence, the HOMO→LUMO excitation is mainly a π–π*
transition. Their energies are calculated to be −6.1158 and −2.7671 eV, respectively, and the
HOMO–LUMO gap is 3.3487 eV. As a result, the reactivity indices [21–27] such as ionization
potential (I), electron affinity (A), hardness (η), electrophilicity index (ω) and chemical
potential (µ) are calculated to be 6.1158, 2.7671, 3.3487, 2.9455 and −4.4415 eV, respectively.
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3.5. NBO Analysis

The delocalization of the electron processes has a greatly effective role in the molecule
stability [28–30]. There are many π→π*, n→σ*, σ→σ* and n→π* electron delocaliza-
tion processes which stabilize the structure (Table 5). The stabilization energies (E(2)) of
the σ→σ* and π→π* processes are in the range of 4.25–4.69 and 6.18–35.16 kcal/mol.
The BD(2)N11-C40→BD*(2) N12-C39 (35.16 kcal/mol) and BD(2)C42-C44→BD*(2)N11-
C40 (34.43 kcal/mol) are the strongest electron delocalization processes. In addition, the
LP(2)O2→BD*(1)N6-C22 (26.42 kcal/mol) and LP(1)N6→BD*(2)N5-C21 (38.97 kcal/mol)
are the strongest n→σ* and n→π* electron delocalization processes, respectively.
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Table 5. Electron delocalization processes in 5 a.

(NBO)i
b (NBO)j

c E(2) (NBO)i
b (NBO)j

c E(2)

BD(1) N 5-C13 BD*(1) N 6-C21 4.69 LP(2) O 2 BD*(1) N 6-C22 26.42
BD(1) N11-C40 BD*(1) N10-C39 4.54 LP(2) O 2 BD*(1) C22-C23 15.47
BD(1) N12-C44 BD*(1) N10-C39 4.65 LP(2) O 3 BD*(1) S 1-N10 11.45
BD(1) C23-C24 BD*(1) O 2-C22 4.25 LP(2) O 3 BD*(1) S 1-C34 16.98
BD(2) N 5-C21 BD*(2) C13-C15 26.23 LP(3) O 3 BD*(1) S 1-O 4 19.91
BD(2) N 5-C21 BD*(2) C17-C19 12.15 LP(3) O 3 BD*(1) S 1-N10 13.36
BD(2) N 7-C24 BD*(2) N 8-C23 13.42 LP(2) O 4 BD*(1) S 1-O 3 5.62
BD(2) N 8-C23 BD*(2) N 7-C24 14.46 LP(2) O 4 BD*(1) S 1-N10 8.73
BD(2) N 8-C23 BD*(2) N 8-C23 6.18 LP(2) O 4 BD*(1) S 1-C34 18.62
BD(2) N11-C40 BD*(2) N12-C39 35.16 LP(3) O 4 BD*(1) S 1-O 3 16.79
BD(2) N11-C40 BD*(2) C42-C44 10.11 LP(3) O 4 BD*(1) S 1-N10 22.05
BD(2) N12-C39 BD*(2) N11-C40 9.19 LP(1) N 5 BD*(1) C13-C15 9.60
BD(2) N12-C39 BD*(2) C42-C44 30.90 LP(1) N 5 BD*(1) C19-C21 10.67
BD(2) C13-C15 BD*(2) N 5-C21 16.36 LP(1) N 7 BD*(1) N 6-C22 6.08
BD(2) C13-C15 BD*(2) C17-C19 23.01 LP(1) N 7 BD*(1) C23-C24 7.07
BD(2) C17-C19 BD*(2) N 5-C21 28.00 LP(1) N 8 BD*(1) C22-C23 12.04
BD(2) C17-C19 BD*(2) C13-C15 16.62 LP(1) N10 BD*(1) S 1-O 4 6.66
BD(2) C29-C37 BD*(2) C30-C32 15.87 LP(1) N10 BD*(1) S 1-C34 4.66
BD(2) C29-C37 BD*(2) C34-C35 25.53 LP(1) N11 BD*(1) N12-C39 13.62
BD(2) C30-C32 BD*(2) C29-C37 23.08 LP(1) N11 BD*(1) C40-C42 9.04
BD(2) C30-C32 BD*(2) C34-C35 16.50 LP(1) N12 BD*(1) N11-C39 13.60
BD(2) C34-C35 BD*(2) C29-C37 15.90 LP(1) N12 BD*(1) C42-C44 8.91
BD(2) C34-C35 BD*(2) C30-C32 22.37 LP(1) N 6 BD*(2) N 5-C21 38.97
BD(2) C42-C44 BD*(2) N11-C40 34.43 LP(1) N 6 BD*(2) N 7-C24 19.69
BD(2) C42-C44 BD*(2) N12-C39 12.76 LP(1) N 9 BD*(2) N 8-C23 46.68

LP(1) N 9 BD*(2) C29-C37 35.67
LP(1) N10 BD*(2) N12-C39 37.38

a Atom numbering refer to Figure 5; b Donor NBO and c Acceptor NBO.

4. Conclusions

The novel bioprecursor prodrugs of sulfadiazine have been synthesized and evidenced
through the elemental and spectral analyses “FT-IR, 1HNMR, 13CNMR, and MS“. More
structural elucidations of the prodrug 5 were determined via X-ray and its supramolecular
structure aspects were analyzed using Hirshfeld calculations. Additionally, the natural
charge distribution, dipole moment, HOMO, LUMO, and MEP map of 5 were analyzed
based on B3LYP/6-31G (d,p) calculations. Its structural aspects were investigated using
DFT and NBO calculations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cryst12081016/s1, NMR spectrum; Table S1: The calculated geometric parameters of 5 a.
Table S2: The calculated natural charges of 5 a.
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