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Abstract: In this work, a hemispheric gold particle is introduced to the conventional bull’s eye
structure that enhances extraordinary optical transmission in the terahertz region. Transmission
enhancement is a result of the coupling of surface plasmon polaritons generated by periodic grooves
and localized surface plasmon resonances generated by the hemisphere particle. The maximum
normalized-to-area transmission peak reaches 556 for the hemisphere-in-hole bull’s eye structure,
which is significantly higher than conventional bull’s eye structure. Such a transmission property is
insensitive to polarization direction. The physical mechanisms are thoroughly analyzed by geometric
parameter optimization and electromagnetic simulations. The modified structure can reduce the
number of grooves in need, thereby reducing the device area. This novel design can be instructive for
future improvement of bull’s eye applications.

Keywords: extraordinary optical transmission; surface plasmon; terahertz; bull’s eye structure

1. Introduction

Concentrating a large area of optical energy within subwavelength aperture has
stimulated a broad interest in bull’s eye structure [1–6] that can be used for high-speed
photodetector [7–9], plasmonic focusing [10], molecular sensing [11,12], and enhanced
optical transmission (EOT) [13]. The periodic grooves act as antennas to enhance light-
matter interaction on metal surface, achieving EOT through the central hole [14]. According
to Degiron [15], the optical transmission mechanism of bull’s eye structure can be divided
into three processes: coupling in, transmitting through the aperture and coupling out, and
their product determines the total transmission intensity. A lot of previous studies have
explored the bull’s eye structure to realize EOT phenomenon by optimizing the groove
period, the groove width, the groove depth, and the distance from the center aperture
to the center of the first groove [16–18]. Despite F. Villate-Guio [19] has optimized the
geometric parameters and distances of all the grooves of the one-dimensional nonuniform
bull’s eye structure, the approach of improving coupling in and coupling out processes
to enhance the transmission is mature. There is still a lot to be desired for the increase of
light transmission.

Numerous studies have been done to increase transmission or near-field enhancement
by modifying the central aperture of bull’s eye structure, which improves the process of
transmitting through the aperture [20–23]. The special structures of the central apertures
can excite localized surface plasmon resonances (LSPRs), which can interact with the surface
plasmon polaritons (SPPs) [24–27] at the grating surface to improve the optical response
of the system. Tavakol et al. [28,29] achieved strong polarization dependence of bull’s eye
structure in EOT by changing the shape of central aperture and surrounding grooves to
polygonal or star-shaped. Yang et al. [30] realized high transmission enhancement with a
split bull’s eye structure, which results from the effect of surface plasmon. In visible range,

Crystals 2022, 12, 1210. https://doi.org/10.3390/cryst12091210 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12091210
https://doi.org/10.3390/cryst12091210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-1970-5783
https://orcid.org/0000-0001-6077-8525
https://orcid.org/0000-0003-0426-1358
https://doi.org/10.3390/cryst12091210
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12091210?type=check_update&version=2


Crystals 2022, 12, 1210 2 of 10

Rajib et al. [31] realized strong near-field enhancement in the gap of nanoantennas on top
of the bull’s eye structure. Despoina et al. [32] presented a dual-depth bull’s eye structure
for broadband terahertz (THz) transmission. However, studies on the improvement of
bull’s eye structure for transmission enhancement in the THz band are rare. Moreover,
most modified structures are polarization-dependent, because their asymmetric structures
can confine E-field in a very small gap region.

It has been demonstrated in our previous work that the transmission could be success-
fully boosted at THz band by exploring the idea of hemisphere-in-hole (HIH) structure that
has hemispherical particles on the surface of metal pore array [33]. As the hemisphere par-
ticle acts as an antenna collecting the incident light, the SPPs mode generated by periodic
hole array and LSPRs mode of hemispherical particles are strongly coupled to enhance the
transmission significantly. In this work, a hemisphere-in-hole bull’s eye (HIHB) structure is
proposed, which is a bull’s eye structure with a hemispherical particle introduced into its
central aperture. The metallic ring structure can focus SPPs into its geometric center and
combine it with the LSPRs generated near the hemispherical particle. Three-dimensional
finite-difference-time-domain (FDTD) method is numerically used to calculate transmission
enhancement spectra and field distributions. Transmission enhancement η, related to the

normalized-to-area transmission, is defined as η =
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[34], where

Ar is the ratio of the central hole’s area to the total area of the bull’s eye structure. The
maximum η realized by HIHB structure is 556, which is 5.5 times that of the non-particle
in hole bull’s eye (NIHB) structure. The significant enhancement of transmission allows
a considerable reduction in the overall grating area required for conventional bull’s eye
structure. In addition, the polarization independence of transmitted light in HIHB struc-
ture is investigated by transmission enhancement spectra. Due to the symmetry of the
modified structure, HIHB structure is polarization-insensitive, which can greatly enhance
the transmission of incident light in all directions. Moreover, the enhancement mechanisms
are analyzed based on electromagnetic field intensity distributions. Since previous HIH
structure has proven that hemispherical particles can realize the EOT effect from 4.41 to
5.86 THz [33], HIHB structure is consequently able to easily achieve application functions
over a wide frequency range by changing the geometric parameters of the central pore. The
hybrid bull’s eye structure combining these two modes can guide the further applications
of bull’s eye structure.

2. Materials and Methods

The HIHB structure under study consisting of a conventional bull’s eye structure
decorated with a concentric gold hemisphere is sketched in Figure 1a. The gold hemisphere
is fixed on the supporting column at the central hole. The cross-sectional view of the HIHB
structure is sketched in Figure 1b. The hole diameter D, the hemisphere diameter d, the
thickness of gold film h, and the substrate thickness are 18 µm, 15 µm, 5 µm, and infinity,
respectively [33]. The groove depth, the groove width, the distance from the aperture
center to the first groove, the groove period, and the number of grooves are denoted as b,
w, s, p, and N, respectively. The normalized-to-area transmission η and electromagnetic
field intensity distributions are numerically calculated by FDTD method. A plane wave
polarized along the x direction illuminates the whole device with frequency ranging from
4.0 to 6.0 THz. The perfectly matched layer (PML) boundary condition is used along the x,
y, and z axes. A spatial step discretization around the central hole of 0.7× 0.7× 0.4 µm3,
a spatial step discretization around the grooves of 5 × 5 × 1 µm3, and an auto-shutoff
minimum of 1× 10−6 in the simulations are adopted to trade between accuracy, RAM
capacity, and running time. The permittivity of gold follows the Drude model at all
operating wavelengths [35]. The lossless dielectric permittivity of the supporting column
and substrate (blue part) is 1.5. The proposed structure can be fabricated by focused-ion-
beam (FIB) and electron beam evaporation (E-beam) [5]. First, we can use FIB to etch the
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silicon substrate, leaving a silicon pillar as the support column. Then we can use E-beam to
deposit gold on the surface of silicon substrate. Next, we can use FIB to etch the periodic
grooves and the central hole on the gold film. Then the gold particle is aligned with the
silicon pillar by the bonding process.
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incident light into surface plasmon waves, and propagate electromagnetic waves with 
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Figure 1. Schematic representation of the HIHB structure under study. (a) A three-dimensional
schematic of the HIHB structure with an enlarged view of 3D hemispherical structure shown above;
(b) cross profile shows the relevant parameters of the designed structure; b, w, s and p are the groove
depth, the groove width, the distance from the aperture center to the first groove and the groove
period, respectively. The hole diameter D = 18 µm, the film thickness h = 5 µm, and the hemisphere
diameter is 15 µm.

3. Results and Discussion
3.1. Groove Geometric Parameters

Figure 2 shows the variation of the transmission enhancement as a function of the
structural parameters of grooves. The simulation of 5-groove HIHB structure is employed
for parameter optimization to faster calculation. The corresponding transmission enhance-
ment spectra of the HIHB structure at four different depth are summarized in Figure 2a.
When b/w is smaller than the optimal shape ratio (i.e., b/w = 0.4), the deeper the grooves the
higher the value of η, which is in agreement with O. Mahboub’s work [16]. This is due to
that the SPPs mode can be excited when the groove depth is shallow [36], and increasing
the groove depth can enhance the interaction between incident waves and gratings. Since
the thickness of the gold film is fixed at 5 µm, b is set at 4 µm to enhance the normalized-
to-area transmission as much as possible within the permissible range. Figure 2b shows
the calculated transmission enhancement spectra of HIHB structures designed for different
groove width ranging from 12.5 to 27.5 µm. The groove width has influence on the SPPs
excitation and achieves the maximum η at w = 17.5 µm. The impact of the distance from the
aperture center to the first groove is further investigated, and the results are summarized
in Figure 2c. It can be verified that this distance has a strong influence on transmission
intensity, because the interaction between SPPs and LSPRs is greatly affected by s [19]. The
maximum transmission enhancement is observed at s = 60 µm. In order to further inves-
tigate the impact of the groove period p, Figure 2d depicts the color map of transmission
enhancement spectra from p = 45 to 65 µm. The periodic grooves can couple incident light
into surface plasmon waves, and propagate electromagnetic waves with wavelengths close
to groove period. Therefore, the strong transmission peak redshifts with the increasing
p, which is consistent to a prior report [37]. The optimal p matched with s = 60 µm for
resonance peak at 5.07 THz is 55 µm. Based on the above exploration, the optimal groove
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parameters are b = 4 µm, w = 17.5 µm, s = 60 µm, p = 55 µm. Optimal geometric parameters
obtained in this way are used as seeds for further exploration.
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Figure 2. Variation of the transmission enhancement spectra as a function of structural parameters
of grooves. (a) Effect of the groove depth on the transmission enhancement of the HIHB structure
(w = 30 µm, s = 55 µm, p = 60 µm, N = 5); (b) effect of the groove width on the transmission
enhancement of the modified structure (b = 4 µm, s = 55 µm, p = 60 µm, N = 5); (c) effect of the
distance from the aperture to the first groove on the transmission enhancement of the modified
structure (b = 4 µm, w = 17.5 µm, p = 60 µm, N = 5); (d) the color map of transmission enhancement
spectra for the HIHB structure (b = 4 µm, w = 17.5 µm, s = 60 µm, N = 5) with different groove
period p.

3.2. Enhanced THz Transmission and Its Polarization Independence

Figure 3a shows the transmission enhancement spectra comparison among the HIHB
structure, the NIHB structure and the two structures without grooves. It is observed that
the structure with concentric grooves has much greater transmission enhancement than that
of only a single hole. The normalized-to-area transmission of grooved structure is much
higher than 1, so the direct transmission of incident light plays a minor role. As shown in
Figure 3b, it is the periodic grooves that can harvest a wide range of light and then squeeze
the light into the central hole that results in a dramatic increase in normalized-to-area
transmission. The transmission enhancement peak of the 20-groove HIHB structure is 556,
and the maximum transmission enhancement of HIHB structure is more than 5.5 times that
of NIHB structure. In addition, the hole diameter of the conventional bull’s eye structure
is usually half of the resonance wavelength [38], which limits its response speed when
used as a photodetector [39]. The HIHB structure can reduce the diameter of central hole
down to 18 µm for an operating wavelength of 58 µm, as shown in Figure 3a. As shown in
Figure 3c, the HIHB structure with 5 grooves is sufficient to achieve the same transmission
enhancement as the NIHB structure with 16 grooves. Therefore, the entire grating size
can be reduced greatly while maintaining the same light transmission performance as the
conventional bull’s eye structure. The reason why the blue curve blueshifts relative to the
black curve will be discussed in Section 3.3.2. Moreover, the transmission enhancement
of HIHB structure is significantly higher than that of NIHB structure at N = 5. As shown
in Figure 3d, transmission enhancement spectra of transverse electric (TE) and transverse
magnetic (TM) polarized waves are numerically obtained. The transmission enhancement
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curves in both polarization directions almost coincide, implying that the HIHB structure is
polarization-insensitive.
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3.3. The Plasmon Resonances

As previously reported [40–42], periodic metallic grating has the ability of launching
and focusing SPPs into its center. Metal particles are known to exhibit characteristic LSPRs
mode [43,44]. By placing a hemispheric particle at the central aperture, it is possible to
enhance the transmission of bull’s eye structure further. In this section, the generation of
LSPRs mode and its coupling with SPPs mode are discussed.

3.3.1. Localized Surface Plasmon Resonances

Figure 4 presents the transmission enhancement spectra for three types of single aper-
ture without grooves and the distributions of electric and magnetic fields near the hole at
5.07 THz. The schematic representations of HIH aperture, NIH aperture, and PIH aperture
are illustrated in Figure 4a. The transmission enhancement spectra in Figure 4a shows the
corresponding normalized-to-area transmission results for three different samples with
equivalent aperture diameter (D = 18 µm). The difference in transmission enhancement
between green and blue curves is much gentler, compared with that of the black curve.
A little difference between them is due to the dielectric environment changing resulted
from the introduction of supporting column in pillar-in-hole (PIH) aperture. As shown
in Figure 4a, a resonance peak cannot be excited by the NIH aperture within the studied
frequency region and only 0.28 normalized transmission is achieved at 5.07 THz. It can be
seen from the electric field distribution in Figure 4b that resonance intensity located around
the hole is weak. Meanwhile, the magnetic field is mainly distributed on the upper surface
of gold film, as shown in Figure 4d. Only a little electromagnetic energy can penetrate the
single aperture, as a result, the transmission enhancement is small. Figure 4a shows that
the enhanced transmission for HIH aperture is 4.97 at a resonance frequency of 5.07 THz.
The electric field distribution in Figure 4c shows that strong resonance is generated in the
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gap between the aperture and the hemisphere. This demonstrates the formation of LSPRs
mode, which leads to the enhancement of transmission. As can be observed in Figure 4e,
the strong magnetic field is confined at the bottom of the hemisphere, illustrating that the
energy is strongly coupled into the hole. The hemisphere particle can excite LSPRs mode
and thus significantly improve the normalized-to-area transmission of HIHB structure.
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3.3.2. Coupling of SPPs and LSPRs

The surface plasmon polariton wavelength on a gold film surface is λspp = λ
√

εAu+εAir
εAuεAir

[45],
where λ is the wavelength of incident light. The parameters εAu and εAir represent the relative
permittivity of gold and air, respectively. According to Bragg coupling condition [46], the
resonant wavelength of SPPs λspp is theoretically equal to the groove period p. In fact, p is
slightly smaller than λspp due to the interaction between the field and the grooves that enlarges
the optical path of the SPPs [19]. λspp tends to approach p as more grooves are added to the bull’s
eye structure [19]. This is why the transmission enhancement peak of 16-groove NIHB structure
blueshifts relative to that of 5-groove HIHB structure in Figure 3c. When the resonances of both
SPPs and LSPRs occur at the same frequency, the strong interaction between these two modes
gives rise to the enhancement of transmission [47]. According to Section 3.3.1., the frequency of
LSPRs mode excited by the hemispheric particle is 5.07 THz. Therefore, the period of grooves
is set to 55 µm to excite the SPPs mode at the same resonant frequency as the LSPRs mode.
Figure 5 shows the relative electric field intensity distributions of the optimal HIHB structure
with five grooves at f = 5.07 THz. It is observed in Figure 5a,c that the HIHB structure has a
significant light concentration performance resulting from periodic grooves, which is the same
with conventional bull’s eye structure. As shown in Figure 5b, there exists a strong electric field
distribution in the gap between aperture and hemisphere. It displays the coupling of the SPPs
mode and the LSPRs mode, which further enhances the light transmission. The interaction
between hemisphere and grooves can be controlled by the distance from the central aperture to
its nearest groove. At non-resonant frequencies, the electric field intensity of HIHB structure
and HIH aperture is weak, indicating that SPPs mode and LSPRs mode are weak. Therefore,
the HIHB structure at non-resonant frequencies has a poor ability to converge light or assist
light transmission.
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3.4. Comparison of HIHB and NIHB Structure with Varying N

The number of grooves is increased from 0 to 21 on the basis of the optimized groove
geometric parameters described above. Figure 6 shows the transmission enhancement
peak as a function of the number of grooves N. When N > 7, the transmission enhancement
peak of HIHB structure is around six times that of NIHB structure. In the range of N ≤ 7,
which is more promising for applications, the transmission enhancement peak of HIHB
structure exceeds that of NIHB structure by a factor of 7. As N increases, the transmission
enhancement peak gradually increases because an extending range of incident light can
be collected with increasing number of grooves. The transmission enhancement of the
HIHB structure reaches saturation at N = 20, which is similar as that of NIHB structure.
If grooves are continued to be added, the captured light would be re-irradiated and the
propagation loss of SPPs increases gradually [48]. As pointed out in the reference [49],
varying the groove width and groove depth can increase the number of grooves involved in
transmission enhancement. Therefore, it is justified to speculate that changing the geometric
parameters of the outermost groove can change the corresponding N at saturation, which
is applicable to both HIHB and NIHB structures.
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4. Conclusions

In this study, we have presented a novel method of designing a bull’s eye structure
by adding a concentric hemisphere at the central aperture. Based on the interference of
SPPs and LSPRs mode, the normalized transmission is significantly improved for the
subwavelength aperture at the THz band. We have optimized the geometric parameters
of the groove and theoretically analyzed the influence of each geometric parameter on
the plasmon resonance. The maximum normalized-to-area transmission achieved by the
optimized structure is 556. The transmission enhancement peak of HIHB structure at N = 5
is the same as that of NIHB structure at N = 16, so the modified structure can significantly
reduce the device size. Meanwhile, due to the overall symmetry of the HIHB structure, it
is insensitive to the polarization direction of incident electromagnetic wave. Ultimately,
the performance of the HIHB structure and NIHB structure is contrasted by increasing the
number of grooves. The normalized transmission peaks of the HIHB structure exceeded
five times that of the NIHB structure, regardless of the number of grooves. The theoret-
ical analysis of the presented structure is instructive for future applications of the bull’s
eye structure.
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