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Abstract: In this work, new samples of PVA-TiO2/Cu nanocomposites were prepared via the casting
method. The prepared samples were examined using different analytical methods. An XRD analysis
showed the semi-crystalline nature of the PVA polymer, as well as showing a decrease in the degree
of the crystallinity of the PVA structure as a result of the addition of the mixed nanoparticles.
TEM images indicate the spherical shape of the Cu NPs, with a size ranging from 2 to 22 nm, and
the rectangular shape of the TiO2 NPs, with a size ranging from 5 to 25 nm. It was evident via
FTIR measurements that there were interactions between the functional groups of the PVA and the
TiO2/Cu NPs. The optical properties of the PVA nanocomposites were improved with an increase in
the content of the TiO2/Cu nanoparticles, as shown via a UV/Vis analysis. DSC curves showed an
improvement in the thermal stability of the PVA-TiO2/Cu nanocomposites after the embedding of
the TiO2/Cu nanoparticles. It was evident using impedance spectroscopy that the AC conductivity
was improved by adding the TiO2 and Cu nanoparticles to the polymeric matrix. The maximum
AC conductivity was found at 1.60 wt.% of TiO2/Cu nanoparticles in the PVA polymer, and this
was 13.80 × 10−6 S/cm at room temperature. Relaxation occurred as a result of the charge carrier
hopping between the localized state and the correlated barriers hopping model, describing the
dominant mechanism, as presented in an electrical modulus analysis. These results indicate that the
PVA-TiO2/Cu nanocomposite samples can be used in energy storage capacitor applications and in
the alternative separator-rechargeable lithium-ion battery industry.

Keywords: TiO2/Cu nanoparticles; PVA; SEM; DSC; AC conductivity; dielectric parameters

1. Introduction

Recent years have seen a rise in the use of nanocomposite materials in scientific
research, with the promotion of physical properties and changes in energy storage tech-
nologies as essential components for practical applications. The current applications of
nanocomposites include high-energy batteries, fuel cells, microwave absorbers, optoelec-
tronics, gas sensors, and UV filters [1,2]. Many microelectronic devices require flexible,
lightweight, dielectric/conductive polymer materials. By adding a few nanofillers, elec-
trical conduction networks can be successfully formed in insulating polymers, leading
to better optical and thermal properties [2–4]. Conductivity increases dramatically when
conducting nanofillers, such as metallic nanoparticles and carbon nanotubes, are added to
the polymeric matrix over a percolation threshold. Percolation occurs due to the growth of
three-dimensional conductive channels in the polymer materials [1,3]. As with polymeric
nanocomposites, they must be constantly studied in order to improve their electrical con-
ductivity at low filler concentrations. Polyvinyl alcohol (PVA) is one of the most frequently
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used host polymer materials because of its unique features, which include its perfect foil
shape, excellent biocompatibility, optical transparency, high flexibility, and provision of H
bonds to create complexes via the trapping of ions and NPs [3,5]. PVA is a polar polymer
with OH bonded to methane carbons via a carbon chain backbone. PVA has strong dielec-
tric features, a good charge storage capacity, and doping-dependent optical and electrical
properties [3,6]. Due to its good optical features and ability to create oxygen barriers, it is
considered an ideal candidate for use in multilayer coatings of solar cell applications [7].
Copper nanoparticles (Cu NPs) have recently gained more attention and have been exten-
sively researched due to their tunable optical, electrical, magnetic, and catalytic capabilities.
Cu NPs have improved nonlinear optical features, which gives them wide applications in
optical devices and nonlinear optical applications. As a result of its excellent conductivity,
low cost, and good biocompatibility, copper will become increasingly more significant as a
necessary component in future nanodevices [8,9]. Titanium dioxide nanoparticles (TiO2
NPs) have also drawn a lot of attention in recent years due to their outstanding biocom-
patibility, optical properties, corrosion resistance, and extraordinary electrochemical and
catalytic abilities. TiO2 properties are heavily influenced by non-structural characteristics,
such as shape, crystal sizes and phases, aspect percentage, and distribution density [10,11].
TiO2 NPs have been found to be excellent candidates as Li-ion hosts due to them being
good capacity fillers with a low cost and harmless properties [11]. Conductive nanofillers
are routinely added to the electrodes of lithium-ion batteries in order to construct a con-
ductive percolation network [10]. As a result, many scientists are concerned with studying
the chemical and physical properties of PVA nanocomposites doped with copper or TiO2.
Ali et al. [12] studied the radiation-induced synthesis of Cu/PVA nanocomposites and their
catalytic activity. Nasar et al. [13] prepared Cu-PVA nanocomposites at different nanocom-
positions. An impedance analyzer displayed that the Cu NPs increased AC conductivity
when increasing their concentration. It was suggested that Cu-PVA nanocomposites can
be used in charge storage applications. Abdallah et al. [14] studied PEO/CMC/Cu NP
nanocomposites, and they observed improvements in the dielectric and magnetic proper-
ties of filled samples, making these nanocomposites important materials for use in energy
storage and nanoelectronic smart devices. El-Desoky et al. [15] studied the synthesis and
the structural and electrical features of PVA/TiO2 nanocomposites made using the sol–gel
method in various TiO2 phases. Ferdowsi and Mokhtari [16] prepared PVA/CdS and
PVA/TiO2 nanocomposites via the electro-spinning method as n-type semiconductors, and
they observed that a sample with a ratio of 50:50 of PVA/CdS and PVA/TiO2 is the best for
use as a layer in solar cells due to its favorable optical energy gap (~2.53 and 3.31 eV).

In recent research, the casting method has been used to produce flexible, very light,
polymeric samples with better electrical characteristics for use in electronics. TiO2 and Cu
nanoparticles are used as conductive nanofillers in this work, with PVA used as the host
polymeric matrix. A comprehensive investigation of this system’s structural and optical
characteristics is discussed using a number of techniques and procedures.

2. Experimental Section
2.1. Materials

The following materials were used:
PVA was supplied from Mallinckrodt USA (molecular weight (M.W.) of 20,000 g/mol),

and Cu NPs were supplied from Sigma/Aldrich (Missouri, MO, USA.). Titanium (IV)
tetraisopropoxide [Ti(O-CH(CH3)2)4] was purchased from Merck (Darmstadt, Germany).
Nitric acid and NaOH were purchased from El-Nasr Co. Egypt (Cairo, Egypt). Double-
distilled deionized water (DDW) was used as a solvent.

2.2. Preparation of TiO2 NPs

The TiO2 NPs were prepared using the following steps:
First, the sol–gel method was used to prepare the TiO2 NPs by diluting titanium

(IV) tetraisopropoxide in order to determine the amount of glacial acetic acid. Then, an
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additional amount of DDW was added in order to obtain a clear glutinous solution with
continuous stirring for 6 h. Next, we kept the solutions in the dark for 24 h so that the
nucleation operation could be completed. Then, the solution was dried for 14 h at 130 ◦C in
order to obtain the TiO2 crystal. Finally, the solution was grinded and calcined for 4 h at
600 ◦C in order to obtain the TiO2 NPs.

2.3. Preparation of PVA-TiO2/Cu Nanocomposite Electrolytes

Nanocomposite samples were prepared using the casting method. PVA was dissolved
by stirring in DDW for 8 h at 50 ◦C to obtain a clear solution. Then, the determined con-
centrations, 0.00, 0.20, 0.40, 0.80, and 1.60 wt.%, of the TiO2 NPs and Cu NPs (50/50 wt.%)
were embedded into the PVA solutions with continuous stirring for 3 h at 50 ◦C. Finally,
the nanocomposite solutions were transferred to Petri dishes at 50 ◦C for 48 h in order to
remove the solvent traces.

2.4. Characterization Analysis Instruments

The XRD patterns of the PVA-TiO2/Cu nanocomposites were examined using a PAN-
alytical XPert PRO/XRD diffractometer with CuKα radiation (λ = 1.540 Å). A TEM of
model JEOL-JEM-1011 was used to calculate the size and shape of the TiO2 NPs and Cu
NPs. FTIR of the PVA-TiO2/Cu in the wavenumber range of 400-4000 cm−1 was obtained
using a JASCO/Nicolet/iS10 (Easton, MD, USA) spectroscope. The UV/Vis data of the
nanocomposite films were examined using a JASCO/630 (Tokyo, Japan) spectrophotometer
in the wavelength range of 200–900 nm. SEM images of the nanocomposite samples were
examined via a scanning electron microscope (JEOL/JSM-5500) with 20 kV at a magnifica-
tion of 5000 times. The thermal features of the polymeric samples from room temperature
to 500 ◦C were tested via a Netzsch DSC 200 analyzer (Bayern-Germany). The AC electrical
examinations of the PVA nanocomposites were carried out utilizing a programmable au-
tomatic Hioki 3531Z-Hitester with the Novocontrol Turnkey Concept 40 System between
0.1 Hz and 20 MHz at an oscillation voltage of 1.0 V in nitrogen gas at ambient temperature.
The polymeric samples were fixed between two electrodes in the sample holder and placed
in a cryostat.

3. Results and Discussion
3.1. XRD Analysis

The XRD spectra of the PVA filled with the TiO2 and Cu nanoparticles are shown in
Figure 1. The XRD spectra of the TiO2 NPs shows the distinct peaks at 2θ = 25.4◦, 36.1◦,
46.9◦, 53.9◦, 55.0◦, and 62.3◦, corresponding to the planes {101}, {004}, {200}, {105}, {211}, and
{204}, respectively (JCPDS Card number 21-1276) [7]. These peaks confirm that the TiO2
NPs have an anatase structure. In contrast, the pattern of the Cu NPs reveals diffraction
peaks at 2θ= 43.2◦, 50.4◦, and 73.9◦, corresponding to the planes {111}, {200}, and {220},
respectively (JCPDS Card number 04-0836) [12].

The crystallite sizes (D) of the Cu NPs and TiO2 NPs were measured using Scherer’s
relation [17]:

D = k.λ/B.cosθ (1)

where k is a constant (k = 0.94), λ represents the XRD wavelengths, B is the line width at
the half-maximum of the peak intensity, and θ is the diffraction angle.

The average crystallite size of the TiO2 nanoparticles was 17 nm, while that of the Cu
nanoparticles was 15 nm.

Figure 2 displays the XRD for the filled and unfilled PVA with different concentrations
of the mixed nanoparticles (TiO2 NPs and Cu NPs). PVA exhibits a prominent broad peak
at 2θ ≈ 19.4◦, which is assigned to the semicrystalline nature of the PVA matrix [18]. After
filling, the crystallinity of the nanoparticles increases at the expense of the PVA polymer,
as can be observed in the patterns of the doped nanocomposites. The interplay between
the polymer and the fillers, which reduces the intermolecular interactions between the
polymer chains and lowers the degree of crystalline growth, is the cause of the decrease in
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the PVA peak after increasing the Cu and TiO2 nanofiller content. Moreover, the positions
of the hybrid nanoparticle peaks do not change with an increase in the nanoparticle content
within the polymeric matrix, which confirms the complexation between the PVA polymer
and the TiO2 and Cu nanoparticles within the amorphous structures. Moreover, the XRD
scans do not show obvious changes in the lattice constant of the nanoparticles, but the
crystallite size varies slightly after adding the nanofiller to the polymeric matrix [15,19].
This enhancement of the amorphous structures of the nanocomposites samples confirms
the compatibility and usefulness of Cu NPs and TiO2 NPs as fillers in PVA, and it may lead
to higher charge carrier mobility and AC conductivity [19]. The crystallinity ratio (Xr ratio)
may be calculated via the Hermans–Weidinger method [20]:

Xr % =
(Area under crystalline peaks)
(The total area under all peaks)

× 100 (2)
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Figure 1. XRD spectra of pure titanium dioxide nanoparticles (TiO2 NPs) and pure copper nano-
particles (Cu NPs) and their corresponding (hkl) planes. 
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Figure 1. XRD spectra of pure titanium dioxide nanoparticles (TiO2 NPs) and pure copper nanoparti-
cles (Cu NPs) and their corresponding (hkl) planes.

In Table 1, it can be seen that the proportion of Xr is decreased (a decrease in the
intensity of the main peaks of the PVA), which indicates that the addition of the Cu NPs
and TiO2 NPs increases the amorphous structure of the nanocomposite samples; this is
due to the production of more defects in the PVA structure, and the crystalline phases of
the PVA matrix are broken due to polymer–nanoparticle interactions [16]. The presence
of the characteristic peaks of the hybrid nanoparticles qualitatively reveals that the doped
nanoparticles occur homogeneously within the PVA structure [15,16].

Table 1. The crystallinity degree of the polymeric samples and crystallite sizes of TiO2 and Cu NPs.

Samples Sample
Crystallinity (%)

Crystal Size of TiO2
(Corresponding to
the Peak at 25.4◦)

Crystal Size of Cu
(Corresponding to
the Peak at 43.2◦)

Pure PVA 27.41 - -
PVA/0.20% of (TiO2/Cu) 21.16 - 24.14
PVA/0.40% of (TiO2/Cu) 17.51 36.90 22.65
PVA/0.80% of (TiO2/Cu) 10.08 18.78 19.24
PVA/1.60% of (TiO2/Cu) 5.44 19.79 19.23
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Figure 2. XRD patterns of pure PVA and PVA doped with different concentrations of the hybrid
nanoparticles (TiO2 NPs and Cu NPs). The phases of the TiO2 NPs and Cu NPs are indicated by *
and ∆, respectively.

3.2. TEM Micrographs

Transmission electron microscopy (TEM) was used to determine the size and shape
of the produced nanoparticles. Figure 3a depicts the TEM image and the corresponding
histogram of the Cu NPs, revealing that the nanoparticles are generally spherical, randomly
dispersed, and have diameters ranging from 2 to 22 nm [14], whereas Figure 3b depicts the
TEM image and the corresponding histogram of the TiO2 NPs, which have a rectangular
shape with lengths ranging from 5 to 25 nm [21,22].
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3.3. Fourier Transform Infrared (FTIR)

Figure 4 shows the FTIR spectra of the unfilled and filled PVA with different concen-
trations of the Cu NPs and TiO2 NPs. The spectra of the PVA nanocomposites indicate
the typical bending and tensile vibration peaks of the functional groups observed in the
produced samples. The peak positions of the FTIR spectra and their assignments to the
PVA-TiO2/Cu NPs samples are recorded in Table 2. For the pure PVA, the bandwidth at
around 3475 cm−1 is attributed to the stretching vibrations of PVA’s OH [6,18]. The bands
at 2942 cm−1 and 2908 cm−1 are ascribed to CH2 asymmetric and symmetric stretching
vibrations, respectively [23,24]. The absorption peaks at 1658, 1563, and 1428 cm−1 are
assigned to C=C stretching, CH bending, and CH2 symmetrical bending, respectively. The
band at 1094 cm−1 is due to the C–O stretching of the carbonyl groups existing in the
PVA backbone. The band at 852 cm−1 corresponds to the C-C stretching vibration. The
band at 665 cm−1 corresponds to the wagging mode of the (OH) group, whereas the band
at 918 cm−1 corresponds to CH2 rocking, and the band at 1331 cm−1 relates to (CH,OH)
bending [6,24].

Table 2. Peak positions of the FTIR spectra and their assignments for PVA polymer.

Wavelength (cm−1) Band Assignments Ref.

3475 O-H Stretching [6,15]
2942 CH2 Asymmetric Stretching [20,21]
2908 CH2 Symmetric Stretching [20,21]
1658 C=C Stretching [15,20,21]
1563 O-H & C-H Bending [24]
1428 CH2 Symmetric Bending [20]
1376 CH2 Wagging [20,21]
1331 (CH+OH) Bending [6,20]
1240 C-H Wagging [24]
1138 C-C Stretching [21]
1094 C-O Stretching [20,24]
918 CH2 Rocking [20,24]
852 C-C Stretching [20,24]
665 O-H Wagging [6,24]
478 C-O Bending [20,24]
421 C-O Wagging [24]
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Figure 4. FTIR spectra of pure PVA polymer doped with different concentrations of TiO2/Cu
nanoparticles.

The spectra of the PVA filled with different contents of the Cu NP and TiO2 NP films
show properties that are the same as those of the pure PVA, but the intensities of the
peaks are different. The intensity of the absorption peak at 3475 cm−1 corresponding to
the OH-stretching vibration range is reduced compared to that of the pure PVA. This also
demonstrates the possibility of a coordination reaction of the OH group of the PVA with
the Cu NPs and/or TiO2 NPs [12]. Moreover, the several new peaks appearing at 500
to 700 cm−1 are assigned to the characteristic vibrations of the Ti-O-Ti lattice in the TiO2
NPs [25,26]. These results confirm that there are interactions between the structures of the
TiO2/Cu NPs and the PVA in the investigated nanocomposites. As can be seen in the FTIR
spectra, the TiO2/Cu NPs filled in the PVA appear to play a role in the physical limitations
of the polymeric chain, resulting in some changes in the degree of crystallinity, molecular
packing, and this polymer.

3.4. UV/Visible Absorbance

Figure 5 presents the UV/visible spectra of the prepared polymeric samples. The
PVA spectra display an edge in the UV region at 207 nm, which may be caused by the
n→π* transition. After filling, the UV/visible spectra show four absorption peaks at the
wavelengths of 246, 299, 397, and 516 nm (due to the TiO2 nanoparticles). The bands
with shorter wavelengths (246 and 299) are assigned to the ligand-centered charge transfer
(LCCT) transitions of the double bond (π−π*), while the longer wavelength bands (397
and 516 nm) can be assigned to the metallic/ligand charge transfer (MLCT) transitions
(4d−π*) [27,28]. The presence and shift of such peaks might be assigned to the polymeric
matrices’ interactions/complexation behavior with the integrated Cu NPs and TiO2 NPs,
which affect the expected optical band gap. Tauc’s famous Equation [29], which depicts the
spectra dependence of the absorption coefficient near the edge, can be used to determine
the optical gaps (Egs) as follows:

α =
B (hυ − Eg )r

hυ
(3)
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where hυ is the photon energy, and B is the probability constant for the transition of
the electrons. For the allowed indirect or direct transitions, the power r assigned to the
transition behavior is approximately equal to 1/2 or 2, respectively.
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Figure 5. UV/vis spectra of PVA doped with different concentrations of TiO2/Cu nanoparticles.

Figures 6 and 7 provide plots of hυ vs. (αhυ)2 and (αhυ)1/2 for the produced films.
The optical energy gap values are reported in Table 3. When the PVA is doped with
the Cu NPs and TiO2 NPs, Eg decreases, which is assigned to the ability of the Cu NPs
and TiO2 NPs to modify electronic structures by forming various polaronic and impurity
concentrations that increase with the density of localized states [29]. It has also been proven
that the density of localized states is proportional to the concentration of such impurities
and, thus, to the concentrations of Cu NPs and TiO2 NPs. Increasing the content of Cu
NPs and TiO2 NPs can lead to a widening of the mobility gab between the different color
centers. This overlap may be proof that Eg reduces as the Cu NP and TiO2 NP ratio in the
PVA increases. As shown in the Figure, the presence of the TiO2/Cu NPs within the PVA
polymer causes the jumping of the electrons in the valence band to the conduction band
with the generation of more structural impurities and localized states in the forbidden
band, thus decreasing the optical energy values of these doped films [21,30]. These results
are in agreement with the XRD and electrical conductivity data. These enhancements of
the optical energy values of the doped films indicate their suitability for electrochemical
and opto-electronic applications.

Table 3. The indirect and direct optical energy gap values for PVA-Cu/TiO2 NP nanocomposites.

Samples Egi (inirect) (eV) Egd (direct) (eV)

Pure PVA 4.50 5.35
PVA/0.20% of (TiO2/Cu) 2.82 4.17
PVA/0.40% of (TiO2/Cu) 2.18 3.34
PVA/0.80% of (TiO2/Cu) 2.04 3.24
PVA/1.60% of (TiO2/Cu) 1.71 3.12
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3.5. Morphology and Dispersibility of PVA-Cu/TiO2 Nanocomposites

In order to investigate the micro-/nano-filler distributions within the nanocompos-
ite samples, SEM images were obtained. The SEM images of the pure sample and the
nanocomposite samples are shown in Figure 8. In Figure 8b,c, it can be observed that
the Cu/TiO2 nanoparticles are homogenously dispersed in the polymeric samples. It
is interesting to note that, during the preparation of the PVA-Cu/TiO2 nanocomposite
samples, morphological changes of PVA were observed [31]. The SEM micrographs of
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the doped samples exhibit white granules and randomly dispersed groups of granules
on the samples’ surfaces. Moreover, in these images, it can be observed that Cu and TiO2
are well-distributed on the samples’ surfaces [32,33]. Furthermore, it is indicated that the
modified Cu/TiO2 nanofillers have excellent adhesion and strong interfacial bonding to
the polymeric matrix. At higher concentrations of the Cu/TiO2 nanoparticles, as shown in
Figure 8d,e, the aggregation of granules can be observed on the samples’ surfaces due to the
complexation between the filler NPs and the polymer [14]. These morphological changes
in the PVA indicate nanofiller–polymer interactions, showing that the nanocomposite
components of the polymeric samples are compatible [34,35].
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magnification of 5000 times.
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3.6. DSC Analysis

The thermal features of the present electrolyte nanocomposites were calculated by
using a DSC instrument to determine the thermal transitions [35,36]. The DSC spectra of
the PVA-Cu/TiO2 nanocomposite samples are shown in Figure 9. The thermogram of the
pure PVA exhibits an endothermic peak near 83.85 ◦C, which was attributed to the glass
transition temperature (Tg). The melting point temperature (Tm) and the decomposition
temperature (Td) of the pure PVA polymer show peaks at 227.08 and 300.49 ◦C, respectively.
These three thermal transitions of all the polymeric samples are listed in Table 4. Based
on these curves, the increase in the Tg values of the doped films indicates an increase
in the stiffness of the polymer chains, and the average molecular weight of the PVA
structure increased in the disorder region [37,38]. Moreover, these redshifts of the Tg
and Td positions to a higher temperature of the PVA-TiO2/Cu NPs films indicate that
the embedded TiO2/Cu NPs caused the enhancement of the thermal stability of the PVA
samples, reflecting the establishment of strong intermolecular interactions between the
TiO2/Cu NPs and the structure of the PVA, as displayed in the FTIR spectra. The lower Tm
of the polymeric sample filled with 1.60 wt.% TiO2/Cu NPs is associated with the lower
surface free energy of spherulites [3,4]. The Td position shifted to a higher temperature,
indicating the presence of intermolecular interactions between the PVA matrix and the
hybrid nanoparticles. The presence of these interactions was confirmed via the results of
the XRD and FTIR analyses [4]. In addition, this thermal enhancement was due to the
good dispersion of the TiO2/Cu NPs and the increased degree of the amorphous ratio;
this indicates that the increased resistance of the PVA to thermal oxidation was due to the
cross-linking with the TiO2/Cu NPs, which requires additional thermal energy for thermal
transitions [37,39]. Thus, the DSC curves suggest that TiO2/Cu NP-loaded PVA polymer
has an overall enhanced thermal stability.

Crystals 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 

transition temperature (Tg). The melting point temperature (Tm) and the decomposition 
temperature (Td) of the pure PVA polymer show peaks at 227.08 and 300.49 °C, respec-
tively. These three thermal transitions of all the polymeric samples are listed in Table 4. 
Based on these curves, the increase in the Tg values of the doped films indicates an in-
crease in the stiffness of the polymer chains, and the average molecular weight of the 
PVA structure increased in the disorder region [37,38]. Moreover, these redshifts of the Tg 
and Td positions to a higher temperature of the PVA-TiO2/Cu NPs films indicate that the 
embedded TiO2/Cu NPs caused the enhancement of the thermal stability of the PVA 
samples, reflecting the establishment of strong intermolecular interactions between the 
TiO2/Cu NPs and the structure of the PVA, as displayed in the FTIR spectra. The lower Tm 

of the polymeric sample filled with 1.60 wt.% TiO2/Cu NPs is associated with the lower 
surface free energy of spherulites [3,4]. The Td position shifted to a higher temperature, 
indicating the presence of intermolecular interactions between the PVA matrix and the 
hybrid nanoparticles. The presence of these interactions was confirmed via the results of 
the XRD and FTIR analyses [4]. In addition, this thermal enhancement was due to the 
good dispersion of the TiO2/Cu NPs and the increased degree of the amorphous ratio; 
this indicates that the increased resistance of the PVA to thermal oxidation was due to the 
cross-linking with the TiO2/Cu NPs, which requires additional thermal energy for ther-
mal transitions [37,39]. Thus, the DSC curves suggest that TiO2/Cu NP-loaded PVA 
polymer has an overall enhanced thermal stability. 

100 200 300 400 500

redshiftredshift

 ←


 E
nd

o.
   

Ex
o.

 
→

 

Tg

H
ea

t F
lo

w 
(W

/g
)

Temperature (°C)

Pure PVA

0.20 % Cu/TiO2

0.40 % Cu/TiO2

0.80 % Cu/TiO2

1.60 % Cu/TiO2

Tm Td

 
Figure 9. DSC curves of PVA filled with various contents of TiO2/Cu NPs. 

Table 4. Tg, Tm, and Td for PVA doped with different concentrations of Cu/TiO2 nanoparticles. 

Polymeric Samples Tg (°C) Tm (°C) Td (°C) 
Pure PVA 83.85 227.08 300.49 

PVA/0.20 wt. % NPs 88.91 227.76 306.32 
PVA/0.40 wt. % NPs 92.59 227. 76 307.77 
PVA/0.80 wt. % NPs 105.70 227.08 309.91 
PVA/1.60 wt. % NPs 108.61 225.62 311.37 

  

Figure 9. DSC curves of PVA filled with various contents of TiO2/Cu NPs.

Table 4. Tg, Tm, and Td for PVA doped with different concentrations of Cu/TiO2 nanoparticles.

Polymeric Samples Tg (◦C) Tm (◦C) Td (◦C)

Pure PVA 83.85 227.08 300.49
PVA/0.20 wt.% NPs 88.91 227.76 306.32
PVA/0.40 wt.% NPs 92.59 227.76 307.77
PVA/0.80 wt.% NPs 105.70 227.08 309.91
PVA/1.60 wt.% NPs 108.61 225.62 311.37
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3.7. AC Conductivity

Figure 10 shows the variation in the AC conductivity as a function of frequency at
room temperature (RT) for all the PVA-TiO2/Cu NPs samples. The AC conductivity change
can be used to examine the process of polymer/nanocomposite relaxations. An important
frequency difference in the AC conductivity of the pure PVA and the nanocomposite
samples was found with the external electrical field and the TiO2/Cu NPs concentrations at
RT. The lower frequencies were observed via the impedance of space charges at the electrode
and electrolyte interfaces of the electrolytes. The calculation of the AC conductivity of the
polymeric films was carried out by identifying the bulk resistance values with the thickness
(d) and area (A) of the film, using the following equation [40]:

σac = 1/ρ (4) (4)

where ρ is the electrical resistivity. As ions can remain for a relatively long time at low
frequencies, there is more charge accumulation at the electrode/electrolyte interface. This
delays the movement of the ions and, thus, lowers the conductivity. At higher frequencies,
the AC conductivity is scattered, and this scattering is linked to the faster back-hopping
of ions and can be demonstrated in terms of the bulk relaxation phenomenon [41]. The
ionic conductivity becomes higher when the frequencies are at the higher frequencies of
the PVA nanocomposite, and becomes corresponding to the increased mobility of Ti and
Cu ions. It is possible that the improvement in the ionic conductivity when increasing the
concentrations of TiO2 and Cu is due to the NPs that interact with anions/cations [42,43].
The sizes of the nanoparticles are smaller than the particles of the host PVA, which enables
them to penetrate the PVA matrices and catalyze the plasticizer ions in order to react
with the chain molecules of the PVA, thus reducing the cohesive strength between the
polymeric chains, which increases flexible segmental movements. Thus, the cohesion
strength between the PVA chains is reduced, which causes a chain cutting movement
beside the Cu+ conducting pathway on the surfaces of the nanofillers [6,44].
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3.8. Electric Modulus Examination

The modulus analysis mechanism has been proven to be an efficient method for
revealing the conductivity relaxation in a polymer matrix. The features of bulk relaxation
can be described via complex modulus (M*) parts (real (M′) and imaginary (M′′)), which
can be calculated using the following equations [45]:

M′ = ε′/
(

ε′2 + ε
′′2
)

(5)

M′′ = ε′′/
(

ε′2 + ε
′′2
)

(6)

where ε′ is the storage energy, and ε′′ is the energy loss.
The M′ and M′ ′ spectra of all the nanocomposite films at RT are displayed in

Figures 11 and 12. In general, a long tail can be observed for all samples at low frequencies;
this occurs with a rapid increase in M′, which follows at a high frequency, supporting
the existence of a growing effect of electrode polarization with higher capacitance values
at lower frequencies, as shown in Figure 11. However, the inhibition of the effect of the
electrode polarization is obvious due to the higher values of the modulus and the existence
of relaxation bands at higher frequencies [43,46].
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Moreover, as can be seen in the figure, the pure PVA has the highest M′ of intensity,
while the nanocomposite with the highest concentration of the TiO2/Cu nanoparticles has
the lowest; subsequently, the AC conductivity is the maximum when compared to that of
the other nanocomposite samples. The M” (the imaginary part of the electrical modulus)
data indicate that, at higher frequencies, the maximum bands gradually decrease with an
increase in the nanofiller (the TiO2/Cu nanoparticles) concentration, as shown in Figure 12.
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In M”, a clear shift from the peak to the higher frequencies is observed when the concen-
tration the of nanofillers is increased. The relaxation frequency determines the frequency
associated with each band, by which the relaxation time of the main conductivity can be
calculated using the following equation: (τω = 1/2πfmax), where τω is the time required to
move ions from one site to another through the conduction operation [14,46]. A decrease in
the relaxation time can be indicated when a variation in the peak frequency appears, as it
shifts to higher frequencies when the nanofiller concentration is increased. This is due to
the increased mobility and movements of the carrier segments [47]. The chain flexibility of
the polymeric matrix is enhanced due to the addition of the TiO2/Cu nanoparticles, which
causes a decrease in the crystallinity ratio of the polymeric matrix. Reducing the relaxation
time while increasing the chain segmental motion of the PVA is a well-documented fact, as
it makes the transfer operation easier [48,49]. That is, the relaxation time remains lower
with a higher ionic fluency that reflects increased AC conductivity due to the increased
segmental motion of the nanocomposites [50,51].
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4. Conclusions

The solution casting method was used to prepare PVA samples filled with TiO2/Cu
NPs. The nanoparticle sizes of the TiO2 and Cu were about 5–25 and 2–22 nm, respec-
tively, as shown in the TEM images. The degree of amorphosity of the PVA-TiO2/Cu
nanocomposites increased as the concentration of the hybrid NPs was increased, as found
using an XRD analysis. The FTIR analysis showed excellent complexation between the
PVA and the TiO2/Cu NPs. The optical features, such as decreased optical energy gaps,
were greatly improved with the increase in the concentration of the TiO2/Cu NPs. The
SEM micrographs of the doped films display white granules on the surfaces of the films,
indicating the appearance of a homogeneous growth mechanism. The DSC curves show
that the thermal stability of the PVA-TiO2/Cu films increased remarkably with an increase
in the concentration of the TiO2/Cu NPs in the PVA polymer. An improvement in AC
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conductivity was observed with an increase in the TiO2/Cu NP concentration. This im-
provement was due to the increase in the mobility and charge carriers’ concentrations in
the doped samples. The relaxation peaks in M” clearly indicate conductivity relaxation.
The obtained structural, optical, electrical, and dielectric features of these PVA-TiO2/Cu
NP samples indicate that they can be used in many industries, such as energy storage,
lithium-ion battery, and organic electronic industries.
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