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Abstract: Very high cycle fatigue (VHCF) tests were carried out under variable amplitude loading
for TC21 titanium alloy. The first level of high amplitude loading was set as 950 MPa close to yield
strength, and the second level of low amplitude loading was determined between 435 MPa and
500 MPa where fatigue cracks initiated at the specimen subsurface under constant amplitude. The
results indicate that the high/low stress block significantly reduced the cumulative fatigue life of low
stress amplitude, and the fatigue crack initiation site changed from the specimen subsurface under
constant loading to the specimen surface under stress block. Based on continuum damage mechanics,
the fatigue damage model of two-step stress block was established to estimate the fatigue damage
process. The prediction of cumulative fatigue life generally agreed with the experimental data. The
cumulative fatigue damage of the stress block was related to the stress amplitude and the cycle ratio,
which determined the stress fatigue damage and its interaction damage. The surface crack initiation
in the stress block accelerated fatigue damage of low stress amplitude, reducing the cumulative life.

Keywords: VHCF; variable amplitude; fatigue damage; titanium alloy

1. Introduction

Titanium alloys were widely used in key aerospace components due to their high
strength, toughness, and corrosion resistance [1]. Fatigue performance was the key factor
of reliability service for key components [2,3]. In the ultra-long service process, these key
components withstood high frequency vibration alternating load, where the cyclic number
was beyond 107 cycles, and very high cycle fatigue (VHCF) of key components was of great
concern [4,5]. In fact, key components often underwent variable amplitude loading (VA).
Compared with the constant amplitude loading (CA), VHCF behavior of high-strength
titanium alloy under variable amplitude should be further investigated, providing the
guidance for high reliability service of key aviation components.

In recent years, the very high cycle fatigue of titanium alloys attracted the attention
of researchers. VHCF properties and damage mechanisms, etc., involving the material
microstructure [6], temperature [7], and stress ratio [8,9], were systematically studied.
However, there were few reports on the research of the very high cycle fatigue of tita-
nium alloys under variable amplitude. Based on a Gauss distribution of stress amplitudes,
Mayer et al. [10–13] investigated the variable amplitude VHCF behavior of the 2024 alu-
minum alloy and high-strength steels. They found that the VHCF crack initiated at the
specimen surface under variable amplitude for 2024 aluminum alloy. The cumulative
damage sum decreased as fatigue life increased from high cycle fatigue (HCF) to VHCF,
which was significantly related to the stress ratio [10,11]. For high-strength steel [12,13],
VHCF under variable amplitude displayed the similar crack initiation laws to that under
constant amplitude, and suggested that fatigue damage should be analyzed for surface and
internal initiation, respectively.
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On the other hand, the initiation mechanism of VHCF for high-strength materials was
investigated by using two-stage stress blocks. The growth rate of the fine granular area
(FGA) at the crack initiation site of VHCF was quantitatively estimated by the tree ring
feature marked by the two-stage stress [14–18]. Under variable amplitude loading, the delay
and acceleration of microcracks resulted in greater roughness in the FGA region [19,20].
By using similar two-stage stress blocks, Zhao et al. [21] investigated the microcrack
propagation behavior in FGA around the porosity of an electron beam-welded joint for
high-strength titanium alloy.

However, little attention was paid to the effect of high stress amplitude with a few
cycles in the service life. The effect of low cycle fatigue (LCF) predamage on subsequent
VHCF properties was investigated for TC21 titanium alloy [22,23] and A42 steel [24,25].
VHCF damage models combined with LCF predamage were, respectively, established
by Lemaitre damage mechanics [23] and Chaboche damage mechanics [24,25]. However,
the interaction between high and low stress amplitude was not considered, which was
significant for various amplitude fatigue.

In this paper, VHCF properties and crack initiation characteristics under high/low two-
step stress loading for TC21 titanium alloy was investigated. The fatigue damage model
under high/low two-step stress loading was established based on Lemaitre damage theory
to discuss the interaction between high and low stress amplitude, providing valuable
guidance for the engineering application of high-strength titanium alloys subjected to
variable loading.

2. Experimental Procedures
2.1. Materials

TC21 titanium alloy with its nominal composition of Ti-6Al-2Zr-2Sn-2Mo-2Nb-1.5Cr
(wt.%) was used in this work. The alloys with basketweave microstructure obtained a
tensile strength of 1070 MPa [26] and a very high cycle fatigue limit of 430 MPa [22],
respectively.

2.2. Constant Amplitude Fatigue

Constant amplitude fatigue tests were carried out by an ultrasonic fatigue test machine
(SHIMADZU, Kyoto, Japan) at a load ratio of R = −1, which was an accelerating testing
method with a 20 kHz frequency [27]. The specimen geometry was designed based on the
elastic wave theory. The geometries and dimensions of the fatigue specimens are illustrated
in Figure 1.
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Figure 1. Geometries and dimensions of the test specimens (in mm).

2.3. Variable Amplitude Fatigue

Variable amplitude fatigue was applied by a repeated high/low two-step loading
procedure, which started from a high stress block σH, and then was followed by a low
stress block σL (Figure 2). High stress fatigue was carried out for ultrasonic specimens by a
hydraulic fatigue machine (Instron 8801, Instron Company, Boston, MA, USA), and low
stress fatigue was tested by an ultrasonic fatigue machine (SHIMADZU, Kyoto, Japan).
Both high stress and low stress fatigue were at a load ratio of R = −1.
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Figure 2. Repeated high/low two-step loading procedure.

According to the previous investigation [22], surface cracks of TC21 titanium alloy
were not observed under a 950 MPa stress amplitude with 5% of the expected life (90 cycles),
thus the cycle number of high stress block NH,i was selected as 10 cycles. The low stress
block was set as 430 MPa, 450 MPa, 480 MPa, and 500 MPa, respectively, where fatigue
cracks initiated at the specimen subsurface under constant amplitude. The corresponding
constant amplitude fatigue life was from 2 × 106 cycles to 2.6 × 107 cycles, thus the
cycle number of low stress block NL,i was, respectively, determined as 2 × 104 cycles and
2 × 105 cycles to investigate the effect of the cycle ratio. Four parallel experiments were
conducted for each group of experiments, and the average value was taken as fatigue life.

3. Results and Discussion
3.1. Variable Amplitude Fatigue Behavior

Figure 3 shows fatigue life S-N curves of TC21 titanium alloy under constant amplitude
and variable amplitude loading. As for constant amplitude fatigue, there was a transition
stress of 540 MPa between surface initiation and subsurface initiation. Above the transition
stress, fatigue cracks were initiated at the specimen surface, while fatigue cracks were
initiated at the specimen subsurface below the transition stress. However, fatigue cracks
were initiated at the specimen surface under stress blocks.
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For variable amplitude fatigue, a small amount of high stress amplitude loading in the
stress block significantly reduced fatigue life at low stress amplitude. The cumulative cycles
increased with the decrease in the second low stress amplitude, and were far lower than
that under constant amplitude. Furthermore, the cumulative cycles under low amplitude
with 2 × 104 cycles were lower than that with 2 × 105 cycles. Compared to the second level
of 2 × 105 cycles, the number of cycle blocks with the second stress for 2 × 104 cycles were
increased, but the cumulative life of low stress amplitude decreased.

According to the linear cumulative damage theory [10], fatigue damage of a TC21
titanium alloy stress block was:

DB,i =
NH,i(σH)

NCA(σH)
+

NL,i(σL)

NCA(σL)
(1)

where DB,i was fatigue damage of the ith stress block, and NCA was fatigue life under
constant stress amplitude. Fatigue damage of the ith stress block DB,i was constant due to
the constant amplitude of high and low stress and the constant number of cycles, and the
number of stress blocks was: N = 1/DB,i.

For the second level 2 × 105 cycles, based on the linear cumulative damage theory, the
predicted value was non-conservative, at almost 10 times that of the experiment (Table 1).
In comparison with fatigue life after LCF predamage under 950 MPa stress amplitude [22],
the cumulative life of low stress amplitude was lower than that that of LCF predamage. It
indicated that the interaction between high and low stress amplitudes in the stress block
accelerated fatigue damage, and reduced the cumulative life.

Table 1. Cumulative life under variable amplitude loading (cycle ratio: 10/2 × 105).

Stress σH/σL,
MPa

Experimental
Data

Prediction of Linear
Cumulative Damage

Prediction of This
Damage Model

Prediction Error of
this Damage Model

Fatigue Life of
Predamage

Specimens [22]

950/500 30/4.54 × 105 286/5.71 × 106 30/4.84 × 105 +6.61% 45/4.8 × 105

950/480 30/6.2 × 105 324/6.48 × 106 30/5.80 × 105 −6.45% 45/8.0 × 105

950/450 40/7.74 × 105 555/1.11 × 107 50/8.50 × 105 +9.82% 45/1.7 × 106

950/430 80/1.48 × 106 715/1.43 × 107 80/1.55 × 106 +4.733% 90/1.5 × 107

For stress blocks with both 2 × 104 cycles and 2 × 105 cycles, fatigue cracks were
initiated at the specimen surface, and fatigue cracks propagated with the radial fracture
surface (Figure 4). VHCF cracks were initiated at the specimen subsurface where the crack
initiation site illustrated radial fracture characteristics indicated by red circle in Figure 5a, and
the fine granular area was observed at the crack source area (Figure 5b) which was the
typical characteristic of VHCF [6,7]. It was inferred that high stress with a few cycles in
the stress block promoted the initiation of surface microcracks. However, compared to the
predamaged specimens under 950 MPa stress amplitude with 45 cycles, where fatigue crack
was initiated at the specimen subsurface under low stress amplitude [22], the interaction of
high and low stress accelerated the fatigue damage in the stress block and promoted the
specimen surface initiation.
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3.2. Continuum Damage of Variable Fatigue
3.2.1. Fatigue Damage Model

The ith stress block contained high stress block σH/NH,i and low stress block σL/NL,i.
According to literature [28], when high stress produced low cycle fatigue damage, fatigue
damage DH,i of the ith high stress block was expressed as:

DH,i = 1 − [(1 − DH,i−1)
1
n +2α − 4σH

1
n +2α

(2 ES) αnk1/n NH,i]

1
1
n +2α

. (2)

Fatigue life NR,H under high constant amplitude loading was given as [28]:

NR,H = [1 − (1 − Dc,H)
1
n +2α]

(2ES)αnk1/n

4σH
1
n +2α

(3)

Combined with Formulas (2) and (3), fatigue damage DH,i of the ith high stress block
was expressed as:

DH,i = 1 − [(1 − DH,i−1)
1
n +2α − [1 − (1 − Dc,H)

1
n +2α]

NH,i

NR,H
]

1
1
n +2α (4)
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where k and n were the cyclic hardening/softening coefficient and index. E was the elastic
modulus of TC21 titanium alloy. The damage strength S represented the amount of fatigue
damage produced by each plastic strain increment. The parameter α was the damage
nonlinear cumulative coefficient. Dc,H was the critical value of high stress fatigue damage.

According to literature [23], as low stress produced VHCF damage, fatigue damage
DL,i of the ith low stress block was expressed as:

DL,i = 1 − [(1 − DL,i−1)
(2s+1) −

2(Ru
v)

s[(σL + kσf )
2s+1 − [σf (1 + k)]2s+1]

(2ES)sC(1 + k)2s+1 NL,i]

1
2s+1

(5)

where Rµ
ν was triaxial stress state function. The parameter s represented the nonlinear

cumulative parameter of fatigue damage, and σf was VHCF limit. The parameters of C was
material constant.

Fatigue life NR,L under low constant amplitude loading was given as [23]:

NR,L = [1 − (1 − Dc,L)
(2s+1)]

(2ES)sk

2(Rµ
ν )

s
[(

σL+Cσf
1+C )

2s+1
− σf

2s+1]

. (6)

Combined with Formulas (5) and (6), fatigue damage DL,i of the ith stress block was
expressed as:

DL,i = 1 − [(1 − DL,i−1)
2s+1 − [1 − (1 − Dc,L)

2s+1]
NL,i

NR,L
]

1
2s+1

(7)

where Dc,L was the critical value of low stress fatigue damage.
As the initial damage value of low stress block DL,i-1, high stress damage DH,i can

be equivalent to the low stress damage λDH,i. The parameter λ was the coefficient of
high/low stress damage conversion, and the calculation process of λ can infer to the
previous paper [23]. Both stress block damage and high stress damage were converted
into equivalent fatigue damage at low stress in this paper. Therefore, the ith stress block
damage DB,i was calculated as:

DB,i = 1 − [(1 − λDH,i)
2s+1 − [1 − (1 − Dc,L)

2s+1]
NL,i

NR,L
]

1
2s+1

. (8)

The initial value of high stress damage in the (i + 1)th stress block was: DL,i+1 = DB,i/λ,
which was substituted into Formulas (4), (7) and (8) for cyclic calculation. When the stress
block DB,i reached the critical damage value of Dc,L, fatigue crack was initiated.

The damage of the interaction between high stress amplitude and low stress amplitude
DH/L was expressed as:

DH/L,i = DB,i − DH,i − DL,i. (9)

3.2.2. The Parameters and Validation of Model

The high stress in stress blocks resulted in the crack initiation at the specimen surface,
thus the characteristics of surface initiation should be considered for the parameter s in the
stress block. The nonlinear fatigue damage parameter s can be expressed as [23]:

s = B0(
σu − σa

σu − σf
) (10)

where B0 was the adaptive parameter of the fatigue damage accumulation process, and σu
was the tensile strength of TC21 titanium alloy.

According to the Formula (6), by fitting the S-N curve of the undamaged specimens
with the numerical iteration calculation (Figure 6), the parameter of B0 was equal to 1.43 for
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the surface initiation. The parameters of fatigue damage model under variable amplitude
are shown in Table 2.
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Table 2. The parameters of variable amplitude fatigue damage model.

E/GPa σu/MPa σf/MPa K/MPa C S/MPa B0/Surface B0/Subsurface Dc,L Dc,H

110 1070 430 1067.3 61.84 130 1.43 1.64 0.62 1.14
[26] [26] [23] [26] [28] [28] fitting [23] [23] [28]

Based on the fatigue damage model, the cumulative life under different low stress
amplitude was predicted with the second level of 2 × 105 cycles (Figure 7). Under
the second level stress of 450 MPa, fatigue cumulative life was 950 MPa/50 cycles and
450 MPa/8.5 × 105 cycles, and there was one more stress block than the experimental data.
However, the predicted values under other stress amplitudes were close to the experimental
data. Thus, the prediction of cumulative life with this model generally agreed with the
experimental data.
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3.2.3. Fatigue Damage Analysis

Cumulative fatigue damage of stress blocks with different stress was performed based
on the fatigue damage model, as shown in Figure 8. In the case of the high stress for
10 cycles with 450 MPa/2 × 105 cycles, fatigue damage of stress blocks increased with
the increase in the high stress. When the high stress amplitude was increased to 950 MPa
close to the yield strength, the stress block damage was significantly higher than that of
900 MPa and 850 MPa. As for the low stress for 2 × 105 cycles with 950 MPa/10 cycles,
fatigue damage of stress blocks increased with the increase in the number of stress blocks.
The higher the second level stress amplitude, the faster the fatigue damage rate of the
stress block.
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Figure 8. Effect of the stress level on fatigue damage of stress block: (a) the high stress for 10 cycles
with 450 MPa/2 × 105 cycles; and (b) the low stress for 2 × 105 cycles with 950 MPa/10 cycles.

Figure 9 shows the cumulative fatigue damage of stress blocks with the different cycle
numbers. In order to investigate the cycle number effect of the high stress block, the fatigue
damage with 950 MPa for 10 cycles and 5 cycles was analyzed based on the damage model.
According to Formulas (4) and (7), cumulative fatigue damage increased significantly with
the increase in cycle ratio Ni/NR under constant stress amplitude. Figure 9a shows that
stress blocks with 950 Pa/10 cycles obtained the highest cumulative fatigue damage due to
the high stress amplitude, and the cumulative damage was almost linear with the number of
cycle blocks due to the high stress. For stress blocks with 450 MPa/2 × 105 cycles, fatigue
cumulative damage was almost the same as that with 950 MPa/5 cycles in the first three
stress blocks, and then significantly increased with the increase in cumulative cycles owing
to its nonlinear damage. In consequence, fatigue damage was dramatically higher than
that with 950 MPa/5 cycles. The cumulative fatigue damage of 450 MPa/2 × 104 cycles
was very small. According to Formulas (4) and (7), cumulative fatigue damage increased
significantly with the increase in cycle ratio Ni/NR. Thus, the small fatigue damage of
450 MPa/2 × 104 cycles was attributed to the low cyclic ratio. Figure 9b shows that fatigue
damage of stress blocks with 950 MPa/10 cycles and 450 MPa/2 × 105 cycles was remark-
ably higher than that of 450 MPa/2 × 105 cycles, indicating that the high stress accelerated
fatigue damage of low stress.
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total cumulative fatigue damage.

According to Formula (9), the interaction fatigue damage in different stress block is
shown in Figure 9c. The interaction damage between 450 MPa/2 × 105 cycles and 950 MPa
stress was significantly larger than that of the stress block with 450 MPa/2 × 104 cycles.
As the number of cycles ratio Ni/NR for 450 MPa/2 × 105 cycles was 10 times that of
2 × 104 cycles, fatigue damage of stress blocks with 450 MPa/2 × 105 cycles obtained a
higher fatigue damage rate. Under the same initial fatigue damage, stress blocks with
450 MPa/2 × 105 cycles acquired greater fatigue damage, illustrating the strong stress
interaction. The stress blocks with 950 MPa/10 cycles and 450 MPa/2 × 105 cycles
gained the largest total fatigue damage, while stress blocks with 950 MPa/5 cycles and
450 MPa/2 × 104 cycles obtained the lowest one. The total fatigue damage of stress
blocks with 950 MPa/5 cycles and 450 MPa/2 × 105 cycles was higher than that with
950 MPa/10 cycles and 450 MPa/2 × 104 cycles (Figure 9d). Therefore, the cumulative
fatigue damage of the stress blocks was related to the stress amplitude and the cycle ratio,
which determined the stress fatigue damage and its interaction damage.

Comparison of stress blocks and LCF predamage fatigue damage is shown in Figure 10.
Fatigue damage of LCF predamage specimens increased slowly under 450 MPa stress am-
plitude, and rapidly increased when reaching the critical damage value, where cracks
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initiated at the specimen subsurface [23]. The fatigue damage rate of stress blocks with
950 MPa/10 cycles and 450 MPa/2 × 105 cycles was much higher than that of LCF predam-
age, and the high stress in stress blocks promoted the surface crack initiation. Fatigue
damage at the third cycle block reached that of fatigue predamage, and was then higher
than that of fatigue predamage. Thus, the cumulative life under the stress block was lower
than of fatigue predamage. However, if cracks in the stress block were initiated at the
specimen subsurface, fatigue damage decreased due to the large value of B0 [17], and
the cumulative life of 450 MPa stress amplitude was close to that of fatigue predamage.
Therefore, the surface crack initiation of the stress block accelerated fatigue damage of low
stress amplitude and significantly reduced the cumulative life of low stress amplitude.
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4. Conclusions

(1) The high/low stress block significantly reduced the cumulative fatigue life of low
stress amplitude, and the fatigue crack initiation site changed from the specimen subsurface
under constant loading to the specimen surface under stress block.

(2) Based on continuum damage mechanics, fatigue damage models of two-step
stress blocks were established to estimate the fatigue damage process. The prediction of
cumulative fatigue life generally agreed with the experimental data with the error within
10%. Higher stress amplitude obtained greater stress fatigue damage and interaction
damage. The surface crack initiation in the stress block accelerated fatigue damage of low
stress amplitude, reducing the cumulative life.
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