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Abstract: In this study, we investigate the effects of chlorine doping on the structural, electronic,
and thermoelectric properties of Bi2O2Se by employing density functional theory combined with
semiclassical Boltzmann transport theory. It is shown that chlorine doping has significant effects on
the electronic structure and thermoelectric properties of Bi2O2Se. As chlorine is incorporated into the
selenium sites in Bi2O2Se, additional electrons are acquired, thereby inducing metallic properties in
chlorine-doped Bi2O2Se. Meanwhile, Cl doping leads to an increase in the electrical conductivity of
Bi2O2Se at room temperature by 25 times (from 358.59 S/cm to 9390 S/cm), and the power factor is
enhanced by a factor of 2.12 (from 4.04 mW/mK2 to 12.59 mW/mK2). This study demonstrates that
chlorine doping is an effective method to modify the physical properties of Bi2O2Se.

Keywords: density functional theory; Bi2O2Se; chlorine doping; electronic structure; thermoelectric
properties

1. Introduction

In recent years, thermoelectric (TE) materials have received extensive attention because
of their environmentally friendly and sustainable characteristics. Thermoelectric materials
can directly convert heat into electricity, thus reducing carbon dioxide and greenhouse
gas emissions [1–6]. The energy conversion efficiency of thermoelectric materials can
be evaluated using the ZT (ZT = T S2σ

κ ) value [7,8], where σ, S, T, κ and S2σ are the
electrical conductivity, Seebeck coefficient, absolute temperature, thermal conductivity, and
power factor, respectively [9–12]. Excellent thermoelectric materials should have a high
Seebeck coefficient, high electrical conductivity, and low thermal conductivity [5]. However,
these parameters are strongly coupled; e.g., the electrical conductivity is proportional to
the thermal conductivity, while the carrier concentration is inversely proportional to the
Seebeck coefficient. Thus, it is difficult to further improve the ZT value of TE materials.

Bismuth oxyselenide (Bi2O2Se) is a potential thermoelectric material due to its low
thermal conductivity; however, its ZT value (0.05~0.5) is lower than that of other thermo-
electric materials (~1) [13–18]. In the past decades, many techniques have been employed
to improve the ZT value of Bi2O2Se. Experimental studies performed by Zhan et al. have
shown that Bi defects significantly influence the thermoelectric performance of Bi2O2Se.
Compared to the ZT value of 0.05 for pure Bi2O2Se, Bi1.9O2Se exhibits a 130% improvement
in ZT value, reaching 0.12 at 773 K [19]. Guo et al. investigated the effect of Nb doping
on the ZT value of Bi2O2Se using ball milling and hot-pressing sintering. They found that
Nb-doped Bi2O2Se has a ZT value of 0.195 at 823 K, which is 325% higher than the value
of 0.045 for pure Bi2O2Se [20]. Hong et al. studied the influence of Ce4+ doping on the
thermoelectric properties of Bi2O2Se employing spark plasma sintering and found that
Ce4+-doped Bi2O2Se has a ZT value of 0.26 at 773 K, which is 1.27 times higher than the
value of 0.11 for pure Bi2O2Se [21]. Song et al. studied the influence of Ti doping on the
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thermoelectric properties of Bi2O2Se and found that the ZT value of Ti-doped Bi2O2Se is
0.56 at 773 K, which is 20% higher than the ZT value of 0.47 for the original Bi2O2Se [22].
Chen et al. investigated the effect of Sb doping on the thermoelectric properties of Bi2O2Se
and found that the ZT value of Sb-doped Bi2O2Se reaches 0.59 at 773 K, which is 80%
higher than that of 0.33 for the original Bi2O2Se [23]. Pan et al. synthesized polycrystalline
Bi2O2−xSxSe (x = 0, 0.01, 0.02, and 0.03) via a high-temperature solid-state reaction and
demonstrated that the substitution of a small amount of S for O can effectively improve
the thermoelectric performance of Bi2O2Se. The doped Bi2O2Se exhibits a ZT value of
0.29, which is 3.2 times higher than that of 0.09 for pristine Bi2O2Se at 793 K [24]. Fu et al.
synthesized Bi2−xZrxO2Se (x = 0, 0.02, 0.04, 0.06) via a combination of high-energy ball
milling and cold pressing. It was found that Zr doping has a significant impact on the
thermoelectric performance of Bi2O2Se. The peak ZT value of the Bi1.96Zr0.04O2Se sample is
approximately 0.27, which is 2.4 times higher than that of the undoped sample (~0.11) [25].
Song et al. obtained Bi2O2Se with Bi2Te2.7Se0.3 through a liquid-assisted shear exfoliation-
reassembly (LASE-R) process and found a significant improvement in its thermoelectric
performance. At 772 K, the addition of 0.3 mol% Bi2Te2.7Se0.3 results in a ZT value of 0.7,
several times higher than the pristine sample (~0.1) [26]. Despite the above studies, the ZT
value of Bi2O2Se remains low and requires further improvement.

In recent years, chlorine (Cl) has been widely used to improve the thermoelectric
properties of materials [27–29]. Tan et al. experimentally studied the effect of Cl doping
on the thermoelectric performance of AgBi3S5. They found that the ZT value of Cl-doped
AgBi3S5 reaches 1 at 800 K, which is five times that of the original AgBi3S5 (0.2) [28].
Zhang et al. systematically studied the effect of Cl doping on the thermoelectric properties
of AgPb18SbSe20 using experimental methods. It was shown that the ZT value of Cl-doped
AgPb18SbSe20 is 1.3 at 873 K, which is 766% higher than that of the original AgPb18SbSe20
(0.15) [29]. Furthermore, Wang et al. carried out experimental investigations of the effect
of Cl doping on the thermoelectric properties of BiSbSe3 and reported that the ZT value
of Cl-doped BiSbSe3 is 1.0 at 800 K, which is five times higher than that of the original
BiSbSe3 (0.2) [27]. These investigations demonstrate that Cl doping is an effective method
to improve the thermoelectric properties of materials.

In this work, the effects of Cl doping on the structure, electronic, and thermoelectric
properties of Bi2O2Se are investigated by combining the DFT method and semi-classical
Boltzmann transport theory. The relaxation time τ, electrical conductivity σ, Seebeck
coefficient S, power factor (PF), thermal conductivity κ, and dimensionless figure of merit
ZT are provided. The results show that Cl doping can introduce additional electrons,
causing Bi2O2Se to exhibit metallic character, thus enhancing the electrical conductivity
and power factor. Therefore, this study provides a theoretical basis for experimental
observation and reveals the potential mechanism of Cl-doping-induced improvement in
the thermoelectric properties of Bi2O2Se.

2. Computational Details

The density functional theory (DFT) method in the Vienna Ab initio Simulation Pack-
age (VASP) code (Vienna, Austria) [30] is used to perform geometrical optimization and
electronic structure calculations. The projector augmented-wave approach (PAW) [31]
pseudopotential is used to describe the interaction between electrons and ions. In addition,
the exchange-correlation potentials among electrons are described by the Perdew–Burke–
Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) [32] and
the Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional [33]. In this work, the Monkhorst–
Pack scheme [34] with a 6 × 6 × 6 k-point sampling for the Brillouin zone is used for
structural optimization and electronic structure calculations. The cut-off energy of the
plane waves is set as 500 eV. The electronic transport coefficients are calculated by semi-
classical Boltzmann theory using the BOLTZTRAP code [35] and the Brillouin zone is
sampled with an 8 × 8 × 8 k-point grid. The lattice thermal conductivity κl is calculated
by using the Slack equation [36], and the energy and force convergence criteria are set
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to be 1 × 10−5 eV/atom and 1 × 10−2 eV/Å, respectively. For chemical element dop-
ing, a 2 × 2 × 1 supercell containing 40 atoms is used to build the structural model for
Bi2O2Se0.875Cl0.125, with Cl dopants substituting for the Se atoms. It should be pointed out
that the doping concentration in this work is 1.31× 1021 e/cm3, which may exceed the satu-
ration limit. The dissolution limit can be raised by tuning experimental conditions, such as
the experimental temperature and powder size of the samples [37–39]. On the other hand,
in the literature, Liu et al. have demonstrated that the carrier concentration of Ge-doped
Bi2O2Se can reach 1021–1022 cm−3 by controlling experimental conditions [40]. Therefore,
the doping concentration of 1.31 × 1021 e/cm3 can probably be achieved experimentally.

3. Results and Discussions
3.1. Structural Properties of Pristine and Cl-Doped Bi2O2Se

The bent [Bi2O2]2+ layers and [Se]2− layers are alternately stacked along the c-axis
through weak electrostatic interactions to form Bi2O2Se [41], in which the [Bi2O2]2+ layer
is an insulating layer while the [Se]2− layer is a conducting layer. Bulk Bi2O2Se has
a tetragonal I4/mmm (No. 139) crystal structure, and its unit cell contains ten atoms.
The optimized geometrical structures of Bi2O2Se and Bi2O2Se0.875Cl0.125 are shown in
Figure 1, and both structures contain 40 atoms. Table 1 shows the lattice constants, volume,
and bond lengths of Bi2O2Se and Bi2O2Se0.875Cl0.125 calculated by us and from other
literature sources [42,43]. The lattice constants of Bi2O2Se are a0 = b0 = 3.917 Å and
c0 = 12.357 Å, which are in good agreement with experimental results (a0 = b0 = 3.88 Å
and c0 = 12.16 Å) [42] as well as calculated results (a0 = b0 = 3.90 Å and c0 = 12.39 Å) [43]
reported in the literature. Additionally, the calculated <Bi-O> and <Bi-Se> bond lengths
of Bi2O2Se are 2.337 Å and 3.331 Å, respectively, which agree well with the calculated
values of 2.312 Å and 3.272 Å reported by Wu et al. [44]. Compared with Bi2O2Se, the
calculated lattice constants a0 and b0 (3.946 Å) of Bi2O2Se0.875Cl0.125 increased by 0.74%,
respectively, while the c0 (12.287 Å) decreased by 0.57%, resulting in a 0.76% increase in
volume. The calculated <Bi-O> bond length (2.339 Å) of Bi2O2Se0.875Cl0.125 increased by
0.09%, and <Bi-Se> bond length (3.336 Å) increased by 0.76%. As Cl substitutes for Se in
Bi2O2Se, despite the smaller ionic radii of Cl (1 Å) compared to Se (1.15 Å), the stronger
electronegativity (3.16) of the Cl atom than Se (2.55) results in the attraction of electrons
from its neighboring atoms. Consequently, the interactions between Bi atoms and O as
well as Se atoms are weakened, as indicated by the increased bond lengths of <Bi-O> and
<Bi-Se> by 0.09% and 0.76%, respectively (see Table 1). This probably eventually leads to
the volume expansion of 0.9% caused by Cl doping in Bi2O2Se. Considering that Cl and Se
atoms have 7 and 6 valence electrons, respectively, when Cl is used to substitute for Se, it is
likely that one additional electron is introduced.
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Table 1. Comparison of lattice constants a0 and c0 (Å), volume (Å3), and bond length (Å) of Bi2O2Se
and Bi2O2Se0.875Cl0.125 with experimental and other theoretical results.

a0 c0 Volume <Bi-O> <Bi-Se>

Bi2O2Se Our cal. 3.917 12.357 189.592 2.337 3.311
Exp. [42] 3.88 12.16 183.06 --- ---

Other cal. [43] 3.90 12.39 188.45 --- ---
Bi2O2Se0.875Cl0.125 Our cal. 3.946 12.287 191.320 2.339 3.336

3.2. The Influence of Cl Doping on the Electronic Structure of Bi2O2Se

The density of state (DOS) distribution of Bi2O2Se before and after Cl doping is first
studied using standard and hybrid DFT methods. Figure 2a,b show the total and projected
density of state distribution of Bi2O2Se and Bi2O2Se0.875Cl0.125 around the Fermi level
obtained by the standard DFT method. For Bi2O2Se, the valence bands from 4 to 5.53 eV
are mainly composed of Se 4p orbitals hybridized with O 2p and Bi 6s orbitals, while the
conduction bands from 6.02 to 8 eV are mainly composed of Bi 6p and O 2p orbitals. The
bandgap between the maximum value of the valence band and the minimum value of
the conduction band is 0.49 eV, which is similar to the theoretical values of 0.41 eV [45],
0.43 eV [46], and 0.472 eV [47]. Figure 2b shows the DOS distribution of Bi2O2Se0.875Cl0.125,
revealing that many electrons are distributed at the Fermi level. These features indicate
that Bi2O2Se0.875Cl0.125 has metallic properties that differ from the results reported by
Tan et al. [48]. This is mainly due to the fact that our doping concentration of 2.5% is far
greater than the solubility limit of 1.5% in the experimental literature.
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As we know, the standard DFT method severely underestimates the bandgap of
materials. In order to obtain a more accurate bandgap, we use the hybrid DFT method to
further calculate the DOS distribution of Bi2O2Se before and after Cl doping. Figure 2c,d
show the DOS distribution of Bi2O2Se before and after Cl doping, respectively. For Bi2O2Se,
the calculated band gap between the maximum of the valence band and the minimum
of the conduction band is 1.05 eV, which is similar to other calculated hybrid DFT results
of 0.9 eV [49], 0.99 eV [50] and 1.01 eV [51]. For Bi2O2Se0.875Cl0.125, it can be seen that
as compared with the standard DFT method, the hybrid DFT method obtains a more
delocalized electron distribution, and a certain number of electrons still distribute on the
Fermi level, i.e., the doped Bi2O2Se exhibits metallic properties.

3.3. Thermal Transport Properties of Bi2O2Se and Bi2O2Se0.875Cl0.125
3.3.1. Relaxation Time and Electrical Conductivity of Pure and Cl-Doped Bi2O2Se

When calculating thermoelectric properties such as the Seebeck coefficient, electri-
cal conductivity, and thermal conductivity, two variables, i.e., carrier concentration and
relaxation time, must be determined first, both of which are functions of temperature.
Considering the phenomenon that Cl doping results in metallic behavior in Bi2O2Se similar
to that of W doping [52], we refer to the carrier concentration of W-doped Bi2O2Se for
our calculation. Therefore, the carrier concentration of pure and Cl-doped Bi2O2Se is
n = 1.36 × 1019 cm−3 and n = 1.56 × 1019 cm−3, respectively. The relaxation time τ for
Bi2O2Se at 300 K can be obtained with the following formula [53]:

τ =
µm∗

e
, (1)

where m* is the effective mass and µ is the carrier mobility. Employing m* = 0.33 m0 and
µ = 80 cm2V−1s−1 at 300 K, as reported by Gao et al. [52], we obtain τ = 1.5 × 10−14 s
at 300 K for Bi2O2Se, which is comparable with the experimental result of 1.2 × 10−14 s
reported by Pan et al. [54]. As for Bi2O2Se0.875Cl0.125, referring to the relaxation time of
W-doped Bi2O2Se (1.9 × 10−14 s) [52] and other metals (0.31 × 10−14 s~2.2 × 10−14 s) [55],
an approximate relaxation time τ of 1 × 10−14 s at 300 K is employed.

The relaxation time τ for Bi2O2Se and Bi2O2Se0.875Cl0.125 at different temperatures can
be calculated by the following equation [56]:

τ =
C

Tn
1
3

(2)

where n is the carrier concentration, T is the temperature, and C is a constant. According
to the experimental literature [52], carrier concentrations are fixed at 1.36 × 1019 cm−3

for Bi2O2Se and 1.56 × 1019 cm−3 for Bi2O2Se0.875Cl0.125, which are also employed in
other investigations [23,56–59]. Taking the relaxation time τ calculated at 300 K into
Equation (2), the constants C are determined to be 1.78 × 10−10 sKcm−1 for Bi2O2Se and
8.21 × 10−10 sKcm−1 for Bi2O2Se0.875Cl0.125. Then, by substituting the constants C and n
into Equation (2), the relaxation time τ at different temperatures is obtained. The calculated
results are plotted in Figure 3a. It is shown that the relaxation time τ is dependent on the
temperature and becomes smaller with increasing temperature.

Based on the determined relaxation time and carrier concentration, we further calculate
the electrical conductivity σ of Bi2O2Se before and after Cl doping. Figure 3b shows the
temperature-dependent electrical conductivity σ of Bi2O2Se and Bi2O2Se0.875Cl0.125. For
Bi2O2Se, the calculated electrical conductivity σ decreases with increasing temperature,
which is consistent with the experimental literature [52]. However, our results differ from
those of Rurova et al. [60], due to the reason that the carrier concentration is fixed in our
calculations while dependent on the temperature in the work of Rurova et al. As for
Bi2O2Se0.875Cl0.125, the electrical conductivity σ is as high as 9390 S/cm at 300 K, which
is 26 times larger than the value of 358.5 S/cm for Bi2O2Se. Experimentally, the Bi2O2Se
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sample (σ = 175 S/cm) was prepared by the exfoliation technique [52], which may produce
defects and influence its physical properties [61]. In addition, the dissolution limit of Cl in
Bi2O2Se reported in the literature is 1.5% [48], while the dopant concentration considered
in this work is much higher, i.e., 2.5%. Although the dopant concentration considered in
this work is higher than the experimental dissolution limit, the dissolution limit can be
raised by techniques such as tuning the experimental temperature and powder size of the
samples [37–39]. Therefore, the presented results will provide a theoretical reference for
further related experimental research.
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3.3.2. Seebeck Coefficient and Power Factor of Bi2O2Se and Bi2O2Se0.875Cl0.125

The Seebeck coefficient S is an essential parameter for predicting the thermoelectric
performance of materials. It is mainly determined by the thermal electromotive force (4V)
and the temperature difference (4T) and can be expressed as [62]:

S =
4V
4T

(3)

Figure 4a presents the variation of the Seebeck coefficient S with temperature for
Bi2O2Se and Bi2O2Se0.875Cl0.125. It is shown that the Seebeck coefficients S of Bi2O2Se and
Bi2O2Se0.875Cl0.125 are both negative, indicating that electrons are the dominant charge
carriers. Due to the increase in free electron concentration, Cl doping leads to a significant
decrease in the absolute value of the Seebeck coefficient S of Bi2O2Se. In addition, as
the temperature increases, the absolute Seebeck coefficient S increases for both Bi2O2Se
and Bi2O2Se0.875Cl0.125. For Bi2O2Se, the absolute Seebeck coefficient S increases from
87.6 µV/K at room temperature to 177 µV/K at 800 K; for Bi2O2Se0.875Cl0.125, the absolute
Seebeck coefficient S increases from 23.8 µV/K at room temperature to 59.7 µV/K at 800 K.

Based on the calculated electrical conductivity σ and Seebeck coefficient S, we further
calculate the power factor PF of Bi2O2Se before and after Cl doping using the follow-
ing formula:

PF = S2σ (4)

Figure 4b shows the temperature-dependent power factors (PFs) of Bi2O2Se and
Bi2O2Se0.875Cl0.125. It is evident that the PF values for Bi2O2Se and Bi2O2Se0.875Cl0.125 in-
crease with increasing temperature. In addition, Cl doping significantly enhances the PF of
Bi2O2Se. For example, at a temperature of 800 K, the power factor PF of Bi2O2Se0.875Cl0.125
is 12.59 mW/m K2, which is 3.04 times that of pure Bi2O2Se (4.14 mW/m K2).
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3.3.3. Thermal Conductivity and Figure of Merit ZT of Pure and Cl-Doped Bi2O2Se

The thermal conductivity of a crystal is determined by the combined effects of elec-
tronic thermal conductivity and lattice thermal conductivity, i.e.,

κ = κe + κl (5)

The Wiedemann–Franz law [35,63,64] can be applied to calculate the electronic thermal
conductivity of materials, i.e.,

κe = LσT (6)

Here, L represents the Lorenz constant (2.4 × 10−8 WΩK−2). The temperature-
dependent behavior of electronic thermal conductivity is shown in Figure 5a. It is observed
that the electronic thermal conductivity of Bi2O2Se and Bi2O2Se0.875Cl0.125 increases with
increasing temperature. Moreover, the electronic thermal conductivity of Bi2O2Se0.875Cl0.125
is significantly higher than that of Bi2O2Se. For instance, at a temperature of 800 K, the
calculated value of Bi2O2Se0.875Cl0.125 is 6.78 W/mK, which is 27.12 times larger than that
of Bi2O2Se (0.25 W/mK). This can be attributed to the remarkable improvement in the
electronic conductivity of Bi2O2Se caused by Cl doping.

The Slack equation [36] can be used to calculate the lattice thermal conductivity κl :

κι = A·MΘ3δ

γ2Tn
2
3

(7)

The Slack model has been demonstrated to provide lattice thermal conductivity results
that agree well with experimental measurements and has been extensively used in the
calculation of lattice thermal conductivity for materials [49,65–67]. Here, A is a constant,
and the calculation formula is given by:

A = 2.43 ∗ 10−6

1− 0.514
γ + 0.228

γ2

(8)

In this equation, M represents the average atomic mass, δ3 is the volume of each
atom, γ is the Grüneisen parameter, Θ is the Debye temperature, and T is the absolute
temperature. Figure 5b shows the temperature-dependent behavior of the lattice thermal
conductivity κl . It is observed that the lattice thermal conductivity of both Bi2O2Se and
Bi2O2Se0.875Cl0.125 decreases with increasing temperature. For Bi2O2Se, the calculated lat-
tice thermal conductivity κl at 300 K is 1.68 W/mK, which agrees well with the experimental
data of κ = 1.8 W/mK and other calculated results of κ = 1.2 W/mK [51]. Furthermore,
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Cl doping reduces the lattice thermal conductivity of Bi2O2Se. For example, the calcu-
lated lattice thermal conductivity of Bi2O2Se0.875Cl0.125 at 300 K is 1.29 W/mK, which is
23.21% smaller than that of Bi2O2Se (1.68 W/mK). This is mainly due to the low elastic
constants of Bi2O2Se0.875Cl0.125. The reduced lattice thermal conductivity will be beneficial
for suppressing heat transfer and minimizing thermal energy loss.
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Combining the calculated electronic thermal conductivity κe and lattice thermal con-
ductivity κl into Equation (5), the thermal conductivity of Bi2O2Se before and after Cl
doping can be obtained, as depicted in Figure 5c. It is shown that Cl doping results in
an increase in the thermal conductivity of Bi2O2Se, due to a substantial increase in the
electronic thermal conductivity κe.

The ZT value of Bi2O2Se before and after Cl doping can be obtained by the following
formula [7]:

ZT =
S2σT

κ
(9)

as shown in Figure 5d. At 300 K, the calculated ZT value for Bi2O2Se is 0.04, which is in good
agreement with the reported values of 0.05 by Gao et al. [52] and 0.045 by Song et al. [22].
Furthermore, the ZT values of both Bi2O2Se and Bi2O2Se0.875Cl0.125 increase with increasing
temperature. However, the ZT value of Bi2O2Se0.875Cl0.125 is lower than that of Bi2O2Se
due to the introduction of Cl dopants. This is mainly due to the decrease in the Seebeck
coefficient caused by the introduction of Cl dopants. The presented results thus suggest
that Cl doping is not beneficial for improving the thermoelectric properties of Bi2O2Se.
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4. Conclusions

In summary, the effects of Cl doping on the structural, electronic, and thermoelectric
properties of Bi2O2Se are investigated by combining the DFT method and semi-classical
Boltzmann theory. The results indicate that Cl doping leads to a 0.76% volume expansion
of Bi2O2Se and a significant shift of the Fermi level into the conduction band, resulting in
metallic properties. Additionally, Cl doping can introduce extra electrons, resulting in a
higher electrical conductivity (σ), a lower absolute Seebeck coefficient (S), and a higher
power factor (PF). These findings suggest that Cl doping can optimize the thermoelectric
properties of Bi2O2Se. However, the introduction of Cl dopants in Bi2O2Se results in a
significant increase in the absolute value of the Seebeck coefficient, leading to a notable
decrease in its ZT value. In conclusion, Cl doping can affect the thermoelectric prop-
erties of Bi2O2Se significantly, providing insights for further related experimental and
theoretical studies.
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