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Abstract: In order to explore the casting technology of a high–strength aluminum alloy, the effects of
nickel on the solidified microstructure and tensile properties of a 7075 aluminum alloy were studied.
7075 aluminum alloys without nickel and with 0.6% and 1.2% nickel were prepared by a casting
method. The results showed that the increase of Ni content in the 7075 alloys increased the liquidus
temperatures, primary α (Al) grains were refined significantly, and the divorced eutectic structure
was gradually formed among α (Al) grains with the preformation of the Al3Ni phase. In comparison,
the 7075 alloy with 0.6% nickel content had less intergranular shrinkage porosity, and its elongation
and ultimate tensile strength was enhanced 45% and 105% higher than those of the as-cast 7075
aluminum alloy, respectively. When the Ni content was increased to 1.2%, the eutectic phases of
the alloy became much coarser compared to the other two alloys, and the mechanical properties
obviously reduced too.

Keywords: 7075 aluminum alloy; eutectic solidification; Al–Ni alloy; intergranular structure; me-
chanical property

1. Introduction

To achieve climate neutrality, it is urgent to reduce transport emissions and increasingly
develop lightweight technologies. Aluminum alloys are the best choice as a lightweight
material in terms of weight reduction effect and price [1]. It is well known that Al–Zn–Mg–
Cu alloys have high strength, excellent fracture toughness, and good corrosion resistance,
and they are widely used in aerospace areas [2–7]. However, Al–Zn–Mg–Cu alloys usually
show a high cast cracking tendency and poor mold-filling behavior [8,9]. Traditionally, these
alloys were used for manufacturing using plastic deformation methods, which caused high
manufacturing cost and long production cycle. In order to achieve low-cost manufacturing
of high-performance complex structural parts, many researchers tried to improve the
hot cracking resistance of these high-strength aluminum alloys. On the one hand, the
mechanical properties of traditionally cast aluminum alloys were enhanced by alloying
technologies [6,9]. On the other hand, high-strength alloys can also be manufactured by
special casting methods such as controlled diffusion solidification [10].

Alloying is an efficient method to improve the comprehensive properties of Al–Zn–
Mg–Cu alloys [11,12]. The addition of Zr and Sc to Al–Zn–Mg–Cu alloys can promote the
formation of equiaxed grains and coherent Al3(Zr,Sc) particles in solidification structure,
which led to improved mechanical properties [12–15] and a superior hydrogen embrittle-
ment resistance [16]. It was well known that both equiaxed grains and large eutectic amount
in solidification structure can reduce the pressure drop of the intergranular channel and
subsequently improve the intergranular feeding ability [17]. When the grain morphology
changed from developed dendrite to equiaxed in solidification structure [10,12], it caused a
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decrease in the dendrite coherency point (DCP) temperature and an improvement in inter-
granular feeding ability. The research on eutectic solidification of AA7068 aluminum alloys
showed that the residual liquid phase tended to attach to the Mg(ZnCuAl)2 phase to form
a lamellar eutectic structure [18], while both the inhibition of α(Al) secondary nucleation
and the promotion of divorced eutectic tended to reduce the hot cracking tendency of the
alloy. It was generally believed that eutectic composition solidifies had lower DCP temper-
ature, better heat crack resistance, and flow ability [19]. Therefore, some researchers added
small amounts of elements to control eutectic solidification behavior of the Al–Zn–Mg–Cu
alloy to enhance feeding ability. During the non-equilibrium solidification, the residual
liquid phase of nominally single-phase Al–Zn–Mg–Cu aluminum alloy in the last stage
of solidification formed eutectic phases [18]. Obviously, eutectic nucleation and growth
during solidification also affects the pressure drop of the intergranular feeding channel
in the solidified alloy. The addition of nickel in alloys can reduce the thermal expansion
coefficient of the alloy, improve the heat resistance, and eliminate the harmful effects of
impurities iron in aluminum alloys [20]. Usually, nickel element forms an Al–Al3Ni eu-
tectic phase in aluminum alloy [12,21], and the Al3Ni compound has low solid solubility
in the matrix and high thermal stability, which can prevent dislocation movement and
grain boundary slip and effectively improve the high temperature mechanical strength [22].
Previous studies showed that the addition of Ni to Al–Zn–Mg–Cu (7xxxx) alloy reduced
the intergranular shrinkage defects and the hot cracking tendency. A reasonable amount of
nickel addition in the Al–Zn–Mg–Cu alloy can also improve its strength, elongation, and
other properties comparatively [6,23]. However, tensile fracture of the alloy was mainly
composed of grain boundary cracks. It was analyzed that intergranular discontinuities may
be connected with the eutectic structure during solidification, but the interaction between
solidification microstructure and mechanical properties is still lacking.

In order to develop cast high strength alloys, the eutectic solidification behavior and
its effects on mechanical properties should be studied more. In this study, the influence
of nickel element on the solidification structure of a 7075 aluminum alloy was studied
first, then the non-equilibrium solidification behavior and solidification microstructural
evolution were discussed. Finally, the effects of nickel addition on the microstructure and
tensile strength of a 7075 aluminum alloy were described.

2. Experimental Materials and Methods

Due to a large solidification temperature range and high-strength properties, the
7075 alloy was chosen for this study. The raw materials for the casting process were
7075 aluminum alloy ingots and Al–20 wt% Ni master alloy. Based on previous research
results [6], casting samples of 7075 aluminum alloy without nickel and with 0.6 wt%
and 1.2 wt% nickel by weight percentage were prepared. The 7075 aluminum alloy with
additional 0.6% and 1.2 wt% nickel is abbreviated as 7075 Al–0.6 Ni and 7075 Al–1.2 Ni
hereafter. The three types of aluminum alloy samples were prepared by the same melt
casting processes. Table 1 shows the chemical composition of the three types of aluminum
alloys.

Table 1. Chemical composition of aluminum alloy samples (Wt%).

Alloy
Elements

Zn Mg Cu Cr Si Fe Ni Al

7075 Al 5.6 2.5 1.6 0.23 0.4 0.5 0 Bal.
7075 Al–0.6 Ni 5.32 2.37 1.54 0.22 0.38 0.47 0.6 Bal.
7075 Al–1.2 Ni 5.06 2.26 1.45 0.21 0.37 0.46 1.2 Bal.

These alloys ingots were produced by the following procedures. Firstly, 7075 alu-
minum ingots were melted in a graphite crucible at 760 ◦C by using a 3.5 KW electric
resistance furnace (SG-G10123, Tianjin Zhonghuan Electric Furnace Co., LTD, Tianjin,
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China). Secondly, the Al–20 wt% Ni master alloy was added into 7075 alloy melts contained
in the graphite crucible to achieve 7075 Al–0.6 Ni and 7075 Al–1.2 Ni alloys, and then the
alloy melt was heated to 780 ◦C. After 30 min holding time, the melt was refined at this
temperature by using hexachloroethane (C2Cl6). After that, the Al–5Ti–B alloy with 0.3%
mass ratio was added to the molten aluminum to refine grains while stirring thoroughly
and maintaining the temperature for 30 min to ensure the homogeneity of the composition.
Finally, the alloy melt was held at 735 ± 5 ◦C for 15 min, and then it was poured into a
cylindrical steel mold and a triangular steel mold preheated to 200 ◦C, respectively. The
cylindrical mold with dimensions of Φ40 mm × 60 mm was used for the investigation
of the solidification behavior, and the triangular mold together with a gating and feeder
system was used to produce triangular cast ingots for the preparation of tensile specimens.
The dimensions of the triangular cast ingot were 60 mm in length, 30 mm in height, and
25 mm in thickness.

In order to achieve the cooling curves during solidification of these alloys, a K-type
thermocouple (abbreviated as TC) was fixed in the center of the cylindrical mold cavity, as
shown in Figure 1. During solidification, temperature data were recorded every 100 ms
using high-speed data acquisition equipment, and the cooling curves were plotted in Origin
software. Important parameters in liquidus and eutectic nucleation regions were calculated
using the first derivative cooling curves. Samples used for metallographic preparation
were sectioned from the region surrounding the thermocouple tip for these cast billets.
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Figure 1. Dimensions of the steel mold used for the measurement of cooling curves.

Tensile test specimens were extracted from these cast ingots produced through the
triangular mold, and the gauge length, width, and thickness of the static tensile specimen
were 13 mm, 4 mm, 2.5 mm, respectively. According to ASTM E8/E8M [24], the tensile
properties of the cast alloys were conducted at a crosshead speed of 1 mm/min on a univer-
sal testing machine. Elongation of these specimens was obtained by fitting the specimen
back together after facture and measuring the change in length. The tensile tests were
carried out three times for each of these cast aluminum alloys. After the metallographic
samples were cut from the cast billets, these metallographic samples were ground, polished,
and etched in Keller solution (2.5% HNO3 + 1.5% HCL + 1% HF + 95% Distilled water).
The metallographic microstructures were observed by optical microscope (ZEISS Axioskop
40, ZEISS Group, Göttingen, Germany), and the primary phase size or the grain boundary
intersection of the solidified structure was measured by a line intercept method according
to ASTM E112-12 [25]. The detailed microstructures were detected by using a scanning
electron microscope (SEM) equipped with EDS (Hitachi TM4000plus, Hitachi High-Tech
Corporation, Tokyo, Japan) and an X-ray diffractometer (XRD, Empyrean, Malvern Panalyt-
ical, Almelo, The Netherlands). An electron probe microanalysis (EPMA, JXA-8530F plus,
JEOL Ltd., Tokyo, Japan) was used to analyze the element distribution of the different alloys.
In addition, PanPhaseDiagram, which is a phase diagram calculation module of Pandat
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software, was used to calculate the multicomponent phase equilibria and precipitation
sequence of these alloys.

3. Results
3.1. Microstructure

The optical microstructures of the as-cast alloys are shown in Figure 2, in which
the white primary α–Al phases were cellular dendrites, and microstructure in dark grey
contrast between primary grains was considered as intermetallic phases and eutectic phases.
The grain boundary intersection of the cast 7075 alloy was determined as 58 ± 4.1 µm.
Comparing with the solidification microstructure of the 7075 aluminum alloy (Figure 2a),
the primary grain size of the Ni–containing 7075 aluminum alloys decreased significantly
due to the addition of nickel, while the distribution of primary grains was more uniform.
Statistically, the grain boundary intersection of the 7075 Al–0.6 Ni alloy and the 7075 Al–1.2
Ni alloy was determined as 50 ± 6.2 µm and 44 ± 6.8 um, respectively. Once the mass
fraction of Ni increased from 0.6% to 1.2% (Figure 2b,c), more equiaxed primary grains
were also observed in the 7075 Al–1.2 Ni alloy (Figure 2c).
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Figure 2. Optical microstructure of the 7075 aluminum alloy with different Ni content, (a) 7075 Al,
(b) 7075 Al–0.6 Ni, (c) 7075 Al–1.2 Ni.

Figure 3 shows the XRD patterns obtained from these three alloys. In addition to
α–Al and MgZg2 in these three alloys, the Al3Ni compound phase was found in the Ni–
containing 7075 alloys due to the exothermic reaction between Al and added Ni in 7075
aluminum alloy. These results were consistent with the previous research [6,20], indicating
that the addition of Ni in the 7075 aluminum alloy did not cause changes in other phases in
the alloy. Based on the Al–Ni phase diagram, it has been known that several intermetallic
compounds (IMCs) including Al3Ni, Al3Ni2, Al4Ni3, AlNi, Al3Ni5, and AlNi3 can exist in
an Al–Ni system compound depending on the nickel content in this alloy, and the formation
of Al3Ni in these Ni–containing 7075 aluminum alloys can be attributed to a low Ni content
of 1.2% in the 7075 alloy.
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Figure 3. XRD analysis of as-cast 7075 aluminum alloys with different Ni contents.

Figure 4 shows the intergranular microstructure of these three alloys, showing eutectic
phases, discontinuous defects (marked by the white arrows), and a small amount of
shrinkage porosity (marked by white circles), mainly distributed among α–Al primary
grains. With the increase of nickel content in the 7075 aluminum alloy, the amount of
intergranular phases increased obviously. It was worth noting that some differences
including porosity and crack can be observed in the 7075 aluminum alloy, and that there
were more porosities at triple grain boundaries in the 7075 Al–1.2 Ni alloy than in the other
two alloys.
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Figure 4. SEM images showing the cast microstructure of three alloys, (a) 7075 Al, (b) 7075 Al–0.6 Ni,
(c) 7075 Al–1.2 Ni.

Table 2 shows the EDS results of the labeled regions in Figure 4. According to previous
research [6,18], a regular lamellar eutectic structure was formed in the 7075 Al alloy, which
consisted of alternate grey α–Al and bright MgZn2 (η phase) lamellae (Figure 5a). It has
been reported that Mg(Zn, Al, Cu)2 (σ phase) and Al2CuMg (S phase) are common in 7xxx
series aluminum alloys with low Cu: Mg ratio [26,27]. The EDS results shown in Table 2
indicate that the phase marked at B was S phase [24]. In addition, the EDS results shown in
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Table 2 indicate that the phase marked at C contained much higher Fe (10.63 wt%) than any
other areas, and Cu in the 7075 alloy chemically combined with Al and Fe to form tetragonal
Al7Cu2Fe constituent particles during solidification [28]. Therefore, Fe–containing phase
in those alloys may be Al7Cu2Fe intermetallic, and the intermetallic compound Al7Cu2Fe
mixed with Al3Ni in the Ni–containing 7075 aluminum alloys. The lamellar eutectic among
α–Al primary phases in the 7075 Al alloy was predominantly replaced by dispersed block
or striped coarser and blocked MgZn2, Al2CuMg, Al3Ni, and Al7Cu2Fe particles in the
Ni–containing 7075 Al alloys, which dispersed among grains and was regarded as divorced
eutectic phases (Figure 5b,c). With the increase of nickel content in the 7075 Al alloy, the
amounts of intergranular phases increased, but the amount of Al2CuMg phase did not
decrease significantly. The α–Al primary grain refining in the Ni–containing 7075 alloys
was related to the pinning effects, in which a large number of intergranular compounds at
grain boundaries hindered the movement of the grain boundaries.

Table 2. Chemical composition of the labeled regions in Figure 5, (wt%).

Point Zn Mg Cu Si Fe Ni Al

A 2.41 1.56 0.46 0 0 0 95.55
B 3.56 1.43 27.64 0.25 0.05 0 67.02
C 1.92 0.84 5.14 2.56 10.63 0 78.09
D 1.73 0.69 2.03 0.26 4.45 7.18 83.04
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In order to identify the characteristics of intergranular phases further, EPMA technol-
ogy was used to detect the distribution of alloy elements. The EPMA results of 7075 Al,
7075 Al–0.6 Ni, and 7075 Al–1.2 Ni alloys are shown in Figures 6–8, respectively, and the
following phenomena can be found: (1) Mg and Zn were mainly distributed inside the
α–Al primary grains; it was believed that most of Mg and Zn dissolved in Al Matrix; (2) Cu,
Fe, and other elements were mainly concentrated at the intergranular areas, and there
were much more Fe elements at the intergranular areas in the as-cast 7075 alloy (Figure 6);
(3) there was obvious Cu segregation to the grain boundaries with the dissolution of Mg,
which verified that Al2CuMg phases formed in these alloys [27]; (4) in the Ni–containing
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7075 aluminum alloys shown in Figures 7 and 8, the Ni element was also mainly segregated
at the primary grain boundaries, and it was close to the aggregation areas of the Fe element.
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Figure 9 shows the measured cooling curves of these three alloys and the calculated
first derivative curve obtained from the cooling curves. During primary phase precipitation,
a large amount of latent heat was released, which caused a rapid drop in temperature. In
the process of secondary phase precipitation, a small amount of latent heat was released,
thus a solid-state region occurred. Derivation curves allowed to identify the phase changes
of the alloys that happened during the solidification period. According to previous re-
search on solidification behavior [29–31], alloy solidification starts from the nucleation of
primary grains, and the nucleation temperature was determined as TN,α. The nucleation
temperatures, solidus temperatures, and eutectic reaction temperatures of the experimental
alloys are shown in Table 3. It can be seen that the nucleation temperature and eutectic
reaction temperature of the 7075 alloy increased with the increase of Ni content in the alloy.
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Figure 9. Cooling curve and its first derivative curve, with major points labeled for three alloys,
(a) 7075 Al, (b) 7075 Al–0.6 Ni, (c) 7075 Al–1.2 Ni.

Table 3. Initial nucleation temperatures and eutectic reaction peak temperatures of these three alloys,
(◦C).

Alloy TN,α, Nucleation
Temperature

Ts, Solidus
Temperature Eutectic Reaction

7075 Al 633 440 605
7075 Al–0.6 Ni 635 457 625
7075 Al–1.2 Ni 640 459 629

3.2. Mechanical Property

Figure 10 shows the ultimate tensile strength and elongation of 7075 Al, 7075 Al–0.6
Ni, and 7075 Al–1.2 Ni alloys at room temperature. The strength and elongation of the
as-cast 7075 alloy were determined as 144 MPa 0.95%, respectively. When the mass fraction
of Ni in the 7075 alloy was 0.6%, the ultimate strength and elongation of the 7075 Al–0.6 Ni
alloy increased to 209 MPa and 1.95%, respectively. When the mass fraction of Ni was 1.2%,
the ultimate tensile strength of the 7075 Al–1.2 Ni alloy decreased to 187 MPa, although the
elongation of the sample increased a little compared with that of the 7075 Al–0.6 Ni alloy.
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Figure 10. Tensile mechanical properties of as-cast alloys at room temperature (ultimate tensile
strength and elongation).

Figure 11 shows the fracture appearance of the studied alloys, and the overall fracture
surface was perpendicular to the tensile axis. The fracture surface of the 7075 Al alloy
presented intergranular shrinkage porosity and separated α(Al) grains, exhibiting brittle
intergranular failure. It should be noted that the microstructure of the studied alloys also
showed many intergranular shrinkage porosities and other discontinuities (Figure 4). In
contrast, a few separated α(Al) grains, some cleavage planes, and slight intergranular
shrinkage porosities can be observed on the fracture surface of the 7075 Al–0.6 Ni alloy,
which is believed is a mixed mode fracture. However, there were much more intergranular
shrinkage porosities and less cleavage planes in the 7075 Al–1.2 Ni alloy compared with
these in the 7075 Al–0.6 Ni alloy.
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4. Discussion

The results showed that the addition of nickel in 7075 aluminum alloy changed the
morphology of the primary phase and intergranular structure significantly, so that the
mechanical properties also changed greatly. The change of as-cast microstructure also
depended on the solidification behavior of the alloys.

4.1. Microstructure Characteristics of Studied Alloys

In the investigation, a commercial 7075 aluminum alloy was used, in which the Fe
element in the 7075 Al alloy mainly formed Al7Cu2Fe, while the Cu element in this alloy
mainly formed Al2CuMg. Compared with the 7075 aluminum alloy, only Al3Ni compound
was found in the Ni–containing 7075 alloys due to the low addition levels of nickel, which
is consistent with the reported research [21]. Al7Cu2Fe, Al2CuMg, andMgZn2 together
with Al3Ni formed as intergranular phases in 7075 Al–0.6 Ni and 7075 Al–1.2 Ni alloys.
Because of limited solubility of Ni in solid Al, Ni may form IMCs in aluminum alloys
even at its low contents, such as Al3Ni, Al3Ni2, etc. [32]. Furthermore, the Al–Al3Ni
eutectic structure can be formed in the aluminum nickel eutectic alloy [33]. According to
the microstructural results, when the Ni content in the 7075 alloy increased from 0.6% to
1.2%, the amount of Al3Ni intermetallic compounds increased, and its distribution among
primary grains became more intensive. According to existing research, the amount of
MgZn2 and Al2CuMg in Ni–containing 7075 alloys stayed constant [21].

Combining the microstructures shown in Figure 5 with the given element distribution
shown in Figures 6–8, it can be found that the Al2CuMg phase in the 7075 aluminum
alloy and the eutectic Al form the coupled eutectic structure with lamellar morphology,
and the Al7Cu2Fe phase was a large block. In the Ni–containing 7075 alloy, intermetallic
compounds (IMCs) Al7Cu2Fe and Al3Ni were in coarse ribbons, and Al2CuMg and MgZn2
were scattered among them to form an intergranular mixture, which was considered as a
kind of divorced eutectic [21].

The refined grains in all three alloys can be attributed to the following reasons. Firstly,
the Al–Ti–B master alloy was added in the melting process of these alloys, which promoted
the heterogeneous nucleation during solidification. Only cellular dendrites with relatively
little size can be observed even in the as-cast 7075 alloy. Secondly, the addition of Ni in the
7075 alloy decreased the grain size furthermore, and some equiaxed grains were found in
the Ni–containing 7075 alloys from Figure 2. It suggested that the solidification behavior in
Ni–containing 7075 alloys changed. According to the statistical results in Table 2, the initial
solidification temperatures of Ni–containing alloys increased several degrees Celsius owing
to the increase Ni content in 7075 alloys. The higher liquidus temperature for solidified
alloy means greater undercooling during solidification process, which promoted nucleation.
Thirdly, the growth behavior can be affected by the diffusion of solute elements in alloys. It
can be seen from Figures 6–8 that the segregation content of intergranular Cu of the Ni–
containing 7075 Al alloy was much higher than that of the 7075 Al alloy, and the gradient
distribution of the Cu element from the intragranular to grain boundary was more obvious.
The grain boundary segregation of Cu was similar to prior studies [34,35]; it was reported
that Cu in a 7075 aluminum alloy resulted in an ordered parallel array in substitutional
core sites [34]. In fact, there was a strong correlation among the concentrations of Mg, Zn,
and Cu at the grain boundary for an Al–Zn–Mg–Cu alloy [35]. Considering the additional
Ni in the 7075 alloy, it was analyzed that the activities of Cu and other alloy elements in
the melt of the 7075 aluminum alloy decreased due to the interaction of nickel with other
alloying elements, resulting in a decrease in the diffusion coefficient of alloy elements in
the 7075 aluminum alloy melt. As a result, the grain growth process controlled by element
diffusion slowed down.

Compared with the microstructure of convenient cast aluminum alloys, the as-cast
7075 alloy was composed of a large number of α–Al solid solutions surrounded by a small
amount of eutectic structures. It is well known that solidification behavior seriously affects
internal crack formation in the liquid–solid phase region [6]. According to the experimental
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results, the additional 0.6% Ni in the 7075 Al alloy decreased intergranular discontinuities
and shrinkage porosity from Figure 4, which may be partly attributed to the fine and
equiaxed grains preformed prior to the eutectic solidification. Fine-equiaxed grains in the
solidification process helped to decrease DCP temperature and enhanced the feeding ability.
Meanwhile, the added Ni element in the 7075 alloy existed as an intergranular Al3Ni phase,
and it was an allotropic eutectic phase formed after the primary phase grew continuously.
What is more, the Al3Ni phase increased with the increase of Ni content, and it was formed
as a eutectic phase in the final stage of solidification. Hence, the addition of Ni element
was conducive to the release of stress and the reduction of intergranular discontinuities.

4.2. Effect of Ni Element on Solidification Behavior of Alloy

Figure 12 shows the results of thermodynamic calculations. The phases in the experi-
mental alloys such as α(Al), Al–Cu–Mg phase, Fe–rich IMCs, MgZn2, and Al3Ni had an
obvious precipitation sequence, in which Fe–rich IMCs was firstly formed at the first stage
of eutectic solidification, and Al–Cu–Mg and MgZn2 phases formed at the last stage of the
whole solidification. From Figure 12, the precipitation temperature of Al13Fe4 was higher
than that of Al3Ni in 7075 Al–0.6 Ni alloy, while Al3Ni was formed in the 7075 Al–1.2 Ni
alloy followed by the formation of α(Al) primary grains. The metastable phase formation
has higher thermodynamic energy than the stable phase [36–38], and Al7Cu2Fe preferred
to form by Cu substitution of Al in Fe13Al4 with increasing Cu concentration [39]. Based on
the thermodynamic calculations, Al7Cu2Fe can be regarded as a kind of metastable Fe–rich
phase, which formed prior to the Fe13Al4 in non-equilibrium solidification. Al2CuMg may
have a similar solidification sequence with Al3CuMg in this alloy. In the eutectic formation
temperature range, the calculated eutectic temperature of the 7075 Al–1.2 Ni alloy was
higher by 5 ◦C than that of the 7075 Al–0.6 Ni alloy, which indicated that the increase of
Ni content in the 7075 alloy led to the increase of the eutectic temperature. Accordingly,
the solidification sequence of the as-cast 7075 in this study was determined as Liq→ Liq
+ α–Al→ Liq + α–Al + Al7Cu2Fe → α–Al + Al2CuMg + MgZn2, and the solidification
sequence of the as-cast Ni–containing 7075 alloys was determined as Liq→ Liq + α–Al
→ L + α–Al + Al7Cu2Fe→ L + α–Al + Al7Cu2Fe + Al3Ni→ α–Al + Al7Cu2Fe + Al3Ni
Al2CuMg + MgZn2.
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The development of microstructure during alloy casting processes can be understood
by nucleation and dendritic growth in cooling alloy melts. Compared with eutectic growth,
the formation and early growth of eutectic nuclei are very difficult to observe [18]. Eutectic
nucleation mainly depends on solidification conditions and alloy composition [40], which
is mainly manifested in three modes [41]: (1) Nucleation by adhering to the tip of primary
dendrite, (2) independent nucleation between primary dendrites, (3) nucleation in reverse
thermal gradient direction.

The coupled lamellar eutectic phases in the as-cast 7075 aluminum alloy were caused
by the growth behavior of the secondary α(Al) phase. According to the adsorption process
at the liquid/substrate interface of heterogeneous nucleation [18], a rough interface at the
atomic level was formed between the α(Al) and liquid phases during solidification. The
rough interface formed a small plane through the adsorption of Al atoms, and then the
Al2CuMg phase grew up through the spiral dislocation on the surface of Al phase. It can
also be found from the cooling curve in Figure 9a that multiple peaks and troughs in the
eutectic solidification stage were in response to the continuous nucleation and growth of
coupled eutectic phases.

However, Ni–containing 7075 aluminum alloys consisted of a typical divorced eutectic
structure. These intergranular phases in this investigation were identified as Al7Cu2Fe,
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Al3Ni, MgZn2, and Al2CuMg, and Fe–rich and Ni–rich IMCs such as Al7Cu2Fe and Al3Ni
were formed from residual liquids with high solute concentration due to the low solid
solubility of Fe and Ni in Al. Combined with elements distribution of intergranular phases
in Figures 6–8, it was suggested that the Al7Cu2Fe and Al3Ni were firstly nucleated in the
center of residual liquids and grew towards each other. Al2CuMg was located between the
primary phase and these two IMCs in this study. Combined with the thermodynamically
calculated results shown in Figure 12, it was considered that Al2CuMg attached to Al7Cu2Fe
or Al3Ni to nucleate, and its growth was controlled by the diffusion behavior of alloy
elements. It can be seen from Figure 9b,c, that several troughs of cooling curves were
related to the multiple IMCs phases evolution during solidification, which indicated that
the solidification path changed when nickel was added in 7075 alloy.

4.3. Effect of Nickel on Mechanical Properties of As-Cast 7075 Alloy

The mechanical properties of the experimental alloys depended on the grain size,
the morphology, and distribution of strengthening phases, as well as the characteristics
of defects. Compared with 7075 aluminum alloy, Ni–containing 7075 aluminum alloys
exhibited improved mechanical properties. Although the grain size of Ni–containing
7075 aluminum alloys decreased with the increase of nickel content, it did not achieve
continuously increasing tensile strength and elongation when nickel content in the 7075
aluminum alloy was added up to 1.2%. The Al3Ni phase had an extremely high tensile
strength (216 MPa) and Young’s modulus (116–152 GPa) [42], and these Al3Ni particles
were located at the intergranular region in nickel-containing 7075 alloys. It can be deduced
that these Al3Ni particles inhibited the movement of dislocations to a large extent so that
Ni–containing 7075 aluminum alloys achieved high strength.

The intergranular structure in the as-cast 7075 Al alloy consisted of coupled eutectic
phases, while the intergranular structure in as-cast Ni–containing 7075 aluminum alloys
was made up of IMCs like Al7Cu2Fe, Al3Ni, and Al2CuMg. Owing to the differences in the
amount and the formation mechanisms of intergranular phases, the as-cast 7075 aluminum
alloy had more internal porosities than those in as-cast Ni–containing 7075 aluminum
alloys. The higher the nickel content in the 7075 alloy was, the higher the amount that the
intergranular Al3Ni phase had. Although the Al3Ni phase had a negative impact on the
elongation, the decreased defects and refined grains were helpful for the increasing of the
elongation. When the nickel content in the 7075 alloy increased from 0 to 0.6 wt%, both the
elongation and strength were improved. While the nickel content in the 7075 alloy changed
from 0.6 wt% to 1.2 wt%, the strength slightly decreased while the elongation basically
remained unchanged. This may be attributed to the coarsening and aggregation of the
strengthening Al3Ni phase (as shown in Figure 4c).

From the fracture morphology in Figure 8, it can be seen that there were many inter-
granular shrinkages in the 7075 Al–1.2 Ni aluminum alloy. According to the analysis of the
intergranular shrinkage area of the fracture surface, there was also a positive correlation
between the tensile strength of the alloy sample and the size of the intergranular shrinkage
porosity area. The 7075 Al–0.6 Ni aluminum alloy had the highest strength among these
three alloys, and it had the least intergranular shrinkages.

The tensile strength model of materials with holes can be expressed as follows:

σ = σ0(1− p)k (1)

where p is the porosity fraction, k is the stress concentration factor, and σ0 is the tensile
strength at zero porosity, which depends on the mechanical properties of matrix and
strengthening phase.

If the k value of spherical porosity is 1, the tensile strength of the material is inversely
proportional to the porosity content. It should be noted that even if the open porosity on
fracture surface for the 7075 Al–1.2 Ni aluminum alloy increased significantly, its mechani-
cal properties only decreased slightly. It was suggested that other microstructural factors
affected the mechanical properties based on Equation (1). For Ni–containing 7075 alu-
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minum alloys, the intergranular bonding strength between primary grains was enhanced
by a eutectic mixture such as Al3Ni, which improved the mechanical performance of the
alloy matrix significantly. On the contrary, the continuous distribution of coarsening inter-
granular phases along the grain boundaries of the 7075 Al–1.2 Ni alloy also determined the
intergranular mechanic behavior between primary phases because the fracture happened
near the grain boundaries due to the stress concentration. It was analyzed that both the
intergranular shrinkage defects and the bonding strength between primary grains affected
the tensile properties of the experimental alloys.

5. Conclusions

The solidification microstructure of the 7075 alloy without and with different Ni
contents and its influence on tensile properties were studied comparatively.

(1) The Ni addition in the 7075 alloy can refine the solidification grains and even cause
equiaxed primary grains in the solidification, which enhanced the intergranular
feeding ability. Al3Ni formed as an intergranular phase after the solidification of
primary α–Al grains, which increased the eutectic amount. Both the refined α–Al
grains and increased eutectic phase led to the decrease of intergranular porosities.

(2) The 7075 Al alloy solidified as a regular lamellar eutectic structure, while the inter-
granular phases in the 7075 Al–0.6 Ni alloy and the 7075 Al–1.2 Ni alloy consisted of
multiple intermetallic compounds including Al3Ni, Al7Cu2Fe, MgZn2, and Al3CuMg.
Al3Ni solidified followed by the solidification of primary α–Al and Al7Cu2Fe. Fi-
nally, the Al2CuMg phase and MgZn2 phase were sequentially precipitated from the
residual liquid.

(3) The as-cast Ni–containing 7075 alloys showed enhanced tensile strength and elon-
gation compared with the as-cast 7075 alloy. In addition, 0.6% Ni addition in the
7075 alloy can get optimal mechanical properties. Too much Ni addition produced
coarsening Al3Ni phase and led to premature brittle fracture.
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