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Abstract: The conversion of hydrogen to power via combined external reforming of liquid alcohol and
solid oxide fuel cell (SOFC) technology is an effective approach to address future energy challenges.
In this study, an La0.8Ba0.1Mn0.8Ni0.1Cu0.1O3 (LBMNCu) perovskite nanofiber with high porosity
was synthesized with a modified electrostatic spinning method, which acted as an efficient catalyst
for steam reforming of liquid alcohols (methanol and ethanol). After reduction, fine metallic Ni-Cu
was uniformly distributed throughout the perovskite nanofiber surface. The obtained composite
displayed a methanol conversion above 99.9% at 450 ◦C and an ethanol conversion above 99% at
600 ◦C, which was highly superior to the common Ni-Cu/Al2O3 catalyst. The catalytic performance
of our assembled catalysts also remained stable in methanol and ethanol atmospheres for 50 h and no
coking was detected. Furthermore, when the reformed gas was fed into a Y0.08Zr0.92O2 (YSZ)-based
SOFC system, the open circuit voltage remained around 1.1 V at 700 ◦C for 50 h accordingly, without
coking, and the voltage remained virtually unchanged at 0.7 V for 50 h at 700 ◦C and 400 mA cm−2

during galvanostatic discharge mode, indicating that using LBMNCu nanofiber as a catalyst for
hydrogen production and utilization is an efficient strategy. The interaction of the in situ exsolved
metallic nanoparticles and nanofibrous perovskite could also be a promising approach for designing
a highly active catalyst for H2 generation.

Keywords: perovskite nanofiber; metallic Ni-Cu nanoparticles; external steam reforming; methanol
and ethanol; solid oxide fuel cells

1. Introduction

Hydrogen is expected to become the main source of environmentally friendly clean
fuels and energy storage medium in the future. It can be effectively converted into electric
energy [1] via fuel cells with low greenhouse gas emissions. Due to the rapid development
of fuel cell technology, the development and demand of new methods to produce hydrogen
are increasing rapidly. Steam reforming of hydrocarbons, especially CH4, is a general
strategy to produce hydrogen [2], but the high temperature conditions and high energy
consumption make it a less than ideal choice. Methanol steam reforming (MSR) and
ethanol steam reforming (ESR) can yield a 75% concentration of hydrogen as produced gas
(Equations (1) and (2)), accompanied with the side reactions (Equations (3) and (4)), which
involve CO generation under the effect of various catalysts and reaction conditions [3,4].

CH3OH(g) + H2O(g)→ 3H2 + CO2 (1)

C2H5OH(g) + 3H2O(g)→ 6H2 + 2CO2 (2)

H2 + CO2 → CO + H2O(g) (3)
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CH3OH(g)→ 2H2 + CO (4)

Here, methanol and ethanol can be considered as hydrogen carriers and hydrogen
would be produced when using it. Based on the convenient transportation of liquid alcohols,
MSR and ESR can provide a new mode of realizing hydrogen production and utilization [5].
Considering that solid oxide fuel cells (SOFC) operate at high temperatures (above 600 ◦C)
and the non-precious Ni-based anode displays better resistance to CO [6,7], the conversion
of hydrogen to power via combination of steam reforming and SOFC technology is an
effective and promising approach to address future energy challenges.

However, ethanol decomposition and dehydrogenation would also produce carbon
deposition on the surface of catalysts, which challenges the catalytic performance. Ideally,
the catalyst should be highly active for H2 production with excellent stability.

Precious metals (Pt, Rh, etc.) are usually loaded on metal oxide substrates, such as
Al2O3, SiO2, CeO2 and ZrO2, and are used as catalysts for ESR, showing good H2 selectivity
and high coking resistance [8–10]. Considering the cost, non-precious metals such as Ni, Cu,
Co and Fe are usually preferred as active elements. Among them, the Cu-based catalysts
have been widely studied for MSR because of their high activity and selectivity. Ni is also
widely used and shows high catalytic activity in C-C and O-H bond breaking, promoting
hydrogen formation by H atoms and enhancing selectivity [11,12]. However, Cu would
suffer deactivation due to sintering and Ni because of carbon deposition.

Perovskite oxide is a kind of novel inorganic non-metallic material with unique physi-
cal and chemical properties. Many studies have found that ABO3-type perovskite oxide
has the advantages of controllable structure, good thermal stability, high catalytic efficiency
and low price, and has been widely used in reforming reactions [13–15]. It can be used as a
precursor to assemble fine metallic nanoparticles separated on the surface of the perovskite
substrate, with stronger metal support interaction and more satisfactory anti-sintering ability
than the impregnation method, which is also called in situ exsolution technology [16–18]. In
addition, the A-site-deficient perovskites (A/B < 1) employed could promote B-site metallic
element exsolution [19,20], as the A-site deficiency provides a driving force for reduction of
the doped metal, which is shown in Equation (5):

A1−αBO3−δ → (1− α)ABO3−γ + αB (5)

The perovskite oxide precursor is commonly prepared by a traditional powder synthe-
sis method such as sol-gel and solid-reaction process and displays a relatively lower specific
surface area, which limits the amount of active site and catalytic performance, as well as the
application. Recently, more and more researchers have paid attention to the morphologic
design to further improve the catalytic performance of perovskite catalysts through the
modification of pore-size distribution, surface area and microstructure [21,22]. Among
these methods, a facile electrospinning method has been proven to produce catalysts with
an unusually porous nanotube structure [23,24].

In order to produce bi-metallic nanoparticles supported on a porous perovskite oxide
substrate to serve as a highly efficient catalyst for the MSR/ESR, an electrostatic spinning
method was introduced to improve the porous structure and surface area of the traditional
perovskite oxides, thus further increasing the number of active sites and enhancing catalytic
performance. The A-site deficiency was expected to promote the exsolution of the metallic
Ni-Cu after reduction on the substrate of the LBMNCu.

In this case, a La0.8Ba0.1Mn0.8Ni0.1Cu0.1O3 (LBMNCu) perovskite nanofiber with high
porosity was synthesized with a modified electrostatic spinning method, which acted as an
efficient catalyst for steam reforming of methanol and ethanol for the first time. To verify
the advantage of the assembled catalyst, the LBMNCu perovskite powder as well as the
general reforming catalyst, Ni-Cu/Al2O3, were also prepared and the catalytic performance
was also investigated for comparison. For evaluating the practical application of external
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reforming, the reformed gas was fed into SOFCs directly and the voltage was recorded
simultaneously under a galvanostatic discharge mode.

2. Materials and Methods
2.1. Materials Preparation

The LBMNCu fibers were synthesized via electrospinning method, in which La(NO3)3·6H2O,
Ba(NO3)2, Mn(NO3)2, Ni(NO3)2·6H2O and Cu(NO3)2·H2O with a La/Ba/Mn/Ni/Cu mo-
lar ratio of 8:1:8:1:1 mixed with polyvinylpyrrolidone (PVP) were all dissolved into N, N-
dimethylformamide (DMF) and the resulting solution was fed into a 20 mL plastic syringe
equipped with a 22-gauge stainless steel nozzle on the spinning instrument. The operating
voltage was set as 20 kV and the distance between the collector and the needle tip was
20 cm. The collected electrospun nanofibers were subsequently calcined at 700 ◦C for
3 h in air to obtain the LBMNCu nanotubes. LBMNCu powders were also prepared by
an optimized sol-gel technique. In a typical process, La(NO3)3·6H2O, Mn(NO3)2·4H2O,
Ba(NO3)2, Ni(CH3COO)2·4H2O and Cu(NO3)2·H2O were totally dissolved into deionized
water. Subsequently, citric acid was added as the complexing agent with a molar ratio
1.5 times that of total metal cations, and ammonia aqueous solution was added to adjust
the pH value to 8. The aqueous solution was stirred at 80 ◦C until a sticky gel was formed,
and then the obtained gel was dried in an oven at 200 ◦C. Subsequently, the obtained
powder was ground and calcined at 1000 ◦C for 3 h to form LBMNCu nanoparticles. To
understand Ni exsolution in LBMNCu in reducing atmosphere, the prepared LBMNCu
nanoparticles and nanofibers were reduced in a 10% H2-N2 stream at 600 ◦C for 3 h. The Ni-
Cu/Al2O3 was prepared by submerging g-Al2O3 powder into an aqueous Ni(NO3)2·6H2O
and Cu(NO3)2·H2O solution with equal metal ion ratio under stirring at 80 ◦C to evaporate
water. The dried powder was heated subsequently at 400 ◦C for 3 h, and then reduced in a
10% H2-N2 stream at 300 ◦C for 2 h. The total metal loading on the g-Al2O3 powder was
20 wt.% for all combinations.

2.2. Characterization

The X-ray diffractometer (D8/A8 Advance, Bruker AXS, Beijing, China) was used for
physical phase analysis of the material with a Cu kα radiation (1.5405 Å) with a scanning
angle range of 20–80◦ and a scanning speed of 5◦ min−1. The porous structure of the
catalyst was characterized by the N2 adsorption/desorption (BET) method using an ASAP
2460 micropore (Micromeritics, Shanghai, China) analyzer. Prior to characterization, the
samples were degassed under vacuum at 200 ◦C for 10 h. A field emission scanning electron
microscope (FE-SEM, Gemini 300, ZEISS, Oberkochen, Germany) was used to observe the
microstructure of the powder and bulk materials, including surface morphology, exsolved
nanoparticles and carbon deposition of the prepared, reduced and post-test materials as
well as the morphology of the fabricated cells and post-test cells. After catalytic testing,
the material was examined by a Raman spectrometer (XploRA, Horiba JobinYvon, Paris,
France) to determine the presence of carbon.

2.3. Catalytic Test

The catalytic activity of steam methanol/ethanol reforming was evaluated using a
0.5 g catalyst in a fixed bed quartz tube reactor. Prior to each test, the catalyst was reduced
in situ at 10%H2/N2 flow at 600 ◦C, the methanol/ethanol solution was added to the
evaporator through a liquid injection pump, and then the gas reactant was added to the
catalytic reactor. The pipe between the steam generator and the quartz reactor is wrapped
with tropical zones to ensure that the methanol water vapor does not condense. For all
catalyst experiments in this study, we set the water/methanol mole ratio (W/M) to 1 or 1.2,
the flow rate to 4 mL/h, water/ethanol (W/E) to 3 or 3.5 using a precise injection pump.
The unreacted condensable species were collected in an ice bath condenser. An online gas
chromatograph equipped with a thermal conductivity detector (TCD) and TDX-01 column,
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and a flame ionization detector (FID) and Porapak-Q column was used for analysis of the
final products including H2, CO, and CO2 and unreacted alcohols.

2.4. SOFC Test

The anode-supported cell was prepared by casting strip screen printing and sintering
process. Generally, raw powder mixture containing NiO (Inco) and Y0.08Zr0.92O2 (YSZ,
TZ-8YS, Tosoh, Shunan, Japan) at a weight ratio of 57:43, was ball-milled for 24 h in a
toluene/ethanol mixture solvent, with fish oil as dispersant and corn starch as well-forming
agent. The slurry was cast into sheets using a tape casting machine to obtain a dry sheet
(1.4 mm thick) as anode support, then printed YSZ electrolyte on the surface screen and
sintering in 1390 ◦C of air for 4 h. To prepare the cathode, the La0.6Sr0.4Co0.2Fe0.8O3−δ
(LSCF)-YSZ (70:30) slurry was printed on the surface of the sintered YSZ electrolyte and
sintering in 900 ◦C of air for 3 h to complete the manufacture of the anode support cell.

For electrochemical performance measurement, the four-electrode method was used
to test the performance of a single cell to effectively eliminate the influence of the ohm
resistance of the collector wire, in which two Pt lines are connected to the positive and
negative extremes. After assembly and sealing, H2 was fed into the cell and the NiO-YSZ
anode was reduced into Ni-YSZ. Then, the reformate gas through methanol and ethanol
steam reforming under the same conditions of catalytic tests was supplied to the Ni-YSZ
anode, with a flow rate of 20 mL min−1, while the LSCF-YSZ cathode was exposed to the
ambient air. The open-circuit voltage was measured using an electrochemical test system
at 700 ◦C. The performance stability was evaluated at 400 mA cm−2 and 700 ◦C with the
reformate gas obtained by methanol steam reforming.

3. Results
3.1. Materials Characteristics

As shown in Figure 1a, both LBMNCu materials displayed a single perovskite phase
like that of LaMnO3 (PDF No. 35-1480) with no extra phase, indicating Ni and Cu elements
were successfully inserted into the perovskite lattice. After reduction, the sample consisted
of a primary phase of perovskite and a minor metallic phase at the peak around 44.5◦

and 52◦ corresponded to Ni-Cu alloy (PDF No. 65-7246), suggesting that metallic Ni-Cu
particles were exsolved during reduction. The exsolution reaction for LBMNCu during
reduction can be expressed as:

La0.8Ba0.1Mn0.8Ni0.1Cu0.1O3 + xH2 = La0.8Ba0.1Mn0.8Ni0.1−x/2Cu0.1−x/2O3−x + x/2NiCu + xH2O (6)

where, x also represented the deficiency of O in the perovskite lattice. The maintenance of
the perovskite structure also indicated that LBMNCu displayed good structural stability in
the reducing atmosphere.

The corresponding specific surface area of the LBMNCu nanofibers (NFs) is 26 m2 g−1,
larger than 11 m2 g−1 of the LBMNCu nanoparticles (NPs) (Figure 1b), indicating the
LBMNCu NFs possess a larger amount of active sites.

The LBMNCu materials via electrospinning method present the special morphology
with characteristics of wrinkle-like nanofibers. Abundant hierarchical pores were exposed
(Figure 2) due to the released gases from the decomposition and evaporation of PVP during
the calcination process. Also, the wrinkled-like surface of nanofibers was changed to
one consisting of interconnected particles, due to the exsolution of metallic nanoparticles
after reduction, and the porous structures can clearly be observed. The special nanofiber
structure could facilitate the adsorption of reactant and catalyze the formation and de-
composition of H2O. And the LBMNCu-NPs have a smooth surface without any impurity
particles. After reduction, numerous metallic Ni-Cu NPs are observed, which are uniformly
distributed throughout the reduced LBMNCu perovskite NF (R-LBMNCu-NF) surface. Fine
metallic Ni-Cu NPs are also observed on the surface of the reduced LBMNCu perovskite NPs
(R-LBMNCu-NPs), with an average size around 50 nm and uniform distribution, further
proving the successful exsolution of Ni-Cu.
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3.2. MSR Test

When acting as a catalyst for MSR, the R-LBMNCu-NF catalysts, which were pre-reduced
for 3 h, showed excellent activity in a methanol steam reforming test and the conversion
increased with the increase of a water/methanol molar ratio (W/M) (Figure S1). Under the
condition of 350 ◦C and 1.2 W/M ratio, the methanol conversion of R-LBMNCu-NFs was
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above 80%, and the conversion was close to 90% at the 400 ◦C. When the temperature
reached 450 ◦C, the reaction was nearly complete (Figure 3a). The methanol conver-
sion of R-LBMNCu-NPs was lower than that of R-LBMNCu-NFs and better than that of
Ni-Cu/Al2O3 under the same condition. Moreover, the CO concentration in the products
for R-LBMNCu-NF catalysts was far less than that of the other two catalysts (Figure S2).
According to the exhaust components analysis in the catalytic test, we can say the formation
of CO was inhibited in our catalytic system and the concentration of CO in products was
far below 0.01% at 450 ◦C, which suggested that the presence of Cu in the catalyst could
effectively accelerate the water–gas shift reaction and suppress CO production.
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Figure 3. (a) The profiles of CH3OH conversion of R-LBMNCu-NF, R-LBMNCu-NF and Ni-Cu/Al2O3

catalysts as a function of the reforming temperature with 1.2 W/M ratio. (b) CH3OH conversion and
CO molar concentration of R-LBMNCu-NF catalyst vs. time on stream for MSR reaction at 450 ◦C
with a W/M ratio of 1.2.

The long-term stability of the R-LBMNCu-NF catalyst was tested at 450 ◦C with a W/M
of 1.2. Similarly, the conversion rate of methanol stabilized above 99.9% and the CO concen-
tration far below 0.01% within 50 h (Figure 3b). Meanwhile, the R-LBMNCu-NP catalyst
displayed a degradation rate of 0.13% h−1 at 450 ◦C (from 92.4% to 85.9%) (Figure S3) and
Ni-Cu/Al2O3 displayed a sharp decay rate of 0.46% h−1 (from 88% to 64.8%) (Figure S4).
The slight attenuation of NPs and the highly stable catalytic properties of NFs indicate
that the exsolution of metal nanoparticles is a good choice for MSR and R-LBMNCu-NF
catalysts were highly efficient and suitable for methanol reforming for hydrogen production
and further applications in solid oxide fuel cells.

3.3. ESR Test

For the R-LBMNCu-NF catalyst, the conversion of ethanol increased with the increase
of temperature and a water/ethanol molar ratio (W/E) (Figure S5) and reached around
100% conversion of ethanol at 600 ◦C and W/E of 3.5 (Figure 4a). The R-LBMNCu-NP
catalyst displayed a slightly lower conversion of 95% at 600 ◦C, which was also superior
to the Ni-Cu/Al2O3 catalyst (Figure 4a). Moreover, the CO concentration in the products
for R-LBMNCu-NF catalysts was far less than that of the other two catalysts (Figure S6),
demonstrating that the presence of Cu in the catalyst could effectively suppress CO pro-
duction during ESR and the optimum performance of R-LBMNCu-NF catalysts. It is noted
that the W/E ratio did not considerably affect the amount of CO in the reformate gas,
which was below 6% at 600 ◦C, suggesting that our catalytic system favors CO2 formation
(Figure S7).
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In a long-term test for the R-LBMNCu-NF catalyst, the conversion of ethanol reached
95% at 600 ◦C initially with a W/E ratio of 3 and then decreased gradually to 90% within
24 h, meanwhile the CO concentration slightly increased (Figure S8), which was possibly
caused by carbon deposition, suggesting that more water needs to be added to maintain
durability. At a W/E ratio of 3.5, ethanol conversion was maintained stably above 99.8%
and CO concentration in the reformate gas below 10% for 50 h (Figure 4b). The highly stable
catalytic performance of NFs further indicated that the exsolution of metallic nanoparticles
was a good choice for ESR and R-LBMNCu-NF catalysts were highly efficient and suitable
for methanol reforming for hydrogen production and further applications in solid oxide
fuel cells.

3.4. Application

After the durability tests, the catalyst was examined and analyzed by Raman spec-
trometer, which is shown in Figure 5a. It was reported that the Raman peaks at 1350 cm−1

and 1580 cm−1 were related to typical carbon species (disordered carbon and graphitic
carbon, respectively) [25]. After testing with methanol at 450 ◦C for 50 h with a 1.2 W/M
ratio and ethanol at 600 ◦C with a W/E ratio of 3.5 for 50 h, no carbon peaks were observed
by Raman spectrometry in the spent R-LBMNCu-NF catalyst, which resulted in a stable
reforming performance. The microstructure of the R-LBMNCu-NF catalyst after MSR and
ESR testing remained similar to the reduced ones (Figures 2c and 5b), without carbon
deposition and obvious sintering, which also explained the catalytic stability.

After the above analysis, no carbon deposition was found for R-LBMNCu-NFs, which
showed a good ability to resist carbon deposition and also indicated the CO formation was
suppressed in the R-LBMNCu-NF system, so as to ensure the stability of reforming efficiency.

The cross-sectional morphology of the cathode, electrolyte and anode of the Ni–
YSZ//YSZ//LSCF-YSZ SOFC single cell is shown in Figure 6a. The whole cell exhibited
a distinct three layer structure and the LSCF-YSZ cathode was porous, with a thickness
of about 25 m. The cathode was tightly connected to the YSZ electrolyte layer, and the
thickness of YSZ electrolyte layer was about 10 µm, with good densification and no con-
nected pores after sintering in air at 1390 ◦C for 4 h. The dense electrolyte blocks the contact
between the fuel gas of the anode and the air of the cathode, ensuring the normal open
circuit voltage. The Ni-YSZ anode had a porous structure, ensuring the transmission of
fuel gas.
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the Ni-YSZ anode exposed to reformed gas for 50 h. (d) Time-dependent cell voltage at 400 mA cm−2

with reformate gas obtained by methanol steam reforming at 700 ◦C.
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Subsequently, the reformate gas through methanol and ethanol steam reforming under
the same conditions of catalytic tests was fed in sequence into the anode of a single cell,
at a flow rate of 20 mL min−1 for power generation at 700 ◦C. As shown in Figure 6a, the
open-circuit voltage remained at a level of 1.1 V for 50 h without noticeable degradation
(Figure 6b), and no carbon deposition or structure destruction was detected in the anode
after external MSR or ESR (Figure 6c), demonstrating that the reformate gas via external
steam reforming could not influence the microstructure and performance of SOFCs. The
cells were also subjected to durability evaluation at galvanostatic discharge mode with
the reformate gas obtained by methanol steam reforming. The voltage remained 0.7 V for
50 h (Figure 6d) at 700 ◦C and 400 mA cm−2, which suggested the reformate gas could be
considered as an ideal fuel for SOFCs to generate electric power.

4. Conclusions

In summary, a novel metal–ceramic composite catalyst with exsolved Ni dispersed on
the perovskite substrate was introduced for MSR and ESR. The electrospinning method
significantly increased the specific surface area of the catalysts and improved the catalytic
performance. Ni nanoparticles can be exsolved from the substrate during the reduction in
H2 at 600 ◦C for 3 h. The obtained R-LBMNCu-NF catalyst displayed a methanol conversion
rate near 100% when the temperature reached 450 ◦C at a 1.2 W/M ratio, and the conversion
of ethanol reached around 100% at 600 ◦C with a W/E ratio of 3.5, which was superior to
the general reforming catalyst Ni/Al2O3. In addition, during an electrochemical test, the
open-circuit voltage of the single cell fueled by the reformate gas of MSR and ESR remained
stable for up to 50 h without degradation and coking. In addition, the voltage remained at
0.7 V constantly for 50 h at 700 ◦C and 400 mA cm−2 during galvanostatic discharge mode.
Thus, the reformate gas via the external steam reforming of alcohols can be considered as
an effective fuel for SOFC power generation.
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