Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.F.; Lam, K.H.; Zheng, H.R.; Qiu, W.B.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Schultheiß, J.; Picht, G.; Wang, J.; Genenko, Y.A.; Chen, L.Q.; Daniels, J.E.; Koruza, J. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics. Prog. Mater. Sci. 2023, 136, 101101. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111, 031301. [Google Scholar] [CrossRef]
- Park, S.E.; Shrout, T.R. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Mater. Res. Innov. 1997, 1, 20–25. [Google Scholar] [CrossRef]
- Luo, H.; Xu, G.; Wang, P.; Yin, Z. Growth and characterization of relaxor ferroelectric PMNT single crystals. Ferroelectrics 1999, 231, 97–102. [Google Scholar] [CrossRef]
- Shimanuki, S.; Saito, S.; Yamashita, Y. Single crystal of the Pb(Zn1/3Nb2/3)O3-PbTiO3 system grown by the vertical Bridgeman method and its characterization. Jpn. J. Appl. Phys. 1998, 37, 3382. [Google Scholar] [CrossRef]
- Zhang, S.; Lebrun, L.; Jeong, D.Y.; Randall, C.A.; Zhang, Q.; Shrout, T.R. Growth and characterization of Fe-doped Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals. J. Appl. Phys. 2003, 93, 9257–9262. [Google Scholar] [CrossRef]
- Zhang, S.; Randall, C.A.; Shrout, T.R. Characterization of perovskite piezoelectric single crystals of 0.43BiScO3-0.57PbTiO3 with high Curie temperature. J. Appl. Phys. 2004, 95, 4291–4295. [Google Scholar] [CrossRef]
- Zhang, S.; Rhee, S.; Randall, C.A.; Shrout, T.R. Dielectric and piezoelectric properties of high Curie temperature single crystals in the Pb(Yb1/2Nb1/2)O3−xPbTiO3 solid solution series. Jpn. J. Appl. Phys. 2002, 41, 722. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.M.; Kim, D.H.; Lee, H.; Shrout, T.R. Characterization of high TC Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 single crystals fabricated by solid state crystal growth. Appl. Phys. Lett. 2007, 90, 232911. [Google Scholar] [CrossRef]
- Tian, J.; Han, P.; Huang, X.; Pan, H.; Carroll, J.F., III; Payne, D.A. Improved stability for piezoelectric crystals grown in the lead indium niobate-lead magnesium niobate-lead titanate system. Appl. Phys. Lett. 2007, 91, 222903. [Google Scholar] [CrossRef]
- Hosono, Y.; Yamashita, Y. Piezoelectric ceramics and single crystals for ultrasonic medical transducers. J. Electroceramics 2006, 17, 577–583. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, J.; Hackenberger, W.; Shrout, T.R. Characterization of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystal with enhanced phase transition temperatures. J. Appl. Phys. 2008, 104, 064106. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, S.; Luo, J.; Shrout, T.R.; Cao, W. Complete set of material constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal with morphotropic phase boundary composition. J. Appl. Phys. 2009, 106, 074112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, F.; Sherlock, N.P.; Luo, J.; Lee, H.J.; Xia, R.; Meyer, R.J., Jr.; Hackenberger, W.; Shrout, T.R. Recent developments on high Curie temperature PIN-PMN-PT ferroelectric crystals. J. Cryst. Growth 2011, 318, 846–850. [Google Scholar] [CrossRef]
- He, A.G.; Xi, Z.Z.; Li, X.J.; Long, W.; Zhang, T.T.; Fang, P.Y.; Zhang, J. Structure analysis and systematical electric properties investigation of PSN-PMN-PT single crystal. J. Mater. Sci. Mater. Electron. 2018, 29, 16004–16009. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.B.; Chen, Z.B.; Cheng, Z.X.; Wang, J.L.; Li, C.C.; Xu, Z.; Huang, Q.W.; Liao, X.Z.; Chen, L.Q.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef]
- Li, F.; Cabral, M.J.; Xu, B.; Cheng, Z.X.; Dickey, E.C.; LeBeau, J.M.; Wang, J.L.; Luo, J.; Taylor, S.; Hackenberger, W.; et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 2019, 364, 264. [Google Scholar] [CrossRef]
- Liu, G.; Kong, L.; Hu, Q.; Zhang, S. Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: High piezoelectricity with improved thermal stability. Appl. Phys. Rev. 2020, 7, 021405. [Google Scholar] [CrossRef]
- Liu, Y.B.; Li, Q.; Qiao, L.; Xu, Z.; Li, F. Achieving giant piezoelectricity and high property uniformity simultaneously in a relaxor ferroelectric crystal through rare-earth element doping. Adv. Sci. 2022, 9, 2204631. [Google Scholar] [CrossRef]
- Echizenya, K.; Noda, N. Growth of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal boule with MnO content gradient along growth direction using continuous-feeding Bridgman method and MnO content dependence of ferroelectric and piezoelectric properties. Jpn. J. Appl. Phys. 2023, 62, SM1023. [Google Scholar] [CrossRef]
- Wan, H.T.; Luo, C.T.; Chung, C.C.; Yamashita, Y.; Jiang, X. Enhanced dielectric and piezoelectric properties of manganese-doped Pb(In1/2Nb1/2)O3-Pb (Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling. Appl. Phys. Lett. 2021, 118, 102904. [Google Scholar] [CrossRef]
- Qiu, C.R.; Wang, B.; Zhang, N.; Zhang, S.J.; Liu, J.F.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Karaki, T.; Wang, Z.K.; Sun, Y.Q.; Yamashita, Y.; Xu, J.Y. High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method. J. Adv. Ceram. 2022, 11, 57–65. [Google Scholar] [CrossRef]
- Xiong, J.J.; Wang, Z.J.; Yang, X.M.; Su, R.B.; Zhang, W.J.; Long, X.F.; Liu, Y.; He, C. Performance enhancement of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric single crystals using pulse poling. Scripta Mater. 2022, 215, 114694. [Google Scholar] [CrossRef]
- Kim, H.P.; Wan, H.T.; Lee, H.Y.; Yamashita, Y.; Jo, W.; Jiang, X.N. Thermal stability studies of alternating current poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals grown by solid-state crystal growth. Mater. Res. Lett. 2023, 5, 383–390. [Google Scholar] [CrossRef]
- Soliman, M.; Maity, K.; Gloppe, A.; Mahmoudi, A.; Ouerghi, A.; Doudin, B.; Kundys, B.; Dayen, J.F. Photoferroelectric all-van-der-Waals heterostructure for multimode neuromorphic ferroelectric transistors. ACS Appl. Mater. Interfaces 2023, 15, 15732–15744. [Google Scholar] [CrossRef]
- Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617. [Google Scholar] [CrossRef]
- Prosandeev, S.; Grollier, J.; Talbayev, D.; Dkhil, B.; Bellaiche, L. Ultrafast neuromorphic dynamics using hidden phases in the prototype of relaxor ferroelectrics. Phys. Rev. Lett. 2021, 126, 027602. [Google Scholar] [CrossRef]
- Ram, A.; Maity, K.; Marchand, C.; Mahmoudi, A.; Kshirsagar, A.R.; Soliman, M.; Taniguchi, T.; Watanabe, K.; Doudin, B.; Ouerghi, A.; et al. Reconfigurable multifunctional van der Waals ferroelectric devices and logic circuits. ACS Nano 2023, 17, 21865–21877. [Google Scholar] [CrossRef]
- Wu, S.Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 1974, 21, 499–504. [Google Scholar]
- Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E.; Tsujimura, A. Dynamic observation of brain-like learning in a ferroelectric synapse device. Jpn. J. Appl. Phys. 2013, 52, 04CE06. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, B.; Cao, W.W. Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals. J. Appl. Phys. 2001, 90, 3471–3475. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Zhao, X.Y.; Luo, H.S. Composition and orientation dependence of dielectric and piezoelectric properties in poled Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. J. Appl. Phys. 2006, 100, 024104. [Google Scholar] [CrossRef]
- Singh, A.K.; Pandey, D. Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3. Phys. Rev. B 2006, 74, 024101. [Google Scholar] [CrossRef]
- Slodczyk, A.; Daniel, P.; Kania, A. Local phenomena of (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals (0 < x < 0.38) studied by Raman scattering. Phys. Rev. B 2008, 77, 184114. [Google Scholar]
- Glazounova, A.E.; Tagantsev, A.K. Direct evidence for Vögel-Fulcher freezing in relaxor ferroelectrics. Appl. Phys. Lett. 1998, 73, 856–858. [Google Scholar] [CrossRef]
- Viehland, D.; Jang, S.J.; Cross, L.E.; Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 1990, 68, 2916–2921. [Google Scholar] [CrossRef]
- Li, K.; Sun, E.W.; Qi, X.D.; Yang, B.; Liu, J.; Cao, W.W. Dielectric relaxation and local domain structures of ferroelectric PIMNT and PMNT single crystals. J. Am. Ceram. Soc. 2020, 103, 1744–1754. [Google Scholar] [CrossRef]
- Bokov, A.A.; Ye, Z.G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 2006, 41, 31–52. [Google Scholar] [CrossRef]
- Yamashita, Y.; Karaki, T.; Lee, H.Y.; Wan, H.T.; Kim, H.P.; Jiang, X.N. A review of lead perovskite piezoelectric single crystals and their medical transducers application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3048–3056. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Kim, H.P.; Lee, S.G.; Lee, H.Y.; Jo, W. Depolarization mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals measured using in-situ thermally stimulated depolarization current. J. Sens. Sci. Technol. 2020, 29, 59–62. [Google Scholar] [CrossRef]
- He, C.; Karaki, T.; Yang, X.; Yamashita, Y.; Sun, Y.; Long, X. Dielectric and piezoelectric properties of Pb[(Mg1/3Nb2/3)0.52(Yb1/2Nb1/2)0.15Ti0.33]O3 single-crystal rectangular plate and beam mode transducers poled by alternate current poling. Jpn. J. Appl. Phys. 2019, 58, SLLD06. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.L.; Liu, Y.; Wang, M.W.; Qiao, L.; Gao, X.Y.; Chang, Y.F.; Du, H.L.; Xu, Z.; Zhang, S.J.; et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nat. Commun. 2021, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bian, L.; Li, K.; Liu, Y.C.; Yang, Y.L.; Yang, B.; Cao, W.W. Achieving ultrahigh electromechanical properties with high TC in PNN-PZT textured ceramics. J. Mater. Sci. Technol. 2024, 175, 258–265. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zhang, H.J.; Shi, W.M.; Wang, Q.; Jiang, G.C.; Yang, B.; Cao, W.W.; Tan, J.B. Ultrahigh strain in textured BCZT-based lead-free ceramics with CuO sintering agent. J. Mater. Sci. Technol. 2022, 117, 207–214. [Google Scholar] [CrossRef]
- Xu, G.Y.; Shirane, G.; Copley, J.R.D.; Gehring, P.M. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 2004, 69, 064112. [Google Scholar] [CrossRef]
- Fu, D.S.; Taniguchi, H.; Itoh, M.; Koshihara, S.Y.; Yamamoto, N.; Mori, S. Relaxor Pb(Mg1/3Nb2/3)O3: A ferroelectric with multiple inhomogeneities. Phys. Rev. Lett. 2009, 103, 207601. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.J.; Damjanovic, D.; Chen, L.Q.; Shrout, T.R. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater. 2018, 28, 1801504. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Dkhil, B.; Kholkin, A.L. Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy. Annu. Rev. Mater. Res. 2013, 43, 423–449. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Zhang, Y.B.; Liao, H.M.; Liu, X.; Li, P.F.; Feng, Y.L.; An, L.; Zhuang, Y.Y.; Xu, Z.; Wei, X.Y. Greatly enhanced electro-optic modulation efficiency in titanium in-diffusion PIN-PMN-PT waveguide. J. Adv. Ceram. 2023, 12, 1454–1462. [Google Scholar] [CrossRef]
- He, W.H.; Li, Q.; Sun, Y.; Xi, X.Q.; Zhang, L.L.; Yan, Q.F. Investigation of piezoelectric property and nanodomain structures for PIN-PZ-PMN-PT single crystals as a function of crystallographic orientation and temperature. J. Mater. Chem. C 2017, 5, 2459–2465. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Kleemann, W. Nanopolar structure in SrxBa1−xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys. Rev. B 2008, 77, 054105. [Google Scholar] [CrossRef]
- He, W.H.; Carpenter, M.A.; Lampronti, G.I.; Li, Q.; Yan, Q.F. Local strain heterogeneity and elastic relaxation dynamics associated with relaxor behavior in the single-crystal perovskite Pb(In1/2Nb1/2)O3-PbZrO3-Pb(Mg1/3Nb2/3)O3-PbTiO3. Phys. Rev. B 2017, 96, 144109. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Kholkina, A.L. Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 2005, 86, 202907. [Google Scholar] [CrossRef]
- Ingle, S.G.; Kokate, M.V. Switching of KNbO3 single crystals under steady electric field conditions. J. Phys. D Appl. Phys. 1983, 16, 1115–1121. [Google Scholar] [CrossRef]
- Wang, B.; Woo, C.H. Stability of 180° domain in ferroelectric thin films. J. Appl. Phys. 2003, 94, 610–617. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Cao, Y.; Laanait, N.; Ievlev, A.; Li, L.L.; Yang, J.C.; Chu, Y.H.; Chen, L.Q.; Kalinin, S.V.; Maksymovych, P. Field enhancement of electronic conductance at ferroelectric domain walls. Nat. Commun. 2017, 8, 1318. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zheng, H.; Qi, X.; Cong, S.; Zhao, Z.; Zhao, J.; Mei, H.; Zhang, D.; Sun, E.; Zheng, L.; et al. Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals. Crystals 2023, 13, 1599. https://doi.org/10.3390/cryst13111599
Li K, Zheng H, Qi X, Cong S, Zhao Z, Zhao J, Mei H, Zhang D, Sun E, Zheng L, et al. Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals. Crystals. 2023; 13(11):1599. https://doi.org/10.3390/cryst13111599
Chicago/Turabian StyleLi, Kai, Huashan Zheng, Xudong Qi, Shan Cong, Zhenting Zhao, Junfeng Zhao, Haijuan Mei, Duoduo Zhang, Enwei Sun, Limei Zheng, and et al. 2023. "Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals" Crystals 13, no. 11: 1599. https://doi.org/10.3390/cryst13111599
APA StyleLi, K., Zheng, H., Qi, X., Cong, S., Zhao, Z., Zhao, J., Mei, H., Zhang, D., Sun, E., Zheng, L., Gong, W., & Yang, B. (2023). Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals. Crystals, 13(11), 1599. https://doi.org/10.3390/cryst13111599