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Abstract: Highly porous layered double hydroxide (LDH) and its calcined mixed metal oxide (MMO)
were obtained by utilizing egg white (EW) as a biogenic porous template. The LDH was prepared
through coprecipitation under the existence of a beaten EW meringue, and the corresponding MMO
was obtained by calcining LDH at 500 ◦C. According to X-ray diffraction, the crystal structure of
LDH and MMO was well-developed with or without EW. In contrast, the crystallinity analyses and
microscopic investigations clearly showed differences in the particle orientation in the presence of
EW; the protein arrangement in the EW foam induced the ordered orientation of LDH platelets
along proteins, resulting in well-developed inter-particle pores. As a result, the distinctive particle
arrangement in EW-templated samples compared with non-templated ones showed dramatically
enhanced specific surface area and porosity. The nitrogen adsorption–desorption isotherm exhibited
that the high specific surface area was attributed to the homogeneous nanopores in EW-templated
LDH and MMO, which originated from the sacrificial role of the EW.

Keywords: mixed metal oxides; layered double hydroxides; egg white foam; biogenic template;
porous structure

1. Introduction

Highly porous mixed metal oxide (MMO) ceramics have attracted wide attention
due to their various compositions, huge specific surface areas, large pore volume, control-
lable physicochemical properties, and high stability. These MMOs are generally obtained
through the solid-state phase transformation upon the calcination process by applying the
appropriate temperature to the precursors. After thermal treatment, the resulting MMOs
generally possess superior properties than the precursors [1–4]. These MMOs are exploited
in various applications as catalysts, adsorbents, sensors, drug carriers, and so on [5–11]. As
most of the above-mentioned applications utilized the surface interaction between MMO
and target species, researchers developed synthetic approaches to induce high surface
area with controlled porosity such as the soft template, hard template, and self-templated
methods [12,13].

Layered double hydroxide (LDH), which is known as anionic clay, consists of posi-
tively charged mixed metal hydroxide layers that are separated by interlayer anions and
water molecules. The LDH structure is formed with M(OH)6 octahedral units sharing
edges to build brucite-like M(OH)2 layers. These octahedral sites consist of both diva-
lent and trivalent metal cations. The chemical formula of LDH is generally expressed as
[M(II)1−xM(III)x(OH)2]x+An−

x/n, in which the x approximately ranges from 0.2 to 0.4 [14].
Upon thermal treatment, LDH undergoes dehydration of the water molecules on the sur-
face as well as in the interlayer region, dehydroxylation, and the loss of anions in the
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interlayer, resulting in the evolution of MMO. According to the previous literature, the
lamellar structure of LDH partially collapses during calcination, and a partial trivalent
ion migrates from the octahedral site to the tetrahedral site, together with the evolution
of the periclase phase (MgO). The calcination process is an efficient way of synthesizing
MMO due to the homogeneous metal arrangement, as the pristine LDH tends to have an
ordered orientation of its divalent and trivalent cations. This homogeneous distribution of
the trivalent ion assures the even action of certain metal species, possibly the trivalent one,
as an adsorption or catalytic site. Moreover, the pore structure evolution upon calcination
enhances the specific surface area [15–19].

Previous studies indicated that the porous nature of materials is the most important
property to determine the efficiency of toxic species removal, especially in water contami-
nants [20–22]. Furthermore, porosity in the electrical material could enhance the catalytic
and electrical activity. Electrocatalysts for hydrogen evolution and oxygen evolution re-
actions could achieve high performance due to the porous structure and high surface
area [23,24]. Template-assisted synthesis is a widely utilized method to generate regular
porosity in metal oxides [25,26]. A representative advantage of templated synthesis is the
easy tuning of the final products according to the nature of the template [27,28]. There
were reports of combining the calcination of LDH and the templated method to obtain
homogeneous MMO with high porosity [29,30]. For instance, ordered mesoporous NiAl-
MMO was prepared, using pluronic-F127 as a template, by the soft template method with
NiAl-LDH as a precursor [31]. Our group previously synthesized mesoporous MgAl-MMO
with homogenous pores, by using P-123 as a template [32].

Although the above-mentioned methods resulted in homogeneous MMO with a high
specific surface area thanks to the LDH precursor and ordered templates, the process
has limitations when applied on an industrial scale due to the potential environmental
issue and the lower economical accessibility of surfactants and templating polymers. In
order to address this issue and find a green process, we focused on the utility of the
biogenic template method. The sacrificial template method is an efficient way to more
precisely control the pore size for the synthesis of porous LDH or MMO. There were several
works on the synthesis of LDH utilizing bio-templates. An et al. prepared MgAl-LDH
utilizing casein and caprolactam as a core material to be coated by LDH layers [33]. Their
approach was successful in obtaining flame-retardant LDH; however, it was not related
to the porous structure. The ZnAl-LDH was synthesized on the surface of a legume
in order to take advantage of the biomorphic morphology [34]. In contrast, Sobhana
et al. synthesized LDH networks based on cellulose to obtain a high specific surface
area [35]. Considering the research, it is fairly feasible that LDH could be prepared with
a hierarchical pore structure utilizing various bio-template candidates. In the current
study, we expand the concept to naturally borne biomaterials such as egg white (EW),
which is used for the synthesis of ordered nanoparticles. EW is rich in amino acids and
proteins [36], which play stabilizing and controlling roles in metal oxide formation [37].
Metal oxide nanoparticles such as iron oxide [38], titanium dioxide [39,40], and cerium
oxides [41] could be synthesized in a homogeneous size under the presence of an EW bio-
template. EW mainly consists of proteins having either a globular or filament shape [42,43].
Upon agitation, the combination of proteins produces a foam through the incorporation
of air bubbles. The protein moieties are rapidly self-assembled around the air bubble
to create a macromolecular network, leading to the coagulation; thus, EW acts as a self-
aggregated template for porous metal oxide (first step of Figure 1a). We recently reported
that porous MMO could be synthesized utilizing albumin as a bio-template through the
repetitive calcination–reconstruction process [44]; however, the development of porosity
had limitations when a single albumin is utilized as a template. In order to obtain a
systematic molecular arrangement of a biogenic template, it is suggested to take advantage
of natural protein components in EW. The as-synthesized porous EWH and EWO can act
as promising candidates for the adsorption and removal of pollutants and catalysis, as a
biocompatible host, owing to their hierarchical pores and a high specific surface area.
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Figure 1. Schematic illustration of (a) EW-templated LDH (EWH) and (b) non-templated LDH.

Herein, we suggest synthetic procedures for LDH and MMO with high porosity and
specific surface area utilizing EW foam as a biogenic template, as illustrated in Figure 1. The
egg-white-templated LDH was synthesized using the conventional coprecipitation method.
The egg white proteins undergo unwinding and are surrounded by the air pockets after the
agitation. The rapidly self-assembled proteins around the air pockets form a macromolecu-
lar network in the egg white foam, which acts as the sacrificial porogenic template for the
synthesis. The conjoint self-assembly between the metal precursors and EW proteins results
in a hierarchical architecture and facilitates the formation of the homogenous nanoporous
structure by directly growing LDH on or around the proteins. As the proteins in EW foam
develop large networks, we hypothesized that the protein moiety does not inhibit the
crystal growth of LDH; rather, the protein network could act as the template to order the
LDH particles. In other words, the air pockets covered by the protein arrays would remain
as pores by arranging LDH particles around them. In this manner, the assembly of LDH
layers would lose its preferred particle orientation along the crystallographic c-axis and
obtain a large particle–particle space through the assembly of particles. Both EW-templated
and non-templated LDH were prepared in this study, and their properties were compared
in terms of crystal structure, textural morphology, and porosity, to elucidate the role of EW
as a bio-template in the synthesis of LDH and MMO.

2. Materials and Methods
2.1. Materials

Magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) and aluminum nitrate nonahydrate
(Al(NO3)3·9H2O), were purchased from Sigma-Aldrich, Inc., St. Louis, MO, USA. Sodium
hydroxide (NaOH) and sodium bicarbonate (NaHCO3) were obtained from Daejung Chemicals
& Metal Co., Ltd., Seoul, Republic of Korea. Eggs were purchased from a local market in Seoul,
South Korea. All the reagents and material used without further purification.

2.2. Synthesis of Egg-White-Templated LDH (EWH) and Corresponding Mixed Metal
Oxide (EWO)

The egg-white-templated LDH was synthesized following the conventional copre-
cipitation method [45]. First, EW foam was prepared by whipping the egg white with a
household mechanical blender for 5 min in a glass beaker to make foam. Approximately
3.13 g of egg white foam was taken in a 3-neck round bottom flask and subjected to the
templated synthesis of LDH. The metal solution and alkaline solution were prepared, and
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both solutions were located in dropping funnels, which are connected to two necks of the
flask. The metal solution was prepared by dissolving 1.53 g of Mg (NO3)2·6H2O (0.03 mol)
and 1.12 g of Al (NO3)3·9H2O (0.015 mol) in 200 mL deionized water. The alkaline solution
was made by dissolving 1.63 g NaOH (0.227 mol) and 2.54 g of NaHCO3 (0.168 mol) in
180 mL of deionized water. Both metal solution and alkaline solution were simultaneously
added to the flask, which already contained egg white foam, under stirring. The adding
rate of the metal solution and alkaline solution was carefully maintained to adjust the
pH of the reaction system constant at ~9.5. The reaction mixture was processed for 24 h
under room temperature, and the obtained suspension was centrifuged at 8000 rpm for
4 min to collect EWH precipitate. The product was washed with deionized water three
times in order to remove unreacted ion and salt; finally, the EWH powder was collected
by lyophilization. The mixed metal oxide originated from EWH (EWO) was obtained by
calcination of EWH at 500 ◦C for 3 h. Typically, the EWH powder (~1 g) was located in an
alumina boat and placed in a muffle furnace without any lid on the boat. The temperature
was raised up to 500 ◦C at 0.8 ◦C/min of heating rate. After a designated time of 3 h,
the sample was cooled down under ambient condition. Finally, the powder, EWO, was
collected and stored under dried condition.

2.3. Synthesis of LDH and MMO without EW

In order to investigate the role of the EW template in the structure and porosity, both
LDH and MMO without the EW were prepared for comparison. For the synthesis of
LDH, mixed metal solution and an alkaline solution were similarly prepared as described
in Section 2.2. Then, the synthesis of the LDH was carried out via the conventional
coprecipitation method, in which alkaline solution and metal solution were simultaneously
dropped in to the round bottom flask at pH ~ 9.5. After 24 h of aging at room temperature,
the precipitate was collected by centrifugation, washed with deionized water three times,
and lyophilized to obtain LDH. The MMO from the LDH was obtained by calcining LDH
at 500 ◦C for 3 h with a 0.8 ◦C/min heating rate in a muffle furnace.

2.4. Characterization

The crystal structure of the four samples was elucidated by powder X-ray diffraction
(XRD, Ultima IV, Rigaku, Tokyo, Japan) using Cu Kα radiation (λ = 1.5405 Å) at 50 kV and
40 mA. The powder diffraction patterns were collected in the range of 2θ from 5 to 80◦,
with an interval of 0.02◦ and a scan speed of 0.5◦/min. The crystallite size of the samples
was calculated by using Scherrer’s equation, as shown below [46].

τ = (0.9λ)/(B cos θ)

where τ = crystallite size (Å), λ = X-ray wavelength (1.5405 Å), B = full-width at half-
maximum (FWHM), and θ = Bragg’s angle.

The particle size and surface morphology of the particles were analyzed by scanning
electron microscopy (SEM, JEOL-7100F, Tokyo, Japan) at an acceleration voltage of 15 kV.
The powdered sample was gently spread on the carbon tape, and loosely bound powder
was blown away with an air blower. The specimen was coated with Pt/Pd by vacuum
sputtering for 1 min. Detailed particle size and morphology along with lattice structure
patterns were investigated by a high-resolution transmission electron microscope (HR-
TEM, G2 ChemiSTEM Cs probe, FEI Company, Hillsboro, MA, USA) at an accelerating
voltage of 200 kV. After the sample was dispersed in ethanol, the suspension was dropped
on the Cu 200 mesh grid. Then, the specimen was dried in the oven at 60 ◦C. The N2
adsorption–desorption isotherms were determined by BEL-SORP-mini II (Microtrac BEL,
Inc., Tokyo, Japan) at 77 K. After the samples were degassed at 313 K in vacuum condition
overnight. The specific surface area, mean pore diameter, and mean pore volume were
calculated through Brunauer–Emmett–Teller (BET) theory. The pore size distribution was
calculated through Barett–Joyner–Halenda (BJH) model.
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3. Results and Discussion
3.1. X-ray Diffraction Patterns

The crystal structure of LDHs and MMOs were analyzed by powder X-ray diffrac-
tometry. The diffractograms of EWH and LDH showed typical patterns of hydrotalcite
(Mg3Al (OH)8(CO3)0.5-LDH; JCPDS no. 22-0700), exhibiting distinctive peaks at a 2θ value
of 11.58◦, 23.16◦, 34.75◦, 39.16◦, 46.20◦, 60.83◦, and 62.06◦ attributed to the (003), (006),
(012), (015), (018), (110), and (113) crystal planes, respectively (Figure 2a,b) [47]. The XRD
patterns of both templated and non-templated LDH indicate that both were synthesized
without any significant impurity, regardless of the template method. The same lattice
parameter values of both EWH and LDH (a = 3.04 Å, c = 22.9 Å) suggested that EW protein
moieties neither prevented LDH crystals from growing nor incorporated them into the
interlayer space of the LDH framework. The FT-IR spectrum of all the samples is given
in Figure S1 (see in Supplementary Materials). The IR spectra of all samples showed a
broad peak at 3430 cm−1 due to the O-H stretching vibration of the water molecules. The
peak that appeared at 1646 cm−1 for all materials was attributed to the bending vibration
of O-H groups. The peak appearing at 1385 cm−1 was assigned to the interlayer CO3

2−

anions. The peak obtained between 500 and 800 cm−1 corresponds to the metal–oxygen
bonds in the LDH framework [48]. It is considered that the protein moieties present in the
egg white foam could be homogeneously adsorbed on the LDH surface rather than being
introduced in between the interlayers of the metal hydroxide due to the large size of the
proteins. Both calcined products, EWO and MMO, were determined to have a periclase
phase (MgO; JCPDS no. 45-0946), showing representative (200) and (220) peaks at 43.3◦ and
62.7◦, respectively (Figure 2c,d) [49], suggesting that the formation of metal oxide phase
is irrespective of the EW template. Generally, Mg-Al LDH upon calcination underwent
dehydration, dehydroxylation, and decarbonization leading to the phase transformation
from the LDH phase to their corresponding mixed metal oxide form. It is well-known that
the calcination of the metal double hydroxide at a moderate temperature of 400–600 ◦C
results in the evolution of divalent metal oxide, MMO, with a periclase (MgO) phase.
During the calcination process, most of the divalent cations maintained their corresponding
coordination site in the octahedral center, whereas the trivalent cations underwent partial
migration from the octahedral site to the tetrahedral site. In this manner, the major building
block of both templated and non-templated MMOs consists of MgO rather than Al2O3 [50].
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It is worth noting here that the peak intensity of EWH was different from that of LDH.
The diffractogram of LDH showed strong (00l) diffraction compared with other lattice
peaks, while the (00l) peaks of EWH were fairly comparable to those of the lattice peaks. In
detail, the peak area ratio of (003)/(110) was 0.17 and 6.22 for EWH and LDH, respectively,
exhibiting the predominant c-axis array in LDH rather than in EWH. As LDH is a layered
material, the particles tend to orient in a two-dimensional way, increasing the (00l) signal
much higher than the (hkl) components [51]. However, EW-templated LDH (EWH) had a
fairly comparable ratio. We hypothesized that the LDH particles prepared with EW grew
along the protein moiety covering the air pocket, and, thus, the preferred orientation along
the c-axis was avoided. Interestingly, the peak intensity ratio in both EWO and MMO
was fairly comparable; the peak area ratio (200)/(220) was 1.27 and 1.41, respectively, for
MMO and EWO. It was attributed to the small crystallites formed by the calcination of
LDH, as in the previous report, showing a similar crystallite size of MMO regardless of
the orientation of the starting LDH particles [52]. The calculated crystallite size using
Scherrer’s equation is provided in Table S1 (see in Supplementary Materials). We could
not observe any significant changes in the lattice parameters or the crystallite size in the
crystalline structure of MgO from either templated or non-templated LDH. Therefore, it
was concluded that the crystalline structure of the EW-templated and non-templated LDH
and MMO was almost the same and that the crystal formation process was not seriously
affected by the EW template.

3.2. Scanning Electron Microscopy

The morphology and arrangement of particles were investigated through scanning
electron microscopy. The SEM images showed that the morphology of the EWH and EWO
were fairly similar showing typical sand rose shapes (Figure 3a,c) [53]. The sand rose
structure of the EWH and EWO can be attributed to the edge-to-face interaction among
the LDH plate-like particles. The orientation of plate-like particles in both EWH and EWO
suggested particle growth along the protein moiety in EW foam. The existence of protein
in the EW foam not only hindered the particle agglomeration of LDH but also arranged
the particles with proper interparticle space. In contrast, the SEM images of both LDH and
MMO exhibited large lumps and were densely assembled, being hundreds of nanometers
in size (Figure 3b,d). The particle size and morphology of the non-templated MMO were
comparable with that of the pristine LDH formed by the conventional method, as shown
in Figure 3b,d according to the previous report [54]. The non-templated LDH and its
MMO show few interparticle pores due to the aggregation of LDH particles. It is generally
known that LDH particles tend to get together through strong interparticle interaction.
Although the particle sizes of the LDHs and MMOs were not precisely determined, both
LDHs seemed to have comparable particle dimensions, of approximately 75 nm for the
lateral size. Therefore, the different crystallinity between EWH and LDH observed in the
XRD (Figure 2) was attributed to the different particle orientations, not to the crystallite
size. The SEM images of the templated and non-templated MMOs also suggested that
the particle morphologies of their corresponding pristine LDH are almost preserved after
thermal treatment. As a result, the lattice structures of the EWH and LDH did not undergo
a collapse of the metal hydroxide layers after dehydration.
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3.3. Transmission Electron Microscopy

The morphological difference as well as the interparticle structure of the samples were
evaluated in detail by TEM. According to the TEM images of EWH and EWO (Figure 4a,c),
the particles were arranged in various directions, possibly along the protein moiety in
the EW foam. The morphology of both EWH and EWO showed randomly oriented and
crumpled lamellar sheets with thin layers, as observed in the SEM images. According to
Figure 1, as the agitation of EW incorporates air bubbles, the protein moieties started to
align around the bubbles. The rearranged protein molecules resulted in the formation of
a network, for which strength is obtained by the mixing of both spherical and globular
proteins. The addition of an alkalizing agent formed amorphous clusters of MgxAly(OH)z
around the protein network. Upon the aging process, the amorphous clusters gathered to
form a metal double hydroxide network around the porous skeleton of EW. The interaction
between the metal cations and negatively charged protein moieties is thought to facilitate
the seed formation of MgxAly(OH)z clusters. Compared with Figure 4a, more interparticle
space is evident in Figure 4c, which confirmed that the porous architecture of the EWO
sample displays high porosity. This was confirmed by the random orientation of the egg-
white-templated LDH and MMO resulting in distinctive interparticle pores. Pores were
more obvious in EWO (Figure 4c) than in EWH (Figure 4a), as the thermal decomposition
process clearly removed the egg white template and air pocket to produce interparticle
pores. EWH and EWO apparently exhibited interparticle spaces, which lead to a higher
specific surface area than non-templated LDH. This is because the air pockets with the
protein networks surrounding EWH particles leave a cavity during the thermal process.
Furthermore, EWO would have intraparticle pores, which can be formed from the metal
oxide domains that evolve upon calcination and can be linked by the Al3+ that migrates to
the tetrahedral site. In other words, the local disorder that occurred during the thermal
treatment leads to the collapse of the metal hydroxide layers and forms O-Al-O bonds,
resulting in the evolution of intraparticle mesopores. In contrast, LDH and MMO showed
an agglomeration of particles (Figure 4b,d). Due to the particle aggregation in pristine LDH,
the interparticle pore was not prominent when compared with EWH. The specific surface
area of non-templated LDH and MMO would be lower than the templated one due to the
fewer interparticles present due to the particle’s aggregation. The degree of orientation in
MMO particles was more ordered, as we suggested in Figure 1, resulting in the reduction
of the porosity in MMO. In conclusion, the evolution of the interparticle pores drastically
enhances the removal amount through multi-layer adsorption, and the intraparticle pores
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would act as adsorption sites for small molecules. EW-templated LDH and MMO would
increase activity and selectivity for adsorbates.
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The orientation of the particles was also analyzed by a high-magnification image. The
lattice fringe images of EWH and EWO are illustrated in Figure 5a,b, in which a set of white
lines depicts the lattice fringes. The set of white lines indicated the random orientation of
the particles toward the different directions. As shown in Figure 5a,b, both EWH and EWO
revealed lattice fringes corresponding to the planes of (015) and (018) and (200) and (220),
respectively. As a result, ring patterns can be observed in the fast Fourier transform (FFT)
image of both EWH and EWO. The solid circular lines in Figure 5c,d attributed to the plane
of (018) and (015) and (200) and (220) were observed in FFT patterns in both EWH and
EWO, confirming the random arrangement of crystallites.
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3.4. N2 Adsorption–Desorption Isotherms

The N2 adsorption–desorption isotherms were measured in order to confirm the
difference in porosity of materials coming from the EW template. The untemplated samples,
LDH and MMO, showed type III adsorption according to the International Union of
Pure and Applied Chemistry (IUPAC) classification (Figure 6a), suggesting a nonporous
nature [55]. LDH is generally considered nonporous with lower adsorbent–adsorbate
interaction, and they only provide particle surface as an adsorption site [56]. When LDH
was calcined at moderate temperature, an increase in the specific surface area and an
evolution of some pores through degassing, dehydration, and dehydroxylation usually
occurred. However, in the current sample, we could only observe a slight increase in SBET
(Table 1), without a significant change in N2 adsorption behavior. This was attributed to the
ordered c-axis orientation–particle agglomeration of the LDH particles whose arrangement
was preserved even after calcination. The evolution of the intraparticle pore accounted for
the pore’s increase in the enhancement of SBET; however, a notable porous structure was
not found in MMO.
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Table 1. Porosity information of EWH, EWO, LDH, and MMO.

Parameters LDH MMO EWH EWO

SBET (m2/g) 29 62 144 248
Pore volume (cm3/g) 0.2 0.2 0.6 0.6
Mean pore diameter (nm) 24 14 16 9

Different from the non-templated samples, both EWH and EWO exhibited type II
adsorption, implying that there is facilitated adsorption in well-developed pore structures
(Figure 6b). As summarized in Table 1, the SBET value of EWH and EWO was much
higher than that of their non-templated counterparts. This would be strongly related to
the preferred crystal growth in LDH along the EW protein (Figure 1). The porogenic
sacrificial template was believed to be concentrated around the LDH crystal due to the
surface adsorption of the protein moieties (both globular and fibrous proteins). The EWH
crystals appeared to develop around the self-aggregated sacrificial template. In addition to
the stabilizing ability of the proteins in egg white foam, the arrangement of EW proteins
could result in the evolution of appropriate pores. The two calcined samples, EWO and
MMO, exhibited hysteresis, which can be assigned to either H3 or H4 and indicates the
evolution of the intraparticle pore. (Figure 6a) [57]. This hysteresis could be interpreted
as plate-like or slit-like pores, and the porous structures arose from the partial collapse
of the hydroxide layer through the dehydroxylation of the metal hydroxide framework.
Although both metal oxides evolved slit-like pores, the efficiency of pore development was
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higher in EWO, as their particle arrangement was like a house-of-cards structure coming
from the particle arrangement along the protein moiety [58].

The quantitative analyses on surface area and pore volume were encouraging, as we could
confirm the template role of EW. The SBET value of EWH was as high as 145 m2/g, which was
by far larger than that of the non-templated LDH in this study (29 m2/g) and in other studies
in the literature (~50 m2/g and 9 m2/g) for Mg-Al-LDH [34,59]. After the calcination of EWH,
the surface area was enhanced to 248 m2/g due to the complicated processes—the thermal
decomposition of EW proteins preserving the interparticle arrangement as well as the evolution
of the intraparticle pore. The specific surface area of the templated MMO was higher than
the MMOs obtained from the LDHs in previous studies which was ~135 m2 g−1 synthesized
through the hydrothermal reaction for both Mg-Al, Mg-Ga and the bio-templated method
for Zn-Al MMO respectively [34,60]. In addition, the pore size distribution was evaluated
with BJH plot distribution to confirm the pore structure (Figure 6b). It was observed that after
calcination the pore size tended to more narrowly distribute due to the evolution of interparticle
or intraparticle pores. The pore volume of EWO (0.6 cm3/g) was more than twice that of MMO
(0.2 m3/g), showing the sacrificial role of EW in the development of pores during calcination.
This is because the egg white proteins were homogenously incorporated between the LDH
particles, which upon calcination evolve into homogeneously distributed pores in the LDH
framework. The mean pore diameter of EWO was 9 nm, which was much smaller than that
of MMO (14 nm), which confirms that homogeneous mesopores could be obtained by the
action of the EW template. The values in Table 1 were obtained by BET calculation, and the
error range was less than 3% [61]. Taking into account this information, the SBET as well as
the pore volume difference between templated and non-templated is statistically meaningful.
Therefore, the pore analyses clearly showed that EW foam played a crucial role in the formation
of interparticle pores.

4. Conclusions

We successfully synthesized highly porous EWO with a controllable pore size via the
green method by using EW foam as the bio-template. The particle ordering of EWH was
preserved after calcination, developing both interparticle and intraparticle pores. The SBET
value of EWH was found to be 144 m2/g, which was larger than that of non-templated LDH
(29 m2/g). Highly porous EWO was obtained with a high BET surface area of 248 m2/g,
with the aid of the egg white template. The outcome of using a natural egg white template
resulted in enhanced porosity and specific surface area. The present study reveals that egg
white foam can act as a porous skeleton during the template synthesis. This bio-template
method can be utilized for producing well-defined porosity in materials such as ceramics
and inorganic materials with enhanced surface area and narrow size pore distribution.
Taking into account the high specific surface area and large pore volume of EW-templated
LDH as well as the intrinsic anion affinity of LDH, the current materials could be utilized
for water treatment to remove various aqueous pollutants such as toxic organic dyes.
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