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Abstract: Lead halide perovskites have been widely used in optoelectronic devices due to their
excellent properties; however, the toxicity of lead and the poor stability of these perovskites hinder
their further application. Herein, we report a zero-dimensional (0D) lead-free organic manganese (II)
bromide hybrid compound of (TBA)2MnBr4 (TBA+ = tetrabutylammonium cation) single crystals
(SCs) with great environmental stability. The (TBA)2MnBr4 SCs show a strong green emission peak
at 518 nm with a high photoluminescence quantum yield (PLQY) of 84.98% at room temperature,
which is attributed to the d-d transition of single Mn2+ ions, as also confirmed through density
functional calculation. A green light-emitting diode was produced based on (TBA)2MnBr4 SCs,
which exhibited CIE coordinates (0.17, 0.69) close to those of standard green. A photodetector
fabricated by the (TBA)2MnBr4 SCs shows an obvious photo response with a rapid millisecond
rise/decay response time (at 365 nm). Our findings promote the research of Mn(II)-based organic–
inorganic hybrid materials and pave the way by using these materials for future high-performance
optoelectronic devices.

Keywords: organic manganese (II) bromide hybrid compound; (TBA)2MnBr4; green emission;
photodetector; high photoluminescence quantum yield

1. Introduction

As an important semiconductor functional material, lead halide perovskite plays
an important role in the light, display, and photodetector fields due to its excellent op-
toelectronic properties [1–6]. Although lead halide perovskites have achieved a series
of remarkable results [7,8], their inherent toxicity and poor stability limit their further
applications in optoelectronic devices. Therefore, the key to solving these problems is to
explore new non-toxic and stable materials.

Benefiting from structure diversity, low toxicity, and excellent photoluminescence
properties, such as tunable luminescence, high photoluminescence quantum yield, and
high color purity, Mn(II)-based organic–inorganic hybrid metal halides (OIHMHs) are
expected to replace lead halide perovskites and have broad application prospects in the
field of optoelectronic devices [9–13]. According to previous studies, the emission of Mn(II)-
based OIHMHs originates from the intrinsic d-d transition of Mn2+ ions [14–18]. In recent
years, many Mn(II)-based OIHMHs have been reported and used to fabricate various
optoelectronic devices [19–25]. For example, Chen et al. reported a green light-emitting
diode (LED) based on (Ph4P)2MnBr4, with a current efficiency of 32.0 cd A−1, a power
efficiency of 26.8 lm W−1, and an external quantum efficiency of 9.6% [20]. Hyunsik et al.
also reported a similar green electro-LED based on a 0D [(H2C=CHCH2)(C6H5)3P]2MnBr4
compound [19], the device performance of which is close to the green device reported by
Chen. Except for LED devices, Mn(II)-based compounds are also used in X-ray imaging
and scintillators. Ma et al. reported an X-ray scintillator prepared from (C38H34P2)MnBr4
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powder with a high light yield of about 80,000 photons MeV−1 and a low detection limit of
72.8 nGy s−1 [25]. Ju et al. reported two kinds of Mn-based compounds with highly efficient
luminescence properties; the X-ray scintillators based on these two compounds exhibit high
X-ray light yields and low detectable limits, as well as X-ray imaging demonstration with a
high resolution [26]. In addition, Mn(II)-based OIHMHs have also been used to fabricate
various sensors, such as the fluorescence detection of the pesticide ferbam, acetone vapor,
and air humidity [21,23,27]; however, to the best of our knowledge, UV photodetectors fab-
ricated using Mn(II)-based OIHMHs are rarely reported. Therefore, applying Mn(II)-based
OIHMHs with excellent optoelectronic properties to UV photodetection is a promising
route and beneficial to broaden their applications in the field of optoelectronic devices. This
provides a certain reference for the use of non-toxic and stable metal halide materials in the
field of photoelectric detection.

In this work, we report a zero-dimensional Mn-based compound, (TBA)2MnBr4,
which exhibits bright green emission with an emission peak at 518 nm, a full width at
half maximum (FWHM) of about 50 nm, and a PLQY as high as 84.98%. The emission
mechanism of (TBA)2MnBr4 was investigated via steady-state and transient spectroscopy
in addition to first-principles calculation, which confirmed that the narrow-band green
emission is derived from the d-d transition of the single Mn2+ ion. Stability studies show
that (TBA)2MnBr4 has remarkable stability toward humidity, temperature, and UV light
irradiation. In addition, (TBA)2MnBr4 powder was coated on a 365 nm UV chip to fabri-
cate the green LED, and the Commission International de l’eclairage (CIE) chromaticity
coordinates are (0.17, 0.69), which are close those of standard green. Furthermore, we
fabricated a UV photodetector using bulk (TBA)2MnBr4 SCs, which exhibited an obvious
photo response and a fast response time in the order of milliseconds under excitation
at 365 nm. This work promotes the research of Mn(II)-based organic–inorganic hybrid
materials and highlights the application potential of these materials in high-performance
optoelectronic devices.

2. Results and Discussion

The schematic diagram of the room-temperature liquid-phase diffusion method for
growing 0D (TBA)2MnBr4 SCs is given in Figure 1a, and a photograph of the various
growth stages of (TBA)2MnBr4 SCs is shown in Figure S1. Typically, the C16H36NBr
and MnBr2·4H2O were dissolved in a certain amount of ethanol with a molar ratio of
2:1, and a clear pale-yellow precursor solution was obtained via stirring. The toluene
was then added to the solution, and the liquid levels of the ethanol precursor liquid
and toluene were stratified; however, ethanol gradually diffuses into toluene over time,
causing the concentration of the precursor to gradually increase and enter a supersaturated
state. As ethanol continues to diffuse into toluene, tiny (TBA)2MnBr4 single crystals will
precipitate at the junction of the liquid surfaces of ethanol and toluene and gradually
grow as ethanol continues to diffuse, finally eventually sinking to the bottom of the glass
bottle under the action of gravity. The entire growth cycle is 24 h to 72 h, and the length
of the growth time depends on the concentration of the ethanol precursor solution. The
greater the concentration of the precursor solution the shorter the growth time, but with
correspondingly poorer single-crystal quality. Therefore, the concentration of the ethanol
precursor determines the final quality of a single crystal. It is worth noting that we should
be careful when adding toluene to the ethanol precursor solution, and to add toluene slowly
along the wall of the glass bottle in small amounts and at multiple times; otherwise the
toluene and ethanol precursors will mix violently, leading a large number of microcrystals
to rapidly precipitate when toluene is added and the force to be too high, finally affecting
the growth of single crystals. The optical photograph of (TBA)2MnBr4 SCs under daylight
and 365 nm UV light in the environmental conditions, as shown in the inset of Figure 1a.
The size of the (TBA)2MnBr4 SCs obtained through this method is approximately 5 mm.
The experimental powder XRD (PXRD) patterns of (TBA)2MnBr4 correspond well with the
simulation patterns from single-crystal XRD (SCXRD), indicating that the powder sample
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is consistent with the SC sample. The (TBA)2MnBr4 has a P212121 space group, and the
cell parameters are a = 12.83810 Å, b = 12.89970 Å, c = 25.08200 Å, and α = β = γ = 90◦. The
crystal structure file of (TBA)2MnBr4 was obtained from the Cambridge Crystallographic
Data Centre (CCDC-1902826). As shown in Figure 1b, the XRD diffraction pattern of the
sample obtained through measuring is in good agreement with the simulation results
and has no additional diffraction peaks, which proves the successful synthesis of pure
(TBA)2MnBr4 free of impurities. Each unit cell of (TBA)2MnBr4 consists of twenty-one
TBA+ cations and four [MnBr4]2− tetrahedra, and all cations are ordered (Figure 1c). As
shown in Figure 1d, the distance of the four Mn2+ ions in the unit cell varies from 8.951 Å
to 19.928 Å, which indicates that (TBA)2MnBr4 is a typical 0D structure at the molecular
level. Moreover, such a large Mn-Mn distance avoids energy transfer interactions between
adjacent luminescent centers and ensures that the photogenerated excitons can be effectively
bound within the tetrahedral luminescent centers, which is beneficial to the production
of efficient luminescence, and the details of this will be provided in the discussion later.
A Hitachi SU8020 was used to collect the morphology and elemental distribution of the
(TBA)2MnBr4 powder samples. The SEM photograph and the elemental mapping images
of the powder sample are given in Figure 1e. The size of the powder sample is about
200 µm, and the elemental mapping images verified the uniform distribution of Mn and
Br. In addition, the atomic ratio of Mn and Br is 8.56:34.89 (4.08:1) when analyzing the
proportion of the elements (Figure S2), which is consistent with the theoretical composition
of (TBA)2MnBr4, indicating the successful synthesis of (TBA)2MnBr4.
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Figure 1. (a) Schematic diagram of the room-temperature liquid-phase diffusion method for growing
0D (TBA)2MnBr4 SCs. Insert: The optical photograph of (TBA)2MnBr4 SCs under daylight and 365 nm
UV light in environmental conditions. (b) PXRD pattern of (TBA)2MnBr4 and the corresponding
simulated pattern from SCXRD. (c) The crystal structure of (TBA)2MnBr4. (d) Diagram of the two
adjacent Mn-Mn distances. (e) SEM image of (TBA)2MnBr4 micro-crystals and element mapping
images of Mn and Br.

In order to deeply understand the inside photophysical properties of (TBA)2MnBr4,
we carried out steady-state photoluminescence (PL) spectroscopy (Figure 2a) and UV-
Vis absorption spectroscopy (Figure S3a) studies on it. Under the 365 nm excitation, the
(TBA)2MnBr4 shows an emission band centered at 518 nm with an FWHM of 50 nm, which
is attributed to the d-d transition (4T1(G)→ 6A1(S)) of single Mn2+ ions. Benefitting from
the large Mn-Mn distance, the photogenerated excitons are bound within the [MnBr4]2−
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tetrahedra, resulting in a high PLQY (84.98%, Figure S4), which would be discussed in the
theoretical calculation. The photoluminescence excitation (PLE) spectra of the emission
band centered at 518 nm were also collected, which show seven excitation bands located at
~273 nm, ~288 nm, ~365 nm, ~374 nm, ~433 nm, ~450 nm, and ~468 nm, corresponding to
the 6A1(S)→ 4A2(F), 6A1(S)→ 4T1(F), 6A1(S)→ 4E(D), 6A1(S)→ 4T2(D), 6A1(S)→ 4A1(G),
4Eg(G), 6A1(S) → 4T2(G), and 6A1(S) → 4T1(G) transitions, respectively [16,26,28]. The
absorption spectrum of (TBA)2MnBr4 also shows seven absorption bands (Figure S3a),
which are consistent with the PLE spectrum. As shown in Figure S3b, the bandgap value
of (TBA)2MnBr4 is calculated as 2.50 eV according to Tauc’s rule: (αhν)1/n = A(hν − Eg)
(n = 2 for a direct bandgap and n = 1/2 for an indirect bandgap). Figure 2b provides details
about the energy absorption and transfer, non-radiative transition, and emission process
of a [MnBr4]2− tetrahedral. Under the excitation of high-energy UV light, the electron
absorbs energy and transitions from the ground-state 6A1 to the high-energy excited state
of Mn2+ ions and transfers to the 4T1 energy level through non-radiative transition, finally
transitioning back to the ground-state 6A1 through radiative recombination. Due to the
four-coordinate condition, the intensity of the crystal field is weak [29–32]. Therefore, the
energy level difference between 4T1 and the ground-state 6A1 is large, which ultimately
produces a green light emission of 518 nm. Figure 2c presents the PL decay curve of the
(TBA)2MnBr4 under the excitation of 365 nm, monitored at 518 nm at room temperature.
The decay curve can be fitted by the following single exponential decay equation [33]:

I(t) = I0 + Ae
−t
τ

where I(t) and I0 are the PL intensity at time t and t � τ, A is a constant, and τ is the
PL decay time. The PL decay time of (TBA)2MnBr4 is calculated to be 0.267 ms, which is
consistent with that of other reports [19,22,34], further indicating that the green emission of
(TBA)2MnBr4 originates from the d-d transition (4T1(G)→ 6A1(S)) of a single [MnBr4]2−

tetrahedron. Figure 2d shows the Raman spectra of (TBA)2MnBr4 excited by a 633 nm laser
at room temperature. The Raman modes at a low wavenumber (<400 cm−1) come from the
vibrations of a [MnBr4]2− tetrahedron [16,30,35], and the vibrations of tetrabutylammonium
cations are located at high wavenumbers [36]; the detailed Raman peak positions and
corresponding Raman mode assignments are listed in Table S1. The strongest Raman
mode is located at 80.43 cm−1. This is usually associated with acoustics with polaron
properties [37]. Furthermore, it is worth noting that the Raman mode at 152.89 cm−1 can
be viewed as the overtone of the 80.43 cm−1, and the Raman mode at 253.59 cm−1 can be
approximately regarded as the triple frequency of the 80.43 cm−1 mode, which indicates
the presence of multi-phonon modes in (TBA)2MnBr4, indicating strong electron–phonon
coupling [37].

Key information such as crystal field strength, electron–phonon interactions, etc.,
can be obtained through temperature-dependent PL spectroscopy [38,39]. Herein, we
used 365 nm ultraviolet light as the excitation source and collected the PL spectrum of
(TBA)2MnBr4 single crystals in the temperature range of 80 K–360 K. As shown in Figure 3a,
all of the PL peaks shift towards a lower energy direction with increasing temperature
(from 509 nm to 529 nm), and are accompanied by spectral broadening. This phenomenon
is contrary to the blue shift of the PL peaks with an increase in the temperature of Mn-based
organic–inorganic hybrid metal halides reported in other works in the literature [17,40,41].
Since the 4T1(G)→ 6A1(S) transition energy is inversely proportional to the crystal field
strength [42], the crystal field strength of (TBA)2MnBr4 at room temperature is higher than
80 K. At 360 K, the PL intensity of (TBA)2MnBr4 is about 60% of the PL intensity at 80 K
(Figure 3b), indicating that (TBA)2MnBr4 has high thermal stability and good thermal
quenching resistance, which makes it expected to be applied in the field of solid-state
lighting. To further determine the thermal stability of (TBA)2MnBr4, we fit the binding
energy (Eb) using the Arrhenius formula [43]:

I(t) = I0/Ae−Eb/kBT
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where I0 is the PL intensity at 0 K, I(t) is the PL intensity at temperature T, A is a constant,
Eb is the binding energy, and kb is the Boltzmann constant. The binding energy obtained
as a function of PL intensity and temperature is 39.43 meV (Figure 3c), which is larger
than the room temperature thermal energy (about 26 meV). The high activation energy (Eb)
of (TBA)2MnBr4 makes it difficult for the excited electrons to overcome the nonradiative
transition energy barrier, thus ensuring the excellent thermal stability of (TBA)2MnBr4.
To study the interaction between electrons and lattice vibrations in (TBA)2MnBr4, we
calculated the Huang–Rhys factor, S, of (TBA)2MnBr4. The Huang–Rhys factor, S, can be
solved by using the following formula [44]:

FWHM(T) = 2.36h̄ω

√
Scoth

(
h̄ω

2kBT

)
(1)

where h̄ω is the phonon energy and kb is the Boltzmann constant. The hyperbolic function,
coth(x), can be expressed as follows:

coth(x) =
ex + e−x

ex − e−x = 1 +
1

e2x − 1
(2)
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Therefore, Equation (1) can be written as follows:

FWHM(T) = 2.36h̄ω

√√√√S

(
1 +

1

e
h̄ω
kbT − 1

)
(3)
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FWHM2(T) = 5.57× S×(h̄ω)2

(
1 +

1

e
h̄ω
kbT − 1

)
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When h̄ω
kbT is small enough, e

h̄ω
kbT − 1 can be approximately expressed as h̄ω

2kbT ; therefore,
Equation (4) can be written as follows:

FWHM2(T) = 5.57× S×(h̄ω)2

(
1 +

1
h̄ω

2kbT

)
(5)

This can be further expressed as follows:

FWHM2(T) = a +
b
1

2kbT
(6)

where a = 5.57 × S × (h̄ω)2 and b = 5.57 × S × (h̄ω). The Huang–Rhys factor, S, defines the
degree of electron–phonon coupling [16,17]. The value of 1

2kbT and FWHM2 can be obtained

according to the PL spectrum from 80 K to 360 K. As shown in Figure 3d, taking 1
2kbT as the

horizontal axis and FWHM2 as the vertical axis, the Huang–Rhys factor, S, and phonon
energy, h̄ω, are obtained by fitting, corresponding to S = 63.42 and }ω = 2.93 meV. Such a
large S may be related to the organic cations in (TBA)2MnBr4. According to the research
of Sargent et al., electron–phonon interaction is related to the stiffness of organic cations;
greater stiffness of the organic cations leads to stronger lattice vibration, and the correspond-
ing electron–phonon interaction will be stronger [44]. Due to the tetrabutylammonium
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cation having four C-C-C-C chains, belonging to soft organic cations with rigidity, which
can generate strong lattice vibration, the result is a large S. The large Huang–Rhys factor, S,
indicates that (TBA)2MnBr4 has strong electron–phonon coupling, which is consistent with
the results obtained through Raman spectroscopy.

Density functional theory (DFT) calculations were used to deeply understand the
PL mechanism and electronic structure of (TBA)2MnBr4. The energy band structure of
(TBA)2MnBr4 is shown in Figure 4a; (TBA)2MnBr4 exhibits flat band edges, indicating that
(TBA)2MnBr4 has highly localized electronic states, consistent with the electronic structure
of 0D organic–inorganic hybrid metal halides [40,45]. Furthermore, the flat bands of both
the valence band maximum (VBM) and the conduction band minimum (CBM) indicate
that no obvious intermolecular coupling within a [MnBr4]2− tetrahedron can be found,
which proves that each [MnBr4]2− tetrahedron can be regarded as an independent emission
center [21], which is the key to producing highly efficient luminescence [46]. At the same
time, the large Mn2+ ions’ distance ensures that there is no obvious energy transfer between
adjacent [MnBr4]2− tetrahedral luminescent centers, ultimately producing efficient green
light emission. The calculated bandgap of (TBA)2MnBr4 at the Г point in the Brillouin
zone is about 2.52 eV, which is consistent with the experimental bandgap value (2.50 eV).
Figure 4b shows the calculated total of each element’s orbital-resolved partial densities
of states (DOSs); the valence band maximum (VBM) is composed of Mn-3d and Br-4p
orbitals and the conduction band minimum (CBM) is composed of Mn-3d orbitals, while
the organic molecules do not contribute to the frontier orbitals, which indicates that the
bandgap of (TBA)2MnBr4 is determined by the inorganic [MnBr4]2− tetrahedron. The
large-sized tetrabutylammonium bromide organic molecules play a role in supporting
the skeleton and effectively isolating the [MnBr4]2− tetrahedral luminescent center in the
structure. In addition, the sharp peaks near the VBM and CBM indicate that the valence
and conduction bands of (TBA)2MnBr4 are almost dispersion-free, indicating negligible
electronic coupling within [MnBr4]2− [47].
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The stability of materials is crucial for the fabrication of high-performance optoelec-
tronic devices. Before fabricating optoelectronic devices using (TBA)2MnBr4 SCs, we first
evaluated the stability of (TBA)2MnBr4 SCs. As shown in Figure S5a, the PXRD pattern of
(TBA)2MnBr4 showed that no additional diffraction peaks were generated and that there
was no shift in diffraction peaks compared with as-synthesized samples after they are stored
for 60 days in ambient conditions (T≈ 30 ◦C and RH≈ 70%). The TGA measurement found
that the initial decomposition temperature of (TBA)2MnBr4 is about 220 ◦C, indicating that
(TBA)2MnBr4 has a high thermal stability (Figure S5b). The (TBA)2MnBr4 can still maintain
a high PLQY after being stored for 60 days in ambient conditions, about 90% of that of the
as-synthesized samples (Figure S5c). In addition, the PL intensity of the sample attenuated
by about 5% after 4 h of UV irradiation, indicating that (TBA)2MnBr4 has high UV stability



Crystals 2023, 13, 1678 8 of 12

(Figure S5d). The above results show that (TBA)2MnBr4 has excellent stability and is very
suitable for the preparation of high-performance optoelectronic devices.

The efficient luminescence properties and excellent stability of (TBA)2MnBr4 make it a
promising green phosphor for solid-state lighting applications [48]. Therefore, (TBA)2MnBr4
powder was coated on the 365 nm GaN UV chip, and a bright green light was obtained
after switching on the power, as shown in the insert of Figure S6a. To compare the green
emission of the (TBA)2MnBr4 with standard green light, their CIE coordinates, through
the use of a CIE chromaticity diagram based on the PL spectrum, were collected. The
coordinates of the green emission of (TBA)2MnBr4 are (0.17, 0.69), which are close to those
of standard green (Figure S6a). Meanwhile, with an increase in voltage or current the
spectral shape remains almost unchanged (Figure S6b,c), indicating that (TBA)2MnBr4 has
excellent stability and great application potential as a green phosphor.

Bulk single crystals with a narrow bandgap, high carrier mobility, and steady-state
photocurrent are excellent candidates for the fabrication of high-performance photosensi-
tive devices [49–52]. According to our literature survey on the optoelectronic applications
of manganese-based metal halides in recent years, Mn(II)-based metal halides are currently
mainly used in the fields of X-ray scintillators, LEDs, and sensors, while reports in the field
of photodetectors are still rare. Table S2 summarizes the main application directions of
typical Mn(II)-based metal halides in recent years. Based on this, we used the as-grown
large-sized (TBA)2MnBr4 single crystals to prepare ultraviolet photodetectors to explore
the application potential of this type of material in the field of photodetectors. A UV
photodetector with a planar metal–crystal–metal structure of Ag/(TBA)2MnBr4/Ag is
shown in the inset of Figure 5b. The quality of (TBA)2MnBr4 SCs was first evaluated
before characterizing the performance of the device. The density of trap states (ntrap) is an
important indicator for evaluating the quality of a single crystal [53]. The silver paste was
brushed on both sides of the (TBA)2MnBr4 SCs with a thickness of 3.5 mm as electrodes
(inset of Figure 5a), and the I–V curve was tested under dark conditions. As shown in
Figure 5a, the dark I–V curve can be divided into three parts on the log–log scale: (1) the
Ohmic region (I ∝ Vn = 1, V < 56.72 V)—in this region the current increases linearly with
voltage; (2) the Child’s region (I ∝ Vn = 2, V > 66.83 V)—in this region the current exhibits
quadratic voltage; and (3) the trap fill limited (TFL) region (I ∝ Vn = 1, 56.72 V < V < 66.83 V).
The voltage value at the inflection points between the Ohmic region and the TFL region
is called the trap fill limited voltage (VTFL), and the ntrap can be defined by the following
formula [47]:

VTFL =
ed2ntrap

2εε0

where e is the elemental charge, d = 3.5 mm is the thickness of (TBA)2MnBr4 SCs, ε is
the relative dielectric constant of (TBA)2MnBr4 SCs, and ε0 is the vacuum permittivity.
A Tonghui TH2828 precision LCR meter was used to measure the capacitance of the
Ag/(TBA)2MnBr4/Ag device, and the ε = 28.5 is calculated by the formula ε = Ct

ε0 A , where
A = 1.44 × 10−6 m2 is the area of the Ag electrodes. Therefore, the trap density, ntrap, is
estimated to be about 1.46× 1010 cm−2. The lower trap density indicates that (TBA)2MnBr4
SCs have the quality of high crystallinity, making them an ideal material for fabricating
photodetectors. Unfortunately, due to the weak excitation intensity of the xenon lamp, we
could not observe the obvious optoelectronic signal of the device with excitation by the
xenon lamp. Therefore, a fixed-wavelength laser (λ = 365 nm) was utilized as an excitation
source with which to study the optoelectronic properties of the (TBA)2MnBr4 device. The
I–V curves of the device under dark and light conditions are shown in Figure 5b, and
the device exhibits a distinct photo response after being excited by UV light compared to
dark conditions. The I–V curve of the device shows relatively symmetrical characteristics.
Here, we defined the rectification ratio as the ratio between the forward bias current and
reverse bias current [54]. Therefore, the rectification ratio of the device is approximately
equal to 1 here. The time-dependent photocurrent response of the (TBA)2MnBr4 device
is shown in Figure 5c. After multiple on–off cycles, the device can still work stably, with
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high reproducibility. Benefiting from the high crystalline quality, the grain boundary
recombination of carriers is reduced [55], and the on–off ratio of the device is 8.73 under an
electrode distance of about 5 mm. Therefore, the on–off ratio can be further improved if the
distance between electrodes is further narrowed or a more suitable electrode material is
selected [40,56]. The rise time (trise) and decay time (tfall) were calculated to be 103.91 ms
and 98.02 ms, respectively, close to the values of previously reported Mn-based metal
halide photodetectors [56]. The fast photo response of the device was attributed to the high
quality of the (TBA)2MnBr4 SCs. Our results promote the research of Mn(II)-based organic–
inorganic hybrid materials and highlight the application potential of these materials in
high-performance optoelectronic devices.
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3. Conclusions

In conclusion, we synthesized a new lead-free 0D Mn(II)-based organic–inorganic
hybrid metal bromide (TBA)2MnBr4. This compound exhibits strong green emission with
peaking at 518 nm, which is attributed to the d-d transition of the single Mn2+ ion. In
addition, the as-synthesized (TBA)2MnBr4 shows a high PLQY of 84.98% and remarkable
stability toward humidity, temperature, and UV irradiation. Meanwhile, a green LED was
fabricated via coated (TBA)2MnBr4 on the 365 nm UV chip, and the coordinates of the
green emission of (TBA)2MnBr4 are (0.17, 0.69), which are close those of standard green.
Finally, a UV photodetector based on bulk (TBA)2MnBr4 SCs was fabricated, which exhibits
a distinct positive photo response and a fast response time in the order of milliseconds.
Our results promote the research of Mn(II)-based organic–inorganic hybrid materials and
pave the way by using these materials for future high-performance optoelectronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13121678/s1, Figure S1: The photograph of the growth
process of (TBA)2MnBr4 SCs. Figure S2: The Energy disperse spectrum of (TBA)2MnBr4. Figure S3:
The UV-Vis absorption spectrum (a) of (TBA)2MnBr4 and corresponding Tauc plot (b). Figure S4: The
PLQY measurement view of (TBA)2MnBr4 shows that the PLQY is as high as 84.98%. The excitation
wavelength was 365 nm. Figure S5: (a) The XRD patterns of (TBA)2MnBr4 before and after stored
in ambient condition for 60 days. (b) TGA curve of (TBA)2MnBr4. (c) The PLQY value variation
of (TBA)2MnBr4. (d) Long-term PL stability of (TBA)2MnBr4 under a 365 nm UV lamp within 4 h.
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Figure S6: (a) The CIE coordinates of the fabricated LED. Emission spectra of the fabricated LED at
different driving voltage (b) and currents (c). Table S1: Assignments of the observed Raman spectra
of (TBA)2MnBr4 SCs. Table S2: The main optoelectronic application directions of typical Mn(II)-based
metal halides. References [19,21,28,40,57–63] are cited in the Supplementary Materials.
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