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Abstract: Two 3D Zn(II) and Cd(II) coordination polymers, [Zn2(µ4-dppa)(µ-dpe)(µ-H2O)]n·nH2O (1)
and [Cd2(µ8-dppa)(µ-dpe)(H2O)]n (2), have been constructed hydrothermally using 4-(3,5-dicarboxyp
henoxy)phthalic acid (H4dppa), 1,2-di(4-pyridyl)ethylene (dpe), and zinc or cadmium chlorides.
Both compounds feature 3D network structures. Their structure and topology, thermal stability,
catalytic, and anti-wear properties were investigated. Particularly, excellent catalytic performance
was displayed by zinc(II)-polymer 1 in the Knoevenagel condensation reaction at room temperature.

Keywords: coordination polymer; carboxylic acids; hydrothermal generation; topological analysis;
catalysis; Knoevenagel condensation

1. Introduction

The design and preparation of transition metal coordination polymers have become
the topics of material study because of their interesting structures and functional properties,
namely in gas separation, heterogeneous catalysis, molecular sensing, luminescence, and
magnetism [1–10]. The synthesis of functional coordination polymers depends largely on
metal centers, organic ligands, and reaction conditions, including solvents, temperatures,
and pH values [11–20].

In this context, semi-rigid polycarboxylate ligands have been widely employed to
generate various functional coordination polymers because of their good coordination
effects in meeting the geometric requirement of the metal centers [8,15,18,19].

Since 2018, our group has been working on the preparation of transition metal coordi-
nation polymers based on multi-carboxylic acids and developing their catalytic activities in
organic reactions [8,18,21]. The Knoevenagel condensation reaction is an important organic
synthetic reaction involving the formation of active carbon–carbon double bonds that can
be further added by nucleophiles, which are widely employed in the production of fine
chemicals [22–25]. It is reported that some transition metal coordination compounds have
good catalytic performance in the Knoevenagel condensation reaction [26–29]. Coordi-
nation compound catalysts present a higher efficiency and recyclability than traditional
catalysts (NaOH, pyridine, and amine).

In this study, we selected 4-(3,5-dicarboxyphenoxy)phthalic acid (H4dppa) as an
organic linker (Scheme 1) owing to the following characteristics: (1) it may twist and rotate
to produce different angles between the two benzene planes through the C–Oether–C bond
to meet the coordination requirements of metal ions; (2) it bears nine potential coordination
sites (eight carboxyl O donors and one Oether atom), which is useful in forming coordination
polymers with high dimensionalities; (3) in 2015–2022, several Cu(II), Mn(II), Co(II), Zn(II),
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Ni(II), and Cd(II) coordination compounds bearing the ligand were reported [30–36], and
their luminescence and magnetism were studied (Table S1). However, only three Cu-dppa
networks with catalytic properties in dye degradation have been reported [31]. Therefore,
the present work provides us with a good chance to research this field.
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2. Experimental Section
2.1. Materials and Measurements

All solvents and chemicals were of A.R. grade and used directly. H4dppa was acquired
from Yanshen Tec. Co., Ltd. (Changchun, China). C, H, and N were analyzed using an
Elementar Vario EL elemental analyzer. IR spectra were collected using KBr pellets and
a Bruker EQUINOX 55 spectrometer. Thermogravimetric analysis (TGA) curves were
obtained using a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ◦C·min−1.
The 1H NMR spectra were obtained using a JNM ECS 400M spectrometer (JEOL, Tokyo,
Japan). PXRD data were collected using a PANalytical X-ray diffractometer at room
temperature (Cu-Kα radiation, λ = 1.54060 Å); the X-ray tube was operated at 40 kV and
40 mA. Quartz glass plates were used for loading samples. The data collection range was
between 5 and 45◦. The step was 0.02◦.

2.2. Synthesis of [Zn2(µ4-dppa)(µ-dpe)(µ-H2O)]n·nH2O (1)

To a stirred mixture containing ZnCl2 (0.027 g, 0.20 mmol), H4dppa (0.035 g, 0.10 mmol)
and dpe (0.036 g, 0.20 mmol) in H2O (10 mL) was added NaOH (0.016 g, 0.40 mmol). The
mixture was stirred for another 15 min at room temperature, then sealed in a 25 mL Teflon-
lined cup and heated at 160 ◦C for 3 days. After the mixture cooled to indoor temperature,
colorless block-shaped crystals of [Zn2(µ4-dppa)(µ-dpe)(µ-H2O)]n·nH2O (1) were collected
manually, then washed with distilled water. Yield: 53% (based on H4dppa). Anal. Calcd.
for C28H20Zn2N2O11 (%): C 48.65, H 2.92, N 4.05; found: C 48.33, H 2.93, N 4.07. IR (KBr,
cm−1): 3529 w, 3066 w, 1616 s, 1567 s, 1426 m, 1386 s, 1369 s, 1294 w, 1263 w, 1214 w, 1144 w,
1095 w, 1069 w, 1025 w, 980 w, 906 w, 831 m, 782 w, 730 w, 690 w, 553 w. νOH: 3529 and 3066;
νas(CO2): 1616 and 1567; νs(CO2): 1426, 1386, and 1369.

2.3. Synthesis of [Cd2(µ8-dppa)(µ-dpe)(H2O)]n (2)

The preparation of 2 was similar to that of 1, except CdCl2·H2O was used instead of
ZnCl2. After cooling the reaction mixture to room temperature, colorless block-shaped
crystals of 2 were collected manually, then washed with distilled water and dried in
desiccator. Yield: 48% (based on H4dppa). Anal. Calcd. for C28H18Cd2N2O10 (%): C 43.83,
H 2.36, N 3.65; found: C 43.57, H 2.38, N 3.61. IR (KBr, cm−1): 3401 w, 3045 w, 1630 s, 1612 s,
1576 s, 1497 w, 1439 w, 1399 m, 1347 m, 1303 w, 1268 w, 1223 w, 1148 w, 1077 w, 1007 w,
972 w, 906 w, 831 w, 782 w, 707 w, 658 w, 618 w, 548 w. νOH: 3401 and 3045; νas(CO2): 1630,
1612 and 1576; νs(CO2): 1399 and 1347. Both compounds are insoluble in water, methanol,
ethanol, acetone, and DMF.

2.4. Structural Determination (Single-Crystals)

Two single crystals (size: 0.06 mm × 0.04 mm × 0.03 mm for 1 and 0.07 mm ×
0.04 mm × 0.03 mm for 2) were analyzed at 286(2) K on a Bruker SMART APEX II CCD
diffractometer with Cu-Kα radiation (λ = 1.54184 Å). The structures were solved through
direct methods and refined using a full matrix least-square on F2 using the SHELXTL-2014
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program [37]. C, N, and O atoms were refined anisotropically. All the H atoms were
positioned geometrically and refined using a riding model. There is one disordered solvent
molecule in 1. The number of solvent water molecules was obtained on the basis of the
difference electron map (using the SQUEEZE routine in PLATON) [38] and elemental and
thermogravimetric analyses. The crystallography data of 1 and 2 are summarized in Table 1.
The relevant bond lengths and angles of 1 and 2 are listed in Table S2 (Supplementary
Materials). The H bond parameters for compound 2 are listed in Table S3. Analysis
of topologies for 1 and 2 was performed using an underlying network concept [39,40].
Simplified networks were generated upon the removal of dpe and H2O ligands, along with
producing a reduction of the dppa4− ligands to their centroids. CCDC-2295640 and 2295641
contain the structural parameters.

Table 1. Summary of crystal data of compounds 1 and 2.

Compound 1 2

Chemical formula C28H20Zn2N2O11 C28H18Cd2N2O10
Molecular weight 691.18 767.24

Crystal system Monoclinic Monoclinic
Space group P21/n P21/n

a/Å 8.5941(2) 11.33826(10)
b/Å 23.0545(4) 20.23587(17)
c/Å 17.5393(4) 11.39034(10)
α/(◦) 90 90
β/(◦) 101.943(2) 93.9031(8)
γ/(◦) 90 90
V/Å3 3399.89(13) 2607.33(4)

Z 4 4
F(000) 1360 1504

Crystal size/mm 0.06 × 0.04 × 0.03 0.07 × 0.04 × 0.03
θ range for data collection 3.211–64.997 4.370–76.380

Limiting indices −8≤ h ≤ 10, −27 ≤ k ≤ 26,
−20 ≤ l ≤ 20

−14 ≤ h ≤ 12, −25 ≤ k ≤ 25,
−14 ≤ l ≤ 11

Reflections collected/unique (Rint) 21,562/5754 (0.1006) 23,647/5188 (0.0800)
Dc/(g·cm−3) 1.315 1.955

µ/mm−1 2.176 13.641
Data/restraints/parameters 5754/2/387 5188/0/380

Goodness-of-fit on F2 1.003 1.024
Final R [(I ≥ 2σ(I))] R1, wR2 0.0675, 0.1804 0.0416, 0.1124

R (all data) R1, wR2 0.0806, 0.1895 0.0434, 0.1139
Largest diff. peak and hole/(e·Å−3) 0.814 and −0.511 1.201 and −1.253

2.5. Catalytic Knoevenagel Reaction

To a stirred solution of aromatic aldehyde (0.50 mmol, benzaldehyde as a model
substrate), propanedinitrile (1.0 mmol) in solvent (1.0 mL, typically CH3OH) was added
as a catalyst (typically 2 mol%), then the mixture was stirred for an expected reaction
time at indoor temperature. Then, the catalyst was wiped off by centrifugation. The
remaining filtrate was concentrated under reduced pressure to produce a crude solid
product. The quantification of the product was analyzed by 1H NMR spectroscopy (in
CDCl3) (Figure S5). So as to run recycling experiments, the used catalyst was collected again
by centrifugation, then washed with CH3OH, dried at 25 ◦C, and reused in subsequent
tests as discussed above.

2.6. Friction Test

The wear performances and the friction of oils were determined by High Frequency
Oscillating Tribometer (UMT-TRIBOLAB) under simulated operating conditions. In the
testing configuration, the static upper specimen was a GCr15 steel ball (diameter of 10 mm),
and a GCr15 steel block with thickness of 8 mm and diameter of 25 mm was used as the
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reciprocating lower specimen. Before tests, the balls and blocks were washed in acetone in
ultrasonic cleaner for 10 min. The sample oil (0.1 mL) was dropped on the steel block using
a micro-syringe and made to cover its entire surface before each friction test. The testing
temperatures were tested by a thermocouple fitted below the holder and set at 25 ◦C by
the tribometer control program. All the friction tests were performed at a reciprocating
stroke of 2 mm with a frequency of 25 Hz for 30 min under a consistent load of 200 N (the
Hertzian contact pressure of ~1602 MPa). Each test was repeated 3 times under the same
condition for the verification of the repeatability of the measured values.

3. Discussion of Results
3.1. Crystal Structure of 1

An asymmetric unit of 1 has two Zn centers (Zn1 and Zn2), one µ4-dppa4− block,
one µ-dpe moiety, one µ-H2O ligand, and one lattice water molecule (Figure 1a). The
Zn1 and Zn2 centers are four-coordinate and reveal tetrahedral {ZnNO3} environments,
which are completed by two O atoms from two individual µ4-dppa4− blocks, one O atom
of the µ-H2O ligand, and a Ndpe donor. The lengths of the Zn–O and Zn–N bonds are
1.907(4)–1.991(4) and 2.032(4)–2.067(4) Å, respectively; these values are similar to those
of other zinc compounds [15,41]. The dppa4− ligand is employed as a µ4-block (mode I,
Scheme 2 and Figure S3), wherein all four deprotonated carboxyl groups adopt monoden-
tate modes. In the µ4-dppa4− block, the dihedral angle of two benzene rings as well as
the C–Oether–C angle are 82.91 and 117.38◦. The dpe auxiliary ligand adopts a bridging
coordination mode. The µ4-dppa4− blocks, µ-dpe moieties, and µ-H2O ligands link adja-
cent Zn(II) centers to give a 3D network (Figure 1b). It features channels (11.78 × 10.79 Å
measured by atom-to-atom distances) (Figure 1b), which are filled with water molecules of
crystallization. Upon the removal of the water molecules of crystallization, we computed,
using PLATON, an effective free volume that is 30.4% of the crystal volume [38]. This
3D network structure is composed of the 4-linked Zn nodes, 4-linked µ4-dppa4− nodes,
2-connected µ-dpe, and µ-H2O linkers (Figure 1c). This is a 2,2,4,4-connected framework
with a new topology and a point symbol of (62.8.7.8.7)(62.8.73)(6)(82.62.8.7).
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3.2. Crystal Structure of 2

This compound also reveals a 3D network. An asymmetric unit has two Cd(II) centers
(Cd1 and Cd2), one µ8-dppa4− block, one dpe moiety, and one H2O ligand (Figure 2a). The
Cd1 center is six-coordinate and reveals a distorted octahedral {CdNO5} geometry. It is
defined by five O donors from four individual µ8-dppa4− blocks and one Ndpe donor. The
Cd2 atom is also six-coordinate and adopts a distorted octahedral {CdO6} environment
comprising five O atoms of four different µ8-dppa4− moieties and one O atom of the
H2O ligand. The Cd–O [2.215(3)–2.650(2) Å] and Cd–N [2.294(3) Å] bonds are within
standard values [42,43]. The dppa4− block is employed as a µ8-linker with its carboxylate
groups adopting a µ-bridging bidentate or tridentate mode (mode II, Scheme 2 and Figure
S3). Within the µ8-dppa4− block, the dihedral angle between two benzene rings is 82.83◦,
whereas the C–Oether–C angle is 117.22◦. The dpe auxiliary ligand adopts a terminal
coordination mode. The µ8-dppa4− blocks and µ-dpe moieties connect adjacent Cd(II)
centers to give a 3D network (Figure 2b). It also features channels (7.90 × 6.97 Å measured
by atom-to-atom distances) (Figure 2b). We computed, using PLATON, an effective free
volume that is 1.80% of the crystal volume [38]. The 3D network in this compound
features an intricate binodal 4,8-connected net composed of the 4-linked Cd nodes and
8-linked µ8-dppa4− nodes (Figure 2c). It adopts a new topology with a point symbol of
(412.612.84)(45.6)2.
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3.3. TGA and PXRD Data

To study the thermal stability of polymers 1 and 2, thermogravimetric analysis (TGA)
was carried out. As shown in Figure 3, the TGA curve of 1 shows that there is a loss of
one free water molecule and one H2O ligand between 55 and 192 ◦C (exptl, 4.9%; calcd,
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5.2%); further heating above 277 ◦C leads to a decomposition of the dehydrated framework.
Compound 2 loses its one lattice water molecule and one H2O ligand at 134–198 ◦C (exptl,
2.5%; calcd, 2.3%), followed by decomposition at 341 ◦C. The corresponding metal oxides
(ZnO and CdO) are expected to be the final product of polymers 1 and 2. Although polymers
1 and 2 have similar compositions, their TGA curves differ greatly. The difference may
be attributed to the different coordination modes of the dppa4− ligands in both polymers
(µ4-linker in 1 and µ8-linker in 2).
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Crystalline samples of polymers 1 and 2 were researched using the PXRD method.
Experimental and simulated PXRD patterns are provided in Figure S2. Their peak position
and intensity are similar. Their comparison demonstrates a good match and determines the
formation of phase purity for the obtained compounds.

3.4. Catalytic Knoevenagel Reaction

Considering the potential ability of some metal (II) coordination polymers to serve as
catalysts in a Knoevenagel reaction [8,43,44], we probed compounds 1 and 2 as heteroge-
neous catalysts in the reaction of some aldehydes with malononitrile. Benzaldehyde and
malononitrile, as the model substrates, reacted at 25 ◦C in a methanol medium to produce
2-benzylidenemalononitrile (Scheme 3, Table 2). The influence of important parameters
(including reaction time, solvent, catalyst loading, and recycling) on the reaction was
explored.
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Table 2. Knoevenagel reaction of benzaldehyde with propanedinitrile a.

Entry Catalyst T (◦C) Time (min) Catalyst Loading, mol% Solvent Yield b, %

1 1 25 10 2.0 CH3OH 45
2 1 25 20 2.0 CH3OH 62
3 1 25 30 2.0 CH3OH 74
4 1 25 40 2.0 CH3OH 85
5 1 25 50 2.0 CH3OH 94
6 1 25 60 2.0 CH3OH 100
7 1 25 60 1.0 CH3OH 95
8 1 25 60 2.0 H2O 99
9 1 25 60 2.0 C2H5OH 96

10 1 25 60 2.0 CH3CN 87
11 1 25 60 2.0 CHCl3 63
12 2 25 60 2.0 CH3OH 81
13 Blank 25 60 − CH3OH 20
14 ZnCl2 25 60 2.0 CH3OH 32
15 H4dppa 25 60 2.0 CH3OH 26

a Reaction conditions: benzaldehyde (0.5 mmol) and malononitrile (1 mmol) in solvent (10 mL). b Calculated by
1H NMR spectroscopy: mol (product)/mol (aldehyde + product) × 100 (Figure S5).

When compound 1 was used as a heterogeneous catalyst, the 2-benzylidenemalononitrile
product was obtained smoothly (Table 2 and Figure S4). When benzaldehyde and malononi-
trile were treated in CH3OH catalyzed by 1 (2 mol%), the yields of 2-benzylidenemalononitrile
accumulated, with a yield increase from 45 to 100% by extending the reaction time from 10 to
60 min (Table 2, entries 1–6; Figure S6). The effect on the catalyst amount was also researched,
showing a product yield growth from 95 to 100% upon increasing the amount of catalyst from
1 to 2 mol% (entries 6 and 7). Besides CH3OH, other solvents were employed. Ethanol, water,
chloroform, and acetonitrile were less suitable for the reaction (63–99% product yields).

In comparison with 1, compound 2 was less active, giving a maximum product yield
of 81% (entry 12, Table 2). Significantly, under similar reaction conditions, the Knoevenagel
reaction of benzaldehyde with malononitrile was significantly less efficient in the absence
of the above catalyst (only 20% product yield). And, when using H4dppa (26% yield) or
ZnCl2 (32% yield) as catalysts (entries 13–15, Table 2), the yields were near those seen in
the absence of a catalyst.

Some substituted benzaldehyde substrates were employed to research the substrate
scope of the Knoevenagel reaction of benzaldehyde with malononitrile. These reactions
were performed under optimized conditions (2.0 mol% 1, CH3OH, 25 ◦C, 60 min). The
yields of the related products were in the range of 37–100% (Table S4). Benzaldehydes
bearing a strong electron-withdrawing group (including NO2 and Cl substituent in the
ring) showed better efficiency (entries 2–5, Table 2), which can be attributed to an improved
electrophilicity of aldehyde groups. The benzaldehydes with electron-donating groups (e.g.,
hydroxyl, methyl, and methoxy groups) led to low product yields (entries 6–8, Table S4).

Finally, to address the reusability properties of catalyst 1, the cycle reactions were
carried out under the reaction conditions of entry 7 in Table 2. The catalyst was separated
via centrifugation after each reaction cycle, then washed with methanol, dried in air at
indoor temperature, and used in the next cycle. The gained results prove that compound
1 preserved the activity for at least five reaction cycles (the yields are 94, 92, 90, and 87%
for the second to the fifth cycle, respectively, Figure S7).Additionally, the PXRD patterns
confirm that the structure of 1 is maintained (Figure S8).

In order to determine whether polymer 1 is a heterogeneous catalyst in Knoevenagel
condensation, we carried out a catalyst-leaching experiment [45,46]. Hence, a control test
with catalyst 1 was performed until an intermediate product yield (~45% in 10 min) was
obtained. After 10 min, the coordination polymer catalyst 1 was isolated by centrifugation
and the reaction mixture was kept for an additional 50 min. As depicted in Figure S6 (blue
dotted line), there was no significant increase in the yield of the reaction after removing the
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catalyst. These experimental results fully show that the catalyst is a heterogeneous catalyst.
In another test, after removing the catalyst, the filtrate was dried in vacuo, followed by the
determination of the amount of zinc. The obtained analysis showed only traces of zinc
(0.047%). This result proves that there is no significant leakage of zinc in the catalyst.

According to the literature, the catalytic activities of coordination polymer catalyst 1
are generally better than other coordination polymer catalysts in the Knoevenagel reaction
of aldehydes (Table S5) [26–28,44,47–53].

Based on the literature [54,55], we put forward a possible mechanism for this reac-
tion catalyzed by 1 (Figure S9). The unsaturated Zn(II) center in catalyst 1 is eventually
employed as the Lewis acidic site and interacts with the H–C=O group of benzaldehyde,
giving the group polarization and an enhanced electrophilicity of the corresponding carbon
atom. The polarization can promote the nucleophilic attack of this site by malononitrile,
which acts as a nucleophile precursor. Instead, the interaction between the –CN group
of malononitrile and the Lewis acid site increases the acidic character of the methylene
functionality and enhances its deprotonation. The basic sites that exist in 1 (O-carboxylate
sites) can easily take the proton from the –CH2– group to give the resultant nucleophilic
species, which react with the H–C=O group of benzaldehyde to form a carbon–carbon
bond, followed by dehydration to produce the product 2-benzylidenemalononitrile.

3.5. Anti-Wear Property of 1

The use of inorganic additives is a novel method for improving the lubrication per-
formance of lubricating oil to increase the operational efficiency of engines. Lubricating
additives can rapidly infiltrate the friction area to prevent direct contact between the friction
pair’s surfaces [56]. On a damaged friction surface, they are more likely to precipitate or
form a protective coating. Inspired by the fact that zinc dialkyl dithiophosphate (ZDDP) is
commonly used in engine oils as a superb anti-wear additive, zinc(II) coordination polymer
1 was used as an additive in polyalphaolefin synthetic lubricant (PAO10), whose viscosity
at 100 ◦C is 10.1 mm2/s, to evaluate its anti-wear performance.

Compound 1 (10 mg), which was ground into powder with a mortar, was added to
PAO10 (10 mL). The mixture was stirred at 85 ◦C for 24 h and ultrasonically dispersed
for 1 h to obtain the oil sample (1/PAO10). Although TGA measurements for crystal 1
suggested a loss of water molecules starting from 55 ◦C, compound 1 was present in a solid
state in sample 1/PAO10. As shown in the fluorescence microscope images (Figure S10),
the particle size of 1 in 1/PAO10 was in the micron to nanometer scale, which was similar
to the size and fluorescence of the powder of 1. In order to confirm the preservation of the
nature of compound 1 in sample 1/PAO10, sample 1/PAO10 was diluted with petroleum
ether, and the precipitate was collected and washed with petroleum ether by centrifugation.
The PXRD experiments of the sediment were carried out (Figure S11). The PXRD patterns
confirm that the structure of 1 is retained despite the observation of several novel signals
or widening of some parent peaks. These alterations can be associated with a decrease in
crystallinity and the presence of impurities.

The friction coefficient curves versus sliding time for PAO10 and 1/PAO10 samples
at 25 ◦C are shown in Figure 4. The friction coefficient of PAO10 increased sharply at
300 s, stabilizing at approximately 0.12. For 1/PAO10, the friction coefficient curve was
steady. The friction coefficient was close to that of PAO10 in the beginning and not over
0.9 during the entire test time. This indicates that the addition of compound 1 improved
the wear resistance of lubricating oil, which will has potential applications as an additive in
lubricating oil. This significant improvement was due to the nanobearing and deposition
exerted by solid 1 on the surface of the friction pair, which contributed to a decline in the
contact area and surface roughness and effectively repaired the friction pair.
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